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A B S T R A C T 

Concrete structures are fundamental to modern infrastructure, and their efficient 

manufacturing is crucial for sustainable construction practices. However, 

traditional manufacturing processes often lack the precision and optimization 

required to meet evolving structural demands and sustainability goals. This 

deficiency becomes even more critical when considering seismic hazards, which 

pose a significant risk to the safety and resilience of urban infrastructure, 

particularly reinforced concrete buildings. Accurate assessment of seismic safety 

is crucial for effective risk mitigation and disaster preparedness. In this study, we 

introduce a novel approach that leverages a Fine-tuned Dragonfly Optimized 

Artificial Neural Network (FDO-ANN) to enhance the evaluation of seismic 

hazard safety in concrete Structures, utilizing data from the Structural 

Engineering Research Unit (SERU) database. Z-score normalization was 

employed as a data preprocessing approach to ensure the accuracy and reliability 

of the data utilized in the evaluation. Linear Discriminant Analysis (LDA) was 

used for feature extraction to identify essential characteristics or characteristics in 

reinforced concrete buildings that are associated with seismic safety. Python tool 

was used to analyze the proposed method. The proposed approach is assessed in 

terms of various parameters and compared to existing methods achieving an 

impressive accuracy of 95.6%. The proposed approach has the potential to inform 

more effective mitigation strategies, leading to increased resilience in the face of 

seismic hazards and improved protection of human lives and property. 

© 2024 Published by Faculty of Engineering 

 

 

 

 

1. INTRODUCTION  
 

In an ever-evolving world, where urbanization 

continues to reshape our landscapes, the construction 

industry plays a pivotal role in shaping our cities and 

accommodating the growing global population. 

Reinforced concrete buildings are a tribute to human 

engineering prowess, providing architectural strength as 

well as versatility. They also face the difficult issue of 

surviving natural calamities, particularly seismic events, 
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which can have disastrous implications (Gravett et al., 

(2021)). "Assessing the seismic hazard safety of 

reinforced concrete buildings" is critical because it 

protects not only the structural integrity of these 

structures but also the safety of those who live in them. 

There has been a paradigm change in the construction 

industry in recent years towards boosting industrial 

efficiency. This trend is being pushed by a variety of 

issues, including concerns about sustainability, 

economic considerations, and the need to fulfill ever-

increasing needs for urban infrastructure (Athanasiou et 

al., (2020)). While increasing manufacturing efficiency 

is a desirable goal, it should not come at the expense of 

building safety, especially in seismically active areas. 

This paper investigates the critical confluence of 

production efficiency and seismic hazard safety 

assessment in reinforced concrete buildings. 

Earthquakes are a natural occurrence with unpredictable 

occurrences (Latif et al., (2022)).  

 

When they strike, the forces they produce can exert 

enormous pressure on structures, resulting in structural 

failure and, in the worst circumstances, death. This 

inherent risk needs stringent safety precautions in 

building construction, particularly in areas with a 

history of seismic activity. Because of its strength and 

ductility, reinforced concrete has been a popular choice 

for building in such areas. However, the materials and 

methods utilized in reinforced concrete building 

construction are only one piece of the safety. Assessing 

seismic hazard safety entails determining a structure's 

ability to withstand ground vibrations caused by 

earthquakes. Engineers take into account the design of 

the structure, structural elements, foundation, and the 

local seismic hazard (Mangalathu et al., (2019)). This is 

a difficult procedure that necessitates a thorough 

understanding of both technical concepts and geological 

considerations. This assessment has traditionally been 

time-consuming and resource-intensive, frequently 

including extensive physical testing and simulations. 

Manufacturing efficiency in the construction sector 

refers to a variety of practices aimed at expediting the 

building process (Rahman et al., (2021)).  

 

Prefabricated components, improved construction 

processes, and digital technologies are all examples of 

this. The goal is to shorten the construction process, 

eliminate waste, and maximize resource utilization. 

Such practices have several advantages, ranging from 

cheaper project costs to decreased environmental 

implications. The requirement to meet the expanding 

worldwide demand for infrastructure is one of the 

primary drivers of manufacturing efficiency in 

construction. Rapid urbanization, population expansion, 

and the demand for sustainable development have put 

enormous strain on the construction industry to deliver 

more, quickly (Zhang et al., (2023)). Furthermore, the 

building industry has been encouraged to embrace 

sustainability goals like lowering carbon emissions and 

resource use. These objectives have resulted in the 

creation of novel construction methods and materials. 

The drive for construction production efficiency is 

admirable, but it must be balanced with the vital 

necessity for seismic hazard safety (Fu et al., (2021)).  

 

The problem is to balance these two goals while 

ensuring that efficiency benefits do not jeopardise the 

structural integrity of buildings in earthquake-prone 

areas. Using sophisticated materials and technical 

processes is one approach to reaching this equilibrium 

(Wakjira et al., (2021)). Researchers, for example, have 

been working on high-performance concrete mixtures 

that are not only stronger but also more durable and 

earthquake-resistant. These materials can improve the 

safety of reinforced concrete buildings without slowing 

down the construction process much (Kim et al., 

(2023)). Furthermore, the use of digital technology such 

as Building Information Modelling (BIM) and computer 

simulations has transformed building design and 

assessment. Engineers can use these technologies to 

forecast how a building will behave to seismic pressures 

with amazing accuracy. Engineers can optimize 

building designs for safety while maintaining 

manufacturing efficiency by modeling various situations 

(Zhao et al., (2020)). In this research, FTD-ANN (FDO-

ANN) is proposed to enhance the evaluation of seismic 

hazard safety in concrete Structures. 

 By leveraging FTD-ANN, which is a specialized 

neural network model, it aims to provide more 

accurate and reliable assessments of seismic risks. 

 The proposed approach is designed to utilize data 

from the Structural Engineering Research Unit 

(SERU) database 

 This research incorporates data preprocessing 

techniques, such as Z-score normalization and 

Linear Discriminant Analysis (LDA), to handle and 

extract relevant features from the data. 

 

The remaining article is as structured follows: Section 2 

outlines related work; Section 3 explains Materials and 

methods, Section 4 presents results and discussion, and 

Section 5 concludes and future research directions. 

 

2. RELATED WORKS 

 
ZhangNoureldin et al., (2022) introduced a novel 

approach that utilized machine learning techniques to 

address the seismic assessment and based on 

performance development of structures. The method 

predicted structural responses based on inputs like the 

period and strength ratio of the structure. The efficacy 

of the suggested technique was demonstrated through 

several applications in seismic design and evaluation. 

The results demonstrated that the new procedure was 

both dependable and precise, while also requiring 

significantly less computer resources compared to the 

conventional method. Harirchian et al., (2022) 

presented a practical framework, named the 
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"Improvement of Rapid Assessment of Earthquake 

Hazard Safety of Structures via Artificial Neural 

Networks (IRAEHSAN)", which utilized performance 

modifiers to enhance its effectiveness. The 

introduction of a Smartphone application prototype, 

based on the proposed strategy, presented a potentially 

valuable tool in the context of their increasingly digital 

society. It is important to note that the accuracy of 

their study was dependent upon several factors, 

including the selection of sample buildings, the 

methodologies employed for calculations, and the 

parameters utilized during the training and testing of 

the MLP model. Mangalathu et al., (2020) investigated 

the potential of ML and AI techniques for accurately 

identifying failure modes in concrete shear walls. A 

total of eight ML models were assessed to determine 

the optimal prediction model. Their article presented a 

suggested ML model based on the Random Forest 

approach, which was developed through a 

comprehensive evaluation process. They provided 

evidence that the failure mode of shear walls is 

influenced by various parameters. 

 

Huang et al., (2019) investigated the utilization of a data-

driven technique for the categorization of in-plane failure 

mechanisms of infill frames by the implementation of 

ML techniques. A total of six ML techniques were 

utilized and assessed to classify failure modes. The 

classification was based on nine structural factors that 

were applied as variables of input. The outcomes 

indicated that a majority of the models demonstrated a 

prediction accuracy rate of over 80%. Aladsani et al., 

(2022) presented a novel approach for predicting the 

drift capacity of unique structural walls. The proposed 

model utilized the extreme gradient boosting machine-

learning technique and was developed using a 

comprehensive data set conducted on special boundary 

element walls. The efficacy of the suggested approach 

was assessed by a nested cross-validation procedure, 

which demonstrated its higher prediction abilities 

compared to the empirical solution utilized in ACI 318-

19. To address the issue of limited understanding 

inherent in the model, the utilization of Shapley values 

could be employed. Additive explanations were 

employed to analyze the relative impacts of specific 

input factors and their interactions on the drift capacity. 

Fan et al., (2021) provided a comprehensive overview of 

the many uses of ML techniques in the domain of 

reinforced concrete bridges, encompassing the entire 

spectrum from design to inspection. Their finding 

illustrated the significant computational capacity and 

image processing proficiency of ML in addressing many 

facets of reinforced concrete bridges. The proposed 

method exhibited superior performance in comparison to 

conventional techniques for identifying structural 

damage and predicting strength, achieving near real-time 

capabilities. The utilization of ML for the prediction of 

concrete strength and bridge member performance had 

reached a considerable level of development, 

demonstrating a certain degree of maturity. 

Işık et al., (2021) examined the seismic behavior of 

reinforced concrete structures based on variations in 

material strength and design spectra. A sample 

reinforced concrete building underwent structural 

analysis with the provided spectrum curves and 

material strengths. The phenomenon of increased 

rigidity in the structure was noted to correlate with the 

rise in concrete strength. They concluded that the 

utilization of site-specific design spectra, which were 

produced for various provinces, significantly impacted 

the calculated demand displacement values during 

analysis. They also investigated the material 

differentiation among the stories within the structure. 

Harirchian et al., (2020) examined the effectiveness of 

utilizing an ML application, specifically an SVM 

model, to predict damage and classify it accordingly. 

The utilization of their technique had the potential to 

facilitate strategic risk management decision-making 

and risk assessment for buildings susceptible to 

earthquakes in advance of such disasters. The findings 

revealed that the use of parameters yielded an accuracy 

rate of 52%, which could be considered satisfactory 

given the sample size employed. Mangalathu et al., 

(2019) presented an approach for efficiently assessing 

the damage state of bridges by leveraging the 

capabilities of ML algorithms. In contrast to the 

current techniques, the approach proposed the unique 

characteristics of bridges while evaluating their state 

of degradation. The methodology described in their 

study was illustrated by the application to two-span 

box-girder bridges located in California. They 

investigated the performance of different ML models. 

The analysis of ML models for different bridge 

designs revealed that the Random Forest (RF) model 

exhibited superior performance in comparison to 

alternative ML models. 

 

Hamidia et al., (2022) presented a novel approach that 

utilized ML techniques to automate the diagnosis of 

damage states in non-ductile reinforced concrete 

moment frames (RCMFs). The proposed strategy used 

visual indices derived from crack patterns observed on 

the concrete surface. Several predictive models based 

on ML were developed to estimate the maximum drift 

ratio. These algorithms used the available information 

of the specimen to make accurate estimations. Won et 

al., (2021) presented a proposed framework for the 

development of an artificial neural network (ANN) 

model. The model aimed to forecast the seismic 

performance levels of building structures by 

considering the impacts of soil-structure interaction. 

The incorporation of the soil-structure relationship 

impact into the “single-degree-of-freedom model” was 

achieved by a 3-step investigation presented in their 

article. The framework that had been established and 

presented in their study allowed for the inclusion of 

soil–structure interaction (SSI) effects inside the 

model. Pham et al., (2020) presented an ML model 

that demonstrated efficacy in forecasting long-term 

deflections in reinforced concrete flexural members, 
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specifically beams and slabs that had experienced 

cracking. Their study involved the evaluation of a 

prediction model's effectiveness by conducting a 

comparative analysis of its predicted accuracy. Their 

analysis included the examination of single and 

ensemble ML models, as well as empirical approaches. 

The evaluation was conducted using a substantial 

dataset of long-term testing conducted on RC flexural 

members. 

 

Luo et al., (2018) introduced a new "machine 

learning–based backbone curve model (ML-BCV)" 

that offered a swift and accurate prediction of curves 

for columns that were susceptible to flexure and shear. 

The proposed model incorporated multioutput least-

squares SVM to identify the relationship along both 

input/output variables. Additionally, "a grid search 

optimization technique" was included to enhance the 

efficiency of the training procedure. The experimental 

findings indicated that the proposed method exhibited 

more robustness and accuracy in comparison to 

conventional modeling methodologies. Ye et al., 

(2022) presented a conceptual framework for the 

expeditious evaluation of structural damage and 

condition assessment following earthquakes. The 

system incorporated satellite, "unmanned aerial vehicle 

(UAV), and Smartphone technology, together with a 

DL technique". UAVs and Smartphones could acquire 

visual representations of the structural elements of 

post-earthquake bridges. A novel approach was 

devised to assess the security level of risk of bridges 

after an earthquake. 

 

3. MATERIALS AND METHODS 

 
In this research, the FTD-ANN method is introduced 

to enhance the evaluation of seismic hazard safety in 

concrete Structures. To improve predictive accuracy, 

the data is normalized using Z-score normalization, 

LDA is used to extract characteristics, and Fine-tuned 

Dragonfly Optimization is used to select the best 

features. Figure 1 displays the flowchart of this 

research. 

 

 

Figure 1. Flowchart of Manufacturing Efficiency in 

Concrete Structures 

3.1 Dataset 
 

The efficacy of the suggested methodology was 

assessed through an evaluation of the buildings. To 

accomplish the objective, a dataset consisting of "28 

reinforced concrete buildings in Bingöl and 484 

reinforced concrete buildings in Düzce was obtained 

from the SERU (Structural Engineering Research Unit) 

database”. This database was compiled through a survey 

conducted by a research group. 

 

3.2 Data pre-processing 
 

Cleaning, organizing, and manipulating raw data 

collected from various sources is a crucial part of data 

preparation for evaluating the seismic safety of concrete 

and its manufacturing. This stage makes sure that the 

information utilized in the analysis, including 

manufacturing data, is accurate and suitable for 

assessing the structural integrity of these buildings. The 

process involves sorting, arranging, and adjusting data 

from diverse origins, ensuring its quality and relevance 

for the evaluation of seismic risk in reinforced concrete 

buildings and manufacturing contexts. This meticulous 

data handling contributes to the overall reliability of the 

assessment and the manufacturing process. Here, the Z-

score method has been chosen for the preprocessing. 

 

The preprocessing step of normalization, which 

involves the deconstruction of data into its numeric 

properties, can be used to convert data values into a 

predefined range. As shown in Equation (1), Z-score 

normalization changes an   value from an attribute U to 

   previously unknown range. 

 

   
     

      
    (1) 

  = Normalization result value 

  =The attribute's value that needs to be normalized 

  =Attribute for the mean value 

      =Standard deviation attributes   

 

3.3 Feature Extraction Using Linear 

Discriminant Analysis 
 

The process of feature extraction involves identifying 

and isolating important characteristics or features from 

manufacturing efficiency data. This helps assess the 

structural capacity of manufacturing facilities to 

withstand seismic forces. Breaking down complex 

information into simpler components also enhances the 

evaluation of safety measures in manufacturing settings. 

 

Finding a linear combination of features that effectively 

discriminates between two or more classes of objects is 

the goal of Fisher's linear discriminant analysis. The 

discriminant function is represented as 

 

             (2) 
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The vector of weights is denoted by x. The           

decision rule for a situation with two possible cases is as 

follows: 

         {
                

             
  (3) 

 

If        is used, then w can go to either group. By 

optimizing a criterion function, we can obtain the x 

weight vector. 
 

     
     

     
    (4) 

 

Where   represents the between-class scatter matrix and 

   represents the within-class scatter matrix. Case 

  [            ] for the full set of five is as 

follows. An alternative configuration for the five 

projection vector 

               is  [  ||  |   |  ]. Then there's 

also: 

           
         (5) 

 

The projection matrix x can be generated similarly to 

maximize a scalar objective function. There is no need 

for multivariate normality or homogeneity of variance 

to perform Fisher's linear discriminant analysis. 
 

3.4 Fine-tuned dragonfly-optimized Artificial 

Neural Network (FDO-ANN) 
 

Fine-Tuned Dragonfly Optimization  

 

Selecting the most important features like material 

strength and design parameters to predict earthquake 

resistance in the analysis of concrete seismic 

performance is called feature selection. This makes the 

analysis simpler and improves the accuracy of seismic 

assessments for concrete buildings. Using dragonfly 

optimization is a good choice for feature selection when 

studying the seismic properties of concrete. Dragonfly 

optimization quickly identifies the most relevant 

features from a large pool of options. The most effective 

combination of features for evaluating seismic 

properties is determined through a simple trial and error 

process. This approach is useful in cases where many 

factors, such as manufacturing, need consideration when 

assessing concrete's seismic qualities. 

 

The DA is inspired by dragonflies' distinct and 

intensified swarming behavior. DA swarms' behavior 

comprises both mobility and hunting. Assume there are 

M dragonflies in existence. Equation (6) gives the 

position of NDA. 
 

   (  
    

 
     

 )   (6) 
 

The location of the     DA in the     searchable dimension 

is indicated by  
 , while the numbers                , and 

O denote the number of search agents.  
 denotes the 

location of the oth DA in the     searchable dimension, 

whereas the digits                , and     denote the 

number of search agents. 

The fitness function is approximated and generated 

randomly between the upper and lower bounds of 

parameters based on the initial location data. Equations 

(7) to (9) are used to “determine factors for updating 

dragonfly velocity and location”. 

 

    ∑     
 
      (7) 

 

   
∑   
 
   

 
    (8) 

 

   
   

 
      (9) 

 

The variables          denote the velocity, and 

location of the     individual. S symbolizes a whole of 

people nearby, and    denotes the individual's current 

location. Equations (7) and (8) allow you to calculate 

   , which represents Attraction towards food,    , 

which “stands for Distraction from Opponents”. 

 

        

           (10) 

 

  indicates the enemy source,    indicates the food 

source, and U indicates the individual's current location. 

“We use the Euclidean distance” between each of the S 

dragonflies to calculate their distance from one another. 

Equation (10) determines the distance, denoted by    . 

 

    √∑            
  

     (11) 

 

The DA's position will be updated using Equation (9) 

which is equivalent to the PSO location formulation. 

This will be done with Equation (8), which is similar to 

the PSO velocity formulation. 

 

                                   (12) 

 

                (13) 

 

Chaotic patterns Initialization: The population 

diversity in a metaheuristic algorithm is significantly 

influenced by the initial location. The method's 

performance is ensured by a high-quality initial 

position. The dragonfly algorithm employs a random 

initialization process for the population in 

manufacturing. The positions created by the algorithm 

may tend to cluster either close to the best solution or at 

a considerable distance from it in manufacturing. This 

clustering behavior can potentially impede the search 

process for the optimal solution, leading to suboptimal 

outcomes in manufacturing. Chaos, being a 

multidimensional and intricate manifestation of a 

nonlinear system, exhibits distinct attributes such as 

randomness, ergodicity, and regularity in 

manufacturing. Hence, it is frequently employed in the 

initialization phase of meta-heuristic algorithms in 
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manufacturing. Figure 2 shows the flow of Fine-tuned dragonfly optimization. 

 
Figure 2. Flowchart Fine-tuned dragonfly optimization 

 

The ergodic characteristic of the tent map exhibits 

superior characteristics. This implies that utilizing the 

tent map enables the attainment of a more homogeneous 

initial distribution inside the search area. Hence, the 

utilization of tent mapping was employed in this study 

to generate chaotic patterns for initialization,  

 

     {
                

                  
      (14) 

 

The expression for converting the sequence into a tent-

mapped search space is as follows: 

 

                               (15) 

 

In this context,   represents the population size of 

dragonfly individuals,           denote the upper and 

lower limits of the search space, and dim refers to the 

spatial dimension. 

 

Artificial Neural Network (ANN) 

 

The artificial neural network (ANN) architecture 

consists of several levels, including “the input layer, 

zero or more hidden layers, and the output layer”. The 

layers are connected by many nodes inside of every 

layer (Figure 3). The mathematical representation 

denoting the "value of neurons in the 

layer" immediately succeeding the input layer   is 

expressed as: 

 

    (  ̅)   (∑        ̅ )  (16) 

 

In the given context, it can be stated that j represents the 

layer immediately preceding the I layer. Similarly, i 

represents the layer immediately following the j layer. 

   denotes the input value in the neuron, while       

represents the “transfer or activation function”. The 

“weight coefficient     signifies the degree of 

importance of the connection” among the neurons. The 

term ∑          ̅   refers to the weighted summation 

and a denotes the “threshold or bias” value within the 

corresponding neuron. 

 

 
Figure 3. ANN structure 

 

The neural network methodology utilizes a supervised 

procedure, wherein the model training incorporates 

known actual (target) outputs for the inputs and 

generates forecast values by comparing the objective 

and anticipated values. The algorithms, like "back-

propagation, Quasi-Newton, and Levenberg-Marquardt 

algorithms", aim to minimize the differences between 

the forecasted values and desired values. The "weight 

and bias values" of the numerous "hidden and output 

layers" are determined through the utilization of 

learning techniques. 

 

Artificial Neural Networks (ANNs) are widely used in 

assessing how concrete manufacturing structures behave 

during earthquakes. They are good at handling complex 

information and can give reliable predictions about how 

manufacturing buildings and other manufacturing 
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structures will respond to seismic manufacturing forces. 

Using ANNs involves studying data about concrete 

manufacturing properties and seismic manufacturing 

forces. This helps manufacturing engineers make smart 

choices about how strong manufacturing concrete 

buildings and manufacturing infrastructure are. ANN 

plays a big role in making manufacturing concrete 

structures safer and more dependable, especially in 

places where manufacturing earthquakes are common. 

 

The hybrid approach aims to provide a realistic and 

accessible method for assessing the seismic behavior of 

concrete. This goal is critical for maintaining the safety 

and resilience of these structures in earthquake-prone 

areas. This technology improves the accuracy of seismic 

evaluations by combining Fine-tuned dragonfly 

optimization with ANN, contributing to better design 

and construction methods for seismically exposed 

concrete structures. Algorithm 1 shows the pseudocode 

for FTD-ANN. 

 

Algorithm 1: FTD-ANN pseudocode 

import                       as dfo 

import                          as ann 

import             as data 

def                  (parameters): 

              = 

                             (parameters) 

         (              ,                   ) 

accuracy =             (              , 

                    ) 

return -accuracy 

optimizer =                         () 

             _         (                  ) 

             _      (                 ) 

             _max_          (              ) 

                =              () 

                    = 

              _      _       (               ) 

         (    _      _       ,         _    ) 

                   = 

           (    _      _       , 

         _    ) 

print("Seismic Assessment Results:", 

                   ) 

 

4. RESULT AND DISCUSSION 
 

In this section, we discuss the outcomes of the FDO-

ANN approach for enhancing the evaluation of seismic 

hazard safety in concrete Structures. This FDO-ANN 

technique is designed and simulated using the Python 

tool (version 3.7), using 6GB of RAM and AMD Ryzen. 

The proposed method is analyzed in terms of various 

parameters, including Accuracy, recall, F1-score, MAE, 

MSE and RMSE and compared with existing methods 

such as decision tree (DT) (Asteris et al., (2022)), 

random forest (RF) (Asteris et al., (2022)), AdaBoost 

(Asteris et al., (2022)), Gradient Boosting Regressor 

(GBR) (Demertzis et al., (2022)), k-Nearest Neighbors 

Regressor (k-NNR) (Demertzis et al., (2022)) and 

Linear Regression (LR) (Demertzis et al., (2022)). 

Training and testing outcomes of (FDO-ANN) models 

are presented in Figure 4. A Confidence Interval (CI) is 

a statistical measure used in assessing the seismic 

efficiency of concrete manufacturing. It provides a 

range of values within which a parameter, like seismic 

strength, is likely to fall. This helps in gauging the 

reliability of concrete's seismic performance, aiding in 

safety assessments. Figure 5 displays the proposed 

FDO-ANN method's performance of CI. 

 

 
Figure 4. Predicted ratio of FDO-ANN in training and 

testing 

 
Figure 5. Confidence Interval (CI) 

 

4.1 Accuracy 
 

Accuracy metrics examine the accuracy of acquired data 

and forecasts while analyzing the seismic efficiency of 

concrete manufacturing. They assess how well the 

provided results correspond to the actual seismic 

performance of concrete structures. These indicators 

help ensure reliable assessments and inform 

manufacturing decision-making. The comparison of 

Accuracy is shown in Figure 6. Our suggested approach 

FDO-ANN has obtained 95.6% while existing DT, RF, 

and AdaBoost obtained 89.1%, 91.4%, and 93.1%. Our 

research findings indicate that our proposed approach 
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achieves a significantly higher accuracy than the 

existing method. 

 

 
Figure 6. Accuracy 

 

4.2 Recall 
 

In assessing the seismic efficiency of concrete 

manufacturing, recall metrics involve examining the 

capacity to correctly identify concrete structures that are 

vulnerable to seismic waves. It assesses the fraction of 

genuine susceptible structures effectively discovered 

among all vulnerable structures. Figure 7 displays the 

recall comparison. Our proposed method, FDO-ANN, 

achieved a performance score of 96.8%, surpassing the 

existing techniques such as DT, RF, and AdaBoost, which 

scored 89.1%, 91.4%, and 93.1%, respectively. The results 

reveal that our new method has a significantly better recall 

compared to the existing approaches. 

 

 
Figure 7. Recall 

 

4.3 F1-score 
 

The F1-score is a measure of the accuracy that seismic 

safety is assessed in concrete manufacturing efficiency. It 

provides a single statistic that combines accuracy (properly 

recognized safe structures) and recall (all safe structures 

identified). It aids in determining the appropriate balance 

between accurately detecting safe concrete constructions 

and eliminating false positives. The F1-score comparison 

can be found in Figure 8. FDO-ANN, the approach we 

recommend, achieved an impressive accuracy rate of 

97.8%, outperforming the existing methods like DT, RF, 

and AdaBoost, which scored 89.5%, 91.5%, and 93.1%. 

The outcome demonstrates that the F1-score of our 

proposed approach is considerably higher than that of the 

existing method. The comparison between the existing and 

proposed approaches in terms of various parameters is 

presented in Table 1. 

 

 
Figure 8. F1-score 

 

Table 1. Outcomes of comparison 

Methods Performance Indicators 

Accuracy (%) Recall (%) F1- score 

(%) 

DT 89.1 89.1 89.5 

RF 91.4 91.4 91.5 

AdaBoost 93.1 93.1 93.1 

Proposed 95.6 96.8 97.8 

 

4.4 MAE  

 
When evaluating seismic concrete manufacturing 

efficiency, the Mean Absolute Error (MAE) measures the 

average difference between anticipated and actual values. It 

quantifies how far the predictions differ from the true 

values, offering a simple measure of prediction accuracy. 

Figure 9 presents the MAE comparison. The results 

indicate that our suggested approach, FDO-ANN, has 

achieved 0.1087, while the existing methods DT, RF, and 

AdaBoost, only scored 0.1904, 0.3875, and 0.2757. The 

results reveal that the MAE of our proposed method is 

notably lower than that of the existing approaches. 

 

 
Figure 9. MAE 
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4.5 MSE 

 

The Mean Squared Error (MSE) is a measure for 

analyzing the accuracy of seismic concrete 

manufacturing efficiency. The average of the squared 

deviations between forecasted and actual values is 

calculated. The MSE comparison is shown in Figure 10. 

Our proposed method FDO-ANN has obtained 0.0675, 

while current approaches such as DT, RF, and 

AdaBoost have obtained 0.0968, 0.1542, and 0.1585, 

respectively. Our suggested approach demonstrates a 

substantially increased MSE when contrasted with the 

existing method, as per the results. 

 

 
Figure 10. MSE 

 

4.6 RMSE 

 

The Root Mean Square Error (RMSE) is a metric used 

to analyze the accuracy of seismic production efficiency 

in concrete. It computes the average difference between 

expected and observed seismic data. Figure 11 provides 

the RMSE comparison. Comparatively, the performance 

of the existing approaches, DT, RF, and AdaBoost was 

0.3068, 0.3875, and 0.3939, respectively; while our 

proposed approach FDO-ANN has 0.2875. The 

outcomes indicate that our proposed method has a much 

lower RMSE compared to the existing approach. Table 

2 shows the Performance of the existing and proposed 

method. 

 

 
Figure 11. RMSE 

Table 2. Performance metrics of the compared algorithms 

Methods Performance Indicators 

MAE  MSE  RMSE 

GBR 0.1904  0.0968   0.3068 

k-NNR 0.3875  0.1542 0.3875 

LR 0.2757  0.1585  0.3939  

Proposed 0.1087 0.0675 0.2875 

 

5. DISCUSSION 

 

The proposed method addresses the limitations of 

various traditional machine learning such as decision 

tree (DT) (Asteris et al., (2022)), random forest (RF) 

(Asteris et al., (2022)), AdaBoost (Asteris et al., 

(2022)), Gradient Boosting Regressor (GBR) 

(Demertzis et al., (2022)), k-Nearest Neighbors 

Regressor (k-NNR) (Demertzis et al., (2022)) and 

Linear Regression (LR) (Demertzis et al., (2022)) 

algorithms for assessing seismic concrete buildings. To 

mitigate the limited accuracy of decision trees (DT) 

(Asteris et al., (2022)), the approach employs ensemble 

learning, combining multiple decision trees through 

boosting, which reduces overfitting while maintaining 

simplicity. For random forest (RF) (Asteris et al., 

(2022)), a novel feature selection technique is 

introduced to reduce complexity and prevent 

overfittings. To overcome the sensitivity of AdaBoost 

(Asteris et al., (2022)) to noisy data, robust 

preprocessing steps such as outlier detection and noise 

reduction are applied. Slow training in Gradient 

Boosting Regressor (GBR) (Demertzis et al., (2022)) is 

alleviated through hyperparameter optimization and 

parallel computing. The proposed method 

systematically determines the optimal number of nearest 

neighbors in the k-Nearest Neighbors Regressor (k-

NNR) (Demertzis et al., (2022)) using cross-validation, 

enhancing model robustness. Lastly, to address Linear 

Regression (LR) (Demertzis et al., (2022)) linearity 

assumption, the approach incorporates polynomial terms 

to capture non-linear relationships. The proposed 

method utilizes ensemble learning, feature selection, 

preprocessing, optimization, and enhanced modeling to 

effectively mitigate the limitations of traditional 

algorithms, resulting in a more accurate and robust 

seismic concrete building assessment. 

 

6. CONCLUSION 
 

In today's rapidly evolving world, the construction 

industry is facing increasing demands for both 

efficiency and safety. As the global population 

continues to grow, urbanization is on the rise, leading to 

a surge in the construction of reinforced concrete 

buildings. These structures serve as the backbone of 

modern urban environments, providing shelter, 

workspaces, and infrastructure for millions of people. 

However, with the ever-present threat of seismic events, 

ensuring the safety and resilience of these buildings is 

of paramount importance. In this research, we 
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developed a Fine-tuned Dragonfly Optimized Artificial 

Neural Network (FDO-ANN) to enhance the evaluation 

of seismic hazard safety in concrete Structures. The 

proposed FDO-ANN model’s performance was 

evaluated in terms of various parameters and compared 

with existing techniques. The proposed approach 

obtained accuracy (95.6%), recall (96.8%), F1-score 

(97.8%), MAE (0.1087), MSE (0.0675), and RMSE 

(0.2875). Developing and implementing predictive 

models can be time-consuming, and the study may not 

address the immediate needs of manufacturing 

processes that require quick decision-making. Future 

research could focus on the integration of real-time data 

streams into predictive models. This would enable 

manufacturing processes to make quick decisions based 

on up-to-the-minute information, reducing the lag time 

associated with traditional predictive modeling. 
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