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A B S T R A C T 

Elastic and inelastic moment resistances of W-steel beams with considering the effects of 

initial imperfections and residual stresses are numerically investigated in the present 

study. The numerical model is implemented in ABAQUS in which residual stresses are 

incorporated by using initial conditions while the initial imperfection is imported through 

the first lateral-torsional buckling mode. By comparing the FEA moment resistances of 

W250x45 steel beams against those of the CSA S16 and Eurocodes 3 design standards, it 

is observed that (i) If the effects of initial imperfections and residual stresses are excluded, 

the inelastic resistances are close to a fully plasticized section moment. In contrast, if the 

effects are included, the inelastic resistances are significantly smaller than the fully 

plasticized moment. (ii) The effects of initial imperfections on the moment resistance are 

significant for intermediate and long spans. Although the initial imperfection taken in the 

present study is 4.0 mm, that is within the allowable limit specified in the design standards 

(i.e., not greater than L/1000), the moment resistances with the taken imperfection are 

considerably smaller than the design moments specified in the design standards, and (iii) 

When considering steel beams with the effects of initial imperfection and residual stresses, 

the moment resistances based on the CSA S16 and EC3-6.3.2.3 solutions are higher, while 

those based on EC3-6.3.2.2 solution are lower than the moment capacities of the beams 

with the initial imperfection. This indicates that EC3-6.3.2.2 clause is the most safety 

design for the moment resistances. 
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1 Introduction 

Wide flange steel beams are widely applied to civil structures such as bridges, buildings and port structures, because they 

possess high shear and flexural strengths [1, 2]. Due to the wide application of such steel structures in civil structures, national 

design standards are published as standardized design guides [3, 4]. The failure modes of wide flange steel beams are 

relatively complicated and they depend on unbraced beam span length, web and flange class/compactness, and material. For 

steel beams with a class 1 or 2 section (or a compact section) and laterally unsupported, their failure mode may be based on 

a fully plasticized section when the unbraced length is short, an inelastic buck-ling resistance when the unbraced length is 

intermediate and an elastic buckling moment resistance when the unbraced length is long [3-5]. Among the above failure 

modes, the inelastic buckling resistance is complicated because they depend on residual stresses and imperfection initially 

stored in the beam [3-7]. Besides, both local and global buck-ling phenomena also depend on other design parameters such 

as steel Young modulus, Poisson’s ratio, ratio of the width-thickness, and slenderness ratio. There were several numerical 

studies conducted to numerically evaluate the inelastic moment resistances of steel structures with taking the effects of 

residual stresses and initial imperfections [5-7]. Vales and Stan [5] focused on stochastic analyses of steel beam subjected to 

uniform bending. Residual stresses in their studies are incorporated into a numerical model through temperature deformations 

and stresses. Such a treatment might create initial stresses in the steel but they may not be identical to the designed residual 

stress model as given. It might also create initial deformation/strains in the steel those were not expected because the original 

steel beams were undeformed. Abebe et al. [6] focused on the inelastic buckling strength of steel columns while Elaiwi et al. 

[7] developed numerical solutions for castellated beams with holes on the web. In the context, the present study is going to 

conduct a numerical study based on ABAQUS [8] to investigate the effects of residual stresses and initial imperfections on 

the inelastic moment resistances of steel beams with classes 1 and 2. Both CSA S16 and Eurocodes 3 [3, 4] provides an 

allowable limit of the initial imperfection of L/1000 where L is the unbraced length of the beam. The present numerical study 

is going to investigate the moment resistances with such imperfection limits [3, 4]. 

2 Statement of the problem 

A simply supported beam subjected to a point load P applied at the midspan section and at the sectional mid-height is 

considered (Fig. 1). The beam is laterally unsupported and it has a span of L and a prismatic W250x45 cross-section. Steel 

is assumed as a perfectly plastic material with an elastic modulus of E=200GPa, a yielding strength of Fy=350 MPa and a 

Poisson’s ratio of 0.3. The effects of residual stresses and initial imperfections are considered. The present study is going to 

develop numerical models in ABAQUS those capture the residual and imperfection effects. Then, elastic and inelastic 

moment resistances based on different spans predicted by the present numerical study are compared to those of the Canadian 

(CSA-S16) [3] and Eurocodes 3 [4] standards.  

  

a) Beam profile                                              b) W450x45 section 

Fig. 1 – A simply supported beam subject to a midspan point load  

3 Modelling of the structure in ABAQUS 

Although the modelling of such a steel beam in ABAQUS is relatively simple, how-ever the incorporating of the effects 

of residual stresses and initial imperfections into the model may be a challenge for engineers. The present part aims at showing 

a technique to incorporate the nonlinear effects into the ABAQUS models. To accurately capture the responses of the model 

in elastic buckling problems and the inelastic moment resistance problems, ABAQUS models developed in the present study 

are based on brick element C3D8R in the ABAQUS library [8]. The element has 8 nodes with three translations per node, 

totaling 24 DOFs and adopts reduced integration to avoid volumetric locking, and thus has a single integration point located 

at the element centroid. 
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Implementation of residual stresses: Figure 2 presents a model of residual stresses distributed on a beam cross-section, 

in which the value of r  is taken as 0.3 Fy=105 MPa  as indicated in design standards [3,4]. They exist in the shaped-steel 

products and they may not be neglected in designing. The residual stresses are incorporated into the ABAQUS models 

through the *INITIAL CONDITIONS, TYPE=STRESS keyword. They are assumed constant throughout the section 

thickness. A blank *STEP is then set to balance stresses in the steel, before the loading step is evoked.   

                                  

                         a) Residual stresses model            b) Residual stresses in ABAQUS models in the present study 

Fig. 2 – Residual stress implemented in the ABAQUS models in the present study 

Implementation of initial imperfections: In Canadian code (CSA S16), an initial imperfection of the beam axis of L/1000   

is allowed. To incorporate the initial imperfection into the ABAQUS models, there are several methods such as using the 

first buckling mode or directly changing node coordinates. The present study implements the initial imperfections by 

following the method of the first lateral-torsional buckling mode. The initial imperfection is based on the first mode with a 

magnitude factor of 4 so as to introduce a peak imperfection of 4 mm at the midspan (Fig. 3). The two command lines are 

required as *IMPERFECTION, FILE=A4mBareElasticbuckling, STEP=1 and 1,4.   

                                                            

Fig. 3 – Implementation of initial imperfection through the first lateral-torsional buckling mode  

The FEA analyses are conducted in ABAQUS to provides (1) elastic buckling moment resistances Mu and (2) inelastic 

moment resistances Mr of the steel beams with/without considering the effects of the residual stresses and the initial 

imperfections.  

The elastic buckling analyses are based on keyword *Buckle in *STEP level. It is noted that in the analysis of elastic 

buckling problems, three web stiffeners at the two beams ends and at the midspan are added to avoid/ reduce web distortion 

effects [2]. 

To obtain inelastic moment resistances, two different analyses are conducted and denoted as “FEA1-WithMat-NoIM-

NoR”, “FEA2-WithMat-WithIM4mm-WithR”. In the “FEA1-WithMat-NoIM-NoR” analysis, material nonlinearity is 

included but initial imperfection and residual stresses are excluded. In the “FEA2-WithMat-WithIM4mm-WithR” analysis, 

material nonlinearity, initial imperfection and residual stresses are included, in which the magnitude of the peak imperfection 

at midspan is 4.0 mm. Both FEA analyses are based on RIKs method through keyword *STATIC, RIKS in combining with 

nonlinear geometric effects through *STEP, NLGEOM=YES. The number of increments, times step, the maximum and 

minimum iteration bounds are set as 30, 0.005, 1.0, 1e-008 respectively. It is also noted that in the analyses of inelastic 
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moment resistances, web stiffeners are excluded in the FEA model so that the analyses can capture local web buckling modes. 

In the FEA solutions, the moment resistance Mr is equal to the lower value of the elastic moment resistance Mu and the 

inelastic moment resistance Min those are determined as discussed above. 

4 Factored moment resistances based on CSA-S16 specification [3] 

The factored moment resistance, Mr, of the beam shall be determined as follows: When 0.67u pM M : 

1.15 1 0.28r p p u pM M M M M       and when 0.67u pM M : r uM M . Here the elastic buckling moment resistance 

is evaluated as    
2

2 wu y yM L EI GJ E L I C     while the fully plasticized moment p yM ZF .  

5 Factored moment resistances based on Eurocode 3 specification [4]  

For a double symmetric cross-section with classes 1 and 2 sections and the beam is laterally unsupported, the factored 

moment resistance, Mr , of the beam shall be deter-mined as follows ( )r LT y MIM ZF    in which MI  is safety factor and 

it is set as 1.0 in the present study. LT is the reduction factor for lateral-torsional buckling and it should not be greater than 

1.0. Eurocodes 3 provides two solutions for LT  based on Clauses 6.3.2.2 and 6.3.2.3 [4].   

6 Result discussions  

Based on the present developed finite element model (denoted as FEA solutions), the elastic buckling moments and 

inelastic moment resistances of the steel beam with different span lengths 2.0, 4.0, 6.0L m  are evaluated. The results are 

then compared against the design moments by code equations based on CSA S16 [3] and Eurocodes 3 [4]. Based on CSA 

S16, the moment resistance of the beam depends on span lengths. For the steel section taken, the fully plastic section moment 

211 .pM kN m  governs the beam failure when the beam span 2.58L m . The inelastic buckling moment Mr  governs the 

beam failure when the beam span 2.58 5.90m L m  . And the elastic buckling moment Mu governs the beam failure when 

the beam span 5.90L m . The plastic moment Mp and inelastic buckling moment Mr respectively account for the resistance 

of the beam based on material failure and local buckling modes. 

6.1 Elastic buckling moment resistance Mu and FEA model verification 

Figure 4 presents the elastic buckling moment resistance Mu against the span length ranged from 2.0 to 7.0, as obtained 

from the present FEA solution and from the CSA S16 code [3].  

 

Fig. 4 – Comparison of the elastic buckling moment resistance between the present study against CSA-S16 specification  
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Overlaid on the figure is the extended elastic moments (denoted as “Mu-CSA S16-extended”) based on CSA S16 code 

for beams with span shorter than 5.90 m. The lateral torsional buckling configuration is similar to those provided in Fig. 3. 

Although such elastic buckling moments do not govern the system failure because they are greater than inelastic moments 

Mp, Mr, they are here provided to verify the elastic buckling moments predicted by the present developed FEA solution as 

well as they are taken as an initial imperfection shape for the subsequent inelastic buckling FEA analyses. Regardless to the 

limits created by Mp and Mr, the elastic buckling moments as obtained from the present FEA solution are found to excellently 

agree with those pro-vided by the CSA S16 solution for spans 2.0, 4.0, 6.0L m .  

Table 1 presents the moment values and the differences between the two solutions. The differences between the two 

solutions are within 7.1%. As also observed in Fig. 4, the elastic buckling moments Mu for spans  2.0L   and 4L m are 

higher than the inelastic moments Mr and Mp and thus moments Mu do not govern the beam failure. In contrast, the elastic 

buckling moment Mu for span 6L m  is less than the inelastic moments and thus it governs the system failure.   

Table 1 - Comparisons of Mu between the CSA S16 and present FEA solutions  

L (m) Mu-CSA S16 Mu-FEA % difference 

2.0 707.7 700 1.1 

4.0 235.8 223 5.4 

6.0 140.7 130.7 7.1 

6.2 Inelastic moment resistance Min 

Figures 5a, b present the inelastic moment resistance Min for spans 4.0, 6.0L m  against midspan deflection, as 

predicted by the present “FEA1-WithMat-NoIM-NoR”, “FEA2-WithMat-WithIM4mm-WithR” solutions. Also, overlaid on 

the figures are the fully plastic moment resistance Mp and elastic buckling resistances Mu as evaluated in Sections 4 and 5. 

For span 4.0L m , one has 211 .pM kN m  and 235.8 .uM kN m .  

                                    

                                      a) Span L=4.0m                                                                            b) Span L=6.0m              

Fig. 5 – Inelastic moment- midspan deflection relationships based on different inelastic FEA analyses (a) Span L=4.0m 

and (b) span L=6.0m 

The FEA1 solution provides a nearly constant moment resistance that is close to the fully plastic section moment Mp 

while the peak moment of the FEA2 solution is significantly smaller than the moments Mp and Mu. The inelastic moment 

resistance based on the FEA2 solution is 149.2 .kNm For span 6.0L m  , one has 211 .pM kN m  and 140.7 .uM kN m . 

Again, the FEA1 solution provides a constant moment resistance that is close to moment Mp. Meanwhile, the peak moment 
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of the FEA2 solution is found to be considerably smaller than moments Mp and Mu. The inelastic moment resistance based 

on the FEA2 solution is 124.9 .kNm Through the above discussions, it is observed that (i) If the effects of initial imperfections 

and residual stresses are excluded, the inelastic moment resistances in the FEA solutions are close to the fully plastic section 

moment Mp. In contrast, if the effects are included, the inelastic moment resistances are significantly smaller than the plastic 

moment, and (ii) The moment resistance of the FEA2 solution is smaller than the elastic buckling moment resistances Mu 

predicted by the CSA S16 [3] and the present FEA solutions (i.e., , 140.7u CSAM MPa  and , 130.7u FEAM MPa  as 

summarized in Table 1). Thus, the failure mode of the FEA2 solution is governed by inelastic moment resistances. However, 

the CSA S16 solution [3] indicates that the failure mode of the beam is governed by the elastic buckling resistance.                                                

6.3 Moment resistance Mr 

Figure 6 presents, and Table 2 summarizes, the moment resistances Mr against different span lengths, as designed in CSA 

S16 code [3], Eurocodes 3 [4] and predicted by the present FEA solutions. As discussed, the moment resistance based on 

CSA S16 [3] is r pM M   when the beam span 2.58L m , it is 1.15 1 0.28r p p u pM M M M M      when the beam 

span 2.58 5.90m L m   and it is r uM M   where uM  is the elastic buckling moment when the beam span 5.90 .L m

The moment resistance rM  based on Eurocodes 3 [4] based on Clauses 6.3.2.2 and 6.3.3.3. In the present FEA1 and FEA2 

solutions, the moment resistance rM of the system is based on the lower value of the elastic moment resistance uM  and the 

inelastic moment resistance inM  (Table 2). 

                                                

Fig. 6 – Comparison of the inelastic moment resistances between the present study against CSA-S16  and Eurocodes 

standards [3,4] 

Table 2 - Comparison of moment resistance against different spans between different solutions  

Lu 

(m) 
Mu-FEA 

Min-FEA  
Mu-FEA = 

min(Mu-FEA, Min-FEA) 
 Mr based on codes 

FEA1 FEA2  FEA1 FEA2  
CSA 

S16 

EC3-

6.3.2.2 

EC3-

6.3.2.3 

2.0 700 211 211  211 211  211.0 172.4 211.0 

4.0 223 210.5 149.2  210.5 149.2  181.7 120.7 178.7 

6.0 130.7 210.5 124.9  130.7 124.9  140.7 89.1 133.6 
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Among all solutions, the CSA S16 solution is taken as a reference solution. For span 2.0L m , the CSA S16 solution 

predicts a system failure based on a fully plastic section mode with 211r pM M kNm  . This is also the predictions of 

the present FEA1, FEA2, and EC3-6.3.2.3 solutions. For span 4.0L m  , the CSA S16 solution predicts an inelastic buckling 

mode with a moment resistance of 181.7rM kNm . The FEA1 and FEA2 solutions also predicts inelatic buckling modes. 

However, the moment resistance of the FEA1 solution is 210.5 kNm  , which is higher than that of the CSA S16 solution. In 

contrast, the moment resistance based on FEA2 solution is149.2 , that is significantly smaller than the moment resistance of 

the CSA S16 solution. Similar observations in span 4.0L m  are obtained for span 6.0L m . The moment resistances of 

the EC3-6.3.2.3 are relatively similar to those of the CSA S16 solution. Based on the above observations, it is commented 

that (iii) Because the FEA2 solution includes the effect of initial imperfections and residual stresses while the FEA1 solution 

excludes the effects, the effects of initial imperfections and residual stresses on the moment resistance of the beam are thus 

significant for intermediate and long spans (e.g., 4.0L m  and 6.0L m  ), (iv) Although the initial imperfection taken for 

the beam is 4 mm   and it is within the allowable limit specified in the CSA S16 standard (i.e., not greater than 1000L  ), 

the moment resistances of the beam with the taken imperfection are considerably smaller than the moment resistances Mr 

specified in CSA S16 and EC3-6.3.2.3 codes, and (v) When considering steel beams with the effects of initial imperfection 

and residual stresses, the moment resistances based on the CSA S16 and EC3-6.3.2.3 solutions are higher, while those based 

on EC3-6.3.2.2 solution are smaller than the moment capacities of the FEA2 solution. This indicates that the EC3-6.3.2.2 

clause is the most safety design for moment resistance of the given steel beams. 

7 Conclusions 

Elastic and inelastic moment resistances of wide flange steel beams without/with considering the effects of initial 

imperfections and residual stresses are numerically investigated in the present study. The numerical study is conducted in 

ABAQUS in which residual stresses are incorporated by using initial conditions keyword while initial imperfection is 

imported by using the first lateral-torsional buckling mode imperfection key-word. The present FEA models are then adopted 

to predict (1) elastic buckling moment resistances uM  and (2) inelastic moment resistances inM  of the steel beams 

with/without the effects of residual stresses and initial imperfections. By comparing the FEA moment resistances rM  of 

W250x45 steel beams against the those in CSA S16 and Eurocodes 3 codes [3, 4], key conclusions are summarized in the 

following. 

(i) The elastic buckling moment resistance based on the present FEA solutions are in excellent agreements with those 

of the CSA S16 and Eurocodes 3 solutions [3,4]. 

(ii) If the effects of initial imperfections and residual stresses are excluded, the inelastic moment resistances of the beams 

are close to the fully plastic section moment pM . In contrast, if the effects are included, the inelastic moment resistances are 

significantly smaller than the plastic moment and they govern the system failure. The characteristic of the inelastic failure is 

local web buckling. 

(iii) The failure mode of the steel beam with span 6.0L m  with taking the effects of initial imperfections and residual 

stresses is governed by inelastic moment resistances in the FEA solution. However, the CSA S16 [3] indicates that the failure 

mode of the beam is governed by an elastic buckling resistance. 

(iv) The effects of initial imperfections and residual stresses on the moment resistance of the beam are significant for 

intermediate and long spans (e.g., 4.0L   and 6.0L   ). Although the initial imperfection taken in the present study is 

4.0 mm  that is within the allowable limit specified in CSA S16 code (i.e., not greater than 1000L  ), the moment resistances 

of the beam with the taken imperfection are considerably smaller than the design moment resistances in CSA S16 and EC3-

6.3.2.3 standards [3, 4], and inM  

(v) When considering steel beams with the effects of initial imperfection and residual stresses, the moment resistances 

based on EC3-6.3.2.2 solution [4] are the smallest ones. This indicates that the EC3-6.3.2.2 code [4] I the most safety design 

for the moment resistance of the given steel beams. 
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