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ABSTRACT

Long non-coding RNAs (IncRNAs) function as key
modulators in mammalian immunity, particularly due to
their involvement in IncRNA-mediated competitive
endogenous RNA (ceRNA) crosstalk. Despite their
recognized significance in mammals, research on IncRNAs
in lower vertebrates remains limited. In the present study,
we characterized the first immune-related IncRNA (pol-
Inc78) in the teleost Japanese flounder (Paralichthys
olivaceus). Results indicated that pol-Inc78 acted as a
ceRNA for pol-miR-n199-3p to target the sterile alpha and
armadillo motif-containing protein (SARM), the fifth
discovered member of the Toll/interleukin 1 (IL-1) receptor
(TIR) adaptor family. This ceRNA network regulated the
antibacterial responses of flounder via the Toll-like
receptor (TLR) signaling pathway. Specifically, SARM
acted as a negative regulator and exacerbated bacterial
infection by inhibiting the expression of inflammatory
cytokines IL-1B and tumor necrosis factor-a (TNF-a). Pol-
miR-n199-3p reduced SARM expression by specifically
interacting with the 3’ untranslated region (UTR), thereby
promoting SARM-dependent inflammatory  cytokine
expression and protecting the host against bacterial
dissemination. Furthermore, pol-Inc78 sponged pol-miR-
n199-3p to ameliorate the inhibition of SARM expression.
During infection, the negative regulators pol-Inc78 and
SARM were significantly down-regulated, while pol-miR-
n199-3p was significantly up-regulated, thus favoring host
antibacterial defense. These findings provide novel
insights into the mechanisms underlying fish immunity and
open new horizons to better understand ceRNA crosstalk
in lower vertebrates.
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INTRODUCTION

Sterile alpha and armadillo motif-containing protein (SARM),
the last discovered Toll/interleukin 1 (IL-1) receptor (TIR)
adaptor, exhibits a highly conserved sequence across
evolution, from nematodes to mammals (Jault etal., 2004;
Lindsay & Wasserman, 2014; Vériepe et al., 2015; Zhou et al.,
2013). Indeed, phylogenetic analysis suggests a potential
bacterial origin for animal SARM, likely arising from horizontal
gene transfer (Malapati et al., 2017; Zhang et al., 2011). Like
the other four TIR adaptors, myeloid differentiation primary
response 88 (MyD88), MyD88 adaptor-like (Mal), TIR domain-
containing adapter-inducing interferon-g (TRIF), and TRIF-
related adaptor molecule (TRAM), SARM features a TIR
domain, which facilitates its role in Toll-like receptor (TLR)
signaling and innate immunity (Panneerselvam & Ding, 2015).
Functional analyses demonstrated that, across all examined
species, from worms and flies to mammals, SARM
significantly influences immune responses to pathogenic
infections, with varied outcomes despite sequence
conservation. In Caenorhabditis elegans, the SARM ortholog
TIR-1 regulates host defense against fungal and bacterial
infections, enhancing survival without relying on the sole Toll
receptor (Couillault et al., 2004). In Drosophila melanogaster,
the SARM ortholog Ect4 is vital for survival post-viral infection,
possibly reducing Toll signaling to restore homeostasis
(Monsanto-Hearne et al., 2017). In mammals, SARM acts as a
negative regulator in immune defense against live bacterial
infection by suppressing TLR signaling (Carty & Bowie, 2019).
Although limited in scope, investigations conducted on teleost
fish, which serve as representatives of lower vertebrates, have
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indicated the involvement of SARM in the immune responses
of grass carp to grass carp reovirus (GCRV) infection and
mandarin  fish to stimulation with poly (I:C) and
lipopolysaccharide (LPS) (Wang etal.,, 2021a; Yan etal.,
2015). Nonetheless, the precise role of SARM in bacterial
infections in fish remains undetermined, and its immunological
mechanism remains elusive. Recent research on worms and
flies has revealed that SARM expression is mediated by non-
coding RNAs (ncRNAs), specifically miR-956 and miR-71,
respectively (Finger etal.,, 2019; Monsanto-Hearne et al.,,
2017), providing a crucial clue for elucidating the regulatory
mechanisms of SARM.

NcRNAs, including microRNAs (miRNAs), IncRNAs, and
circular RNAs (circRNAs), have attracted considerable
attention in gene regulation. As highly conserved small
ncRNAs (~22 nucleotides long) (Cheng et al., 2005), miRNAs
play vital roles in biological processes, such as growth,
development, reproduction, and immunity (Andreassen &
Hoyheim, 2017; Hatfield etal., 2005; Sarma etal.,, 2014;
Vasadia etal,, 2019; Wienholds & Plasterk, 2005). The
regulatory mechanisms governing miRNAs are well
characterized, involving the repression of gene expression by
promoting mRNA degradation or suppressing mRNA
translation (Bagga et al., 2005). LncRNAs, a class of ncRNAs
longer than 200 nucleotides, can be distinguished by their
transcriptional but non-translational nature (Kapranov et al.,
2007). LncRNAs exert diverse effects on development,
differentiation, metabolism, and immunity (Cesana etal,
2011; Du et al., 2017; Sarangdhar et al., 2018; Wang et al.,
2017b). LncRNAs can regulate gene expression directly
through cis- or trans-acting mechanisms (Ponting et al., 2009).
Recently, a novel mechanism of IncRNA-mediated regulation
has emerged, whereby IncRNAs function as miRNA sponges
to modulate target genes, known as competitive endogenous
RNA (ceRNA) activity (Wang et al., 2013). LncRNA-mediated
ceRNA crosstalk has been extensively detected in mammalian
immunity (Cong etal., 2019; Song etal., 2017; Wu et al.,
2017). In the context of fish, it is anticipated that ceRNA
networks participate in immune responses (Wu et al., 2021,
2022; Ye et al., 2021). However, given that the intricacies of
the IncRNA-miRNA-mRNA regulatory mechanism remain
poorly understood, with only recent studies clarifying this
mechanism in miiuy croaker antipathogen infections (Chu
etal.,, 2020, 2021b; Zheng et al., 2021a, 2021b), assessing
the extent of the ceRNA mechanism across different fish
species remains crucial.

Teleosts are representative of early vertebrate evolution and
can serve as key models in lower vertebrate studies.
However, these economically valuable aquaculture species
face significant threats from bacterial diseases, amplifying
their importance in immunology research. Notably, vibriosis, a
prevalent aquatic disease caused primarily by Vibrio
anguillarum (Egidius, 1987), has prompted great research
efforts into fish defense mechanisms (Ning & Sun, 2020a,
2020b, 2021a, 2021b; Qi et al., 2021; Wang et al., 2021b; Xu
etal., 2019). Nevertheless, in-depth investigations on fish
defense responses remain severely impeded due to limitations
in experimental techniques, including the lack of suitable cell
lines. Furthermore, fish immune processes and regulatory
cascades exhibit notable differences when contrasted with the
well-characterized mammalian immunity.

In this study, we identified a INcRNA-MiRNA-mRNA ceRNA
network, consisting of pol-miR-n199-3p, pol-Inc78, and SARM,
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which exhibited the capacity to regulate the host immune
response in the teleost Japanese flounder (Paralichthys
olivaceus). SARM acted as a negative regulator, inhibiting the
expression of inflammatory cytokines, and was declined upon
V. anguillarum infection. Pol-miR-n199-3p suppressed SARM
expression by targeting the 3’ untranslated region (UTR),
thereby contributing to host defense against pathogens.
Moreover, pol-Inc78 functioned as a ceRNA, counteracting the
inhibitory effects of pol-miR-n199-3p on SARM, and thus
regulating SARM-mediated immune responses. Our results
represent the first ceRNA regulatory mechanism identified in
flounder. These findings should help advance our
understanding of ceRNA crosstalk in lower vertebrates.

MATERIALS AND METHODS

Fish and bacterial infection

Clinically healthy Japanese flounder (~50 g) were purchased
from a commercial fish farm in Shandong Province, China,
and maintained at 20+1 °C in aquariums equipped with
aerated seawater and digital temperature sensing controllers
as reported previously (Ning & Sun, 2020a). Fish were
acclimated in the laboratory for at least one week before any
experimental manipulation. Bacterial challenge was performed
as reported previously (Ning & Sun, 2020a). Briefly, flounder
individuals were injected intramuscularly with 100 pL of V.
anguillarum C312, a pathogenic strain isolated from diseased
flounder (Zheng etal., 2010), at a concentration of 5x10°
colony forming units (CFU)mL. The same volume of
phosphate-buffered saline (PBS) was injected into flounder as
a control. At 12 h post-infection (hpi), fish were euthanized,
and spleen tissue samples were collected for RNA extraction.
All experimental procedures were conducted in accordance
with the Guidelines for the Care and Use of Laboratory
Animals in China and were approved by the Nanjing Normal
University Animal Ethics Committee (Permit No. SYXK2015-
0028).

Bio-samples from the spleen, previously utilized in a
transcriptome study examining the responses of flounder to V.
anguillarum over various time points (Ning & Sun, 2020a),
were used to evaluate SARM and pol-Inc78 expression at 6,
12, and 24 hpi and for subsequent correlation analyses.

RNA extraction and reverse transcription-quantitative
real-time polymerase chain reaction (RT-qPCR)

Total RNA from spleen samples was extracted using TRIzol
reagent (Invitrogen, USA) following the manufacturer’s
protocols. The cDNA and miRNA cDNA templates were
synthesized using ReverTra Ace qPCR RT Master Mix
(TOYOBO, Japan) and miRNA First-Strand cDNA Synthesis
Kit (Vazyme, China), respectively, according to the
manufacturer’'s instructions. The RT-gPCR (mRNA and
IncRNA) and stem-loop RT-gPCR (miRNA) procedures were
carried out with SYBR Premix Ex Tagll (TaKaRa, China) using
the QuantStudio 3 Real-Time PCR System (Thermo Fisher
Scientific, USA) according to the manufacturer’s protocols.
The expression level was determined using the 2784Ct
comparative Ct method (Ning & Sun, 2020b). B-actin and a-
tubulin were used as the internal controls for samples of
uninfected and V. anguillarum-infected flounder, respectively.
5S rRNA was used as the internal control for pol-miR-n199-
3p. The primers used for RT-gPCR are listed in
Supplementary Table S1. Correlation analysis was performed
using the cor.testin R (v.3.5.2).



Plasmid construction

To construct the SARM expression plasmid (pCN3-SARM),
the SARM gene sequence in flounder (Gene ID 109630267)
was amplified using PCR with specific primers, with the PCR
product then cloned into the expression vector pCN3 at the
EcoRV site as reported previously (Jiao etal.,, 2009).

Similarly, the pol-Inc78 expression plasmid (pCN3-Inc78) was
constructed by cloning the pol-Inc78 sequence (accession
number PRJNA554220) into pCN3 at the EcoRYV site. To
construct the SARM 3'UTR reporter plasmid (pmir-SARM-wt),
the 3'UTR region of SARM was amplified by PCR, with the
PCR product then inserted into the pmirGLO vector at the Sac
I/Xba | sites. The mutant form of the SARM 3'UTR reporter
plasmid (pmir-SARM-mut) was identical to the SARM 3'UTR
reporter plasmid, except that the sequence (5-CAGTGTT-3’)
complementary to the seed sequence of pol-miR-n199-3p was
mutated to 5-GTCACAA-3'. Similarly, the pol-Inc78 reporter
plasmid (pmir-Inc78-wt) and mutated-pol-Inc78 reporter
plasmid (pmir-Inc78-mut) were constructed by inserting the
pol-Inc78 sequence and pol-Inc78 with mutated sequence (5'-
CAGTGTT-3' mutated to 5-GTCACAA-3’) into the pmirGLO
vector, respectively. The primers used to construct plasmids
are listed in Supplementary Table S1.

MiRNA mimic and agomir

Pol-miR-n199-3p mimic and agomir, as well as respective
negative control miR-NC and agomir-NC, were synthesized by
GenePharma (China).

Dual-luciferase reporter assay

Human embryonic kidney epithelial (HEK293T) cells were
cultured in Dulbecco’s Modified Eagle Medium (DMEM,
Invitrogen, USA) supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin and streptomycin at 37 °C with 5%
CO, in 24-cell plates. To investigate the interaction between
pol-miR-n199-3p and SARM 3'UTR, the HEK293T cells were
transfected with pmir-SARM-wt alone or co-transfected with
pmir-SARM-wt or pmir-SARM-mut, along with pol-miR-n199-
3p mimic or miR-NC using Lipofectamine™ 3000 (Invitrogen,
USA) according to the manufacturer's instructions. After
transfection for 8 h, the culture medium was renewed. At 24 h
post-transfection, the cells were lysed, and luciferase activity
was measured using a Dual Luciferase Reporter Assay Kit
(Vazyme, China). Similarly, the interaction between pol-miR-
n199-3p and pol-Inc78 was determined with HEK293T cells
transfected with pmir-Inc78-wt alone or co-transfected with
pmir-Inc78-wt or pmir-Inc78-mut, along with pol-miR-n199-3p
mimic or miR-NC. To detect the competition between pol-
Inc78 and SARM in binding to pol-miR-n199-3p, the HEK293T
cells were co-transfected with pol-miR-n199-3p mimic or miR-
NC, together with the pCN3 vector or pol-Inc78 expression
plasmid, along with SARM 3’'UTR, or transfected with SARM
3'UTR alone. All luciferase activity values were normalized
against the Renilla luciferase control.

In vivo overexpression and effects on bacterial infection

Flounder with SARM or pol-Inc78 overexpression were
constructed, with four groups of flounder used. Fish in the
former two groups were injected with expression plasmid
pCN3-SARM or pCN3-Inc78 with 2 pg plasmid/g fish,
respectively. Fish in the latter two groups were injected with or
without the same volume of empty vector pCN3 as a control.
Spleen tissues were collected at 3 d post-plasmid
administration, and the expression levels of SARM, pol-Inc78,

and pol-miR-n199-3p were examined by RT-qPCR.

To investigate the effects of SARM or pol-Inc78
overexpression on V. anguillarum infection, flounder were
injected with the plasmid pCN3-SARM or pCN3-Inc78, as
described above. At 2.5 d post-plasmid administration,
flounder were injected with V. anguillarum (5x10% CFUffish).
At 12 h post V. anguillarum injection, number of bacteria was
determined using the plate count method, as reported
previously (Zhang et al., 2020).

Flounder with pol-miR-n199-3p overexpression or pol-miR-
n199-3p and pol-Inc78 co-overexpression were constructed,
with a total of five groups used. For the former three groups,
flounder were injected with or without pol-miR-n199-3p agomir
or agomir-NC (2 ug/g fish) for 12 h. For the latter two groups,
fish were injected with pCN3-Inc78 or pCN3 for 2.5 d, then
injected with pol-miR-n199-3p agomir (2 pg/g fish) for another
12 h. The expression levels of pol-miR-n199-3p, SARM, and
pol-Inc78 were determined by RT-qPCR.

To investigate the effects of pol-miR-n199-3p
overexpression on V. anguillarum infection, fish were injected
with pol-miR-n199-3p agomir (2 ug/g fish) together with V.
anguillarum (5%10° CFU/fish). At 12 hpi, the number of V.
anguillarum in the spleen and liver was determined by plate
count.

Statistical analysis

Data are presented as meanszstandard deviation (SD) from
three independent replicates. Student's t-test was used to
compare the values between different groups. Statistical
analyses were performed using SPSS software (v.23.0).
Statistical significance was considered at P<0.05.

RESULTS

Flounder SARM negatively regulates bacterial infection
Symptoms in fish challenged with V. anguillarum were first
confirmed. Notably, after infection, common pathological
findings of vibriosis were observed in flounder, including
ulcerative skin, fin hemorrhage, and swollen spleen
(Figure 1A). To evaluate the expression profiles of flounder
SARM in response to V. anguillarum challenge, RT-gPCR was
conducted. Results showed that SARM expression was
significantly reduced during V. anguillarum infection at 6, 12,
and 24 hpi (Figure 1B). In mammals, SARM is an inhibitor of
TLR signaling via the suppression of IL-18 and TNF-a
expression after LPS stimulation. Accordingly, we examined
whether flounder SARM could inhibit these inflammatory
cytokines upon bacterial infection. Fish exhibiting SARM
overexpression were established using plasmid pCN3-SARM
injection. Enhanced SARM expression was validated by RT-
gPCR at 3 d post-administration (Supplementary Figure S1).
As depicted in Figure 1C, D, in vivo overexpression of SARM
significantly down-regulated IL-13 and TNF-a expression in V.
anguillarum-infected flounder. To investigate the effect of
SARM on pathogen infection, bacterial counts were
determined in V. anguillarum-infected flounder with or without
SARM overexpression. Results showed that bacterial loads in
fish with SARM overexpression were significantly higher than
that in fish without SARM overexpression in both the spleen
and liver (Figure 1E, F). These findings suggest that
antibacterial immune defense is triggered via suppression of
SARM expression, which activates the TLR signaling pathway
and inflammatory response, resulting in the clearance of
bacterial pathogens.
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Figure 1 SARM acts as a negative regulator in host defense against Vibrio anguillarum infection

A: Symptoms of flounder infected with V. anguillarum. Compared to control fish, V. anguillarum-infected flounder exhibited ulcerative skin (us) and
fin hemorrhage (fh). Swollen spleen was observed in V. anguillarum-infected flounder compared to control fish. B: SARM expression decreased in
response to V. anguillarum infection. SARM expression in flounder infected with or without (control) V. anguillarum for 6, 12, and 24 h was
examined. C, D: SARM inhibited expression of inflammatory cytokines. Flounder were administered with SARM expression plasmid or pCN3 vector
for 2.5 d, then injected with V. anguillarum for another 12 h. Expression levels of IL-13 (C) and TNF-a (D) were examined. E, F: SARM exacerbated
V. anguillarum infection. Flounder were administered with or without (control) SARM expression plasmid for 2.5 d, then injected with V. anguillarum
for another 12 h. Bacterial loads in spleen (E) and liver (F) were determined through plate count. Ctrl: Control; hpi, hours post infection. P-values
were calculated with Student’s t-test. ": P<0.05; ™: P<0.01. Error bars indicate SD.

SARM is a target gene of pol-miR-n199-3p

In our previous investigation on the micro-transcriptome of V.
anguillarum-infected flounder, SARM was predicted to be a
potential target of pol-miR-n199-3p (Ning & Sun, 2020b). To
elucidate the mechanism underlying SARM modulating V.
anguillarum infection, we examined the regulatory role of
candidate miRNAs on SARM. The sequence features were
first analyzed. As shown in Figure 2A, the sequence of SARM
3'UTR was completely complementary to the seed sequence
of pol-miR-n199-3p. To confirm the specific binding site
between pol-miR-n199-3p and SARM 3'UTR, a mutated form
of SARM 3'UTR (SARM-mut) was constructed (Figure 2A).
The dual-luciferase reporter assay was then conducted using
HEK293T cells to verify the interaction between pol-miR-n199-
3p and SARM 3'UTR. Results showed that pol-miR-n199-3p
significantly reduced luciferase activity when co-transfected
with the wild-type SARM 3'UTR but not with the mutated type
(Figure 2B). Moreover, no significant decrease in luciferase
activity was observed when pol-miR-n199-3p was replaced by

28 www.zoores.ac.cn

miR-NC or wild-type SARM 3'UTR alone (Figure 2B). Finally,
to determine the regulatory effect of pol-miR-n199-3p on
SARM expression, a flounder model with pol-miR-n199-3p
overexpression was established. Elevated pol-miR-n199-3p
expression was confirmed by RT-gPCR (Supplementary
Figure S2). SARM expression was significantly suppressed in
fish with pol-miR-n199-3p overexpression, but not in the
control fish (Figure 2C). Thus, these results indicate that pol-
miR-n199-3p represses SARM expression via specific
interactions with its 3'UTR.

Pol-miR-n199-3p enhances host antibacterial immunity by
suppressing SARM

In our previous study on miRNA expression profiles in V.
anguillarum-infected flounder, we found that pol-miR-n199-3p
is significantly up-regulated in response to V. anguillarum
infection at 6, 12, and 24 hpi (Ning & Sun, 2020b). In the
present study, the expression levels of pol-miR-n199-3p and
SARM were shown to be significantly negatively correlated
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(P<0.05) (Figure 3A). Thus, we subsequently explored
whether pol-miR-n199-3p had any effect on SARM
expression. Results showed that pol-miR-n199-3p significantly
suppressed SARM expression in flounder (Figure 3B). Given
that SARM exacerbated bacterial infection by suppressing
inflammatory cytokines, we wondered whether pol-miR-n199-
3p could affect SARM-mediated IL-1B and TNF-a. As shown
in Figure 3C, D, overexpression of pol-miR-n199-3p markedly
increased the expression of IL-18 and TNF-a. To examine the
direct effects of pol-miR-n199-3p on bacterial infection,
bacterial counts were determined in fish with or without pol-
miR-n199-3p overexpression upon V. anguillarum challenge.
Our findings indicated that the up-regulation of pol-miR-n199-
3p contributed to the inhibition of bacterial disseminations in
both the spleen and liver (Figure 3E, F). These observations
suggest that pol-miR-n199-3p promotes host defense against
bacterial infection via increasing the expression of SARM-
mediated inflammatory cytokines.

Pol-Inc78

interaction
In our previous study on IncRNAs in flounder, we predicted
that pol-Inc78 may target pol-miR-n199-3p (Ning & Sun,
2021a). To determine whether pol-Inc78 interacts with pol-
miR-n199-3p, a dual-luciferase reporter assay was performed
in HEK293T cells. The sequence of pol-Inc78 was first
analyzed to identify the binding site for pol-miR-n199-3p
(Figure 4A). Subsequently, both a wild-type pol-Inc78 reporter
and mutated-type reporter with a mutated binding site were
constructed. The dual-luciferase assay revealed that pol-miR-
n199-3p strongly inhibited luciferase activity of the wild-type
pol-Inc78 reporter but elicited no response in the mutated-type
reporter (Figure 4B). To investigate the regulatory roles of pol-
Inc78 on the target, a flounder model with pol-Inc78
overexpression was established using plasmid pCN3-Inc78
injection. After verification of increased pol-Inc78 expression at
3 d post-administration (Supplementary Figure S3), pol-miR-
n199-3p expression was determined. As shown in Figure 4C,
pol-Inc78 significantly reduced the expression of pol-miR-
n199-3p in vivo. Together, these observations indicate that

regulates pol-miR-n199-3p expression via

pol-Inc78 negatively regulates pol-miR-n199-3p expression
through direct interaction.

Pol-Inc78 aggravates bacterial infection via suppression
of pol-miR-n199-3p

In our previous research, we identified pol-Inc78 as a potential
immune-related IncRNA engaged in V. anguillarum infection
(Ning & Sun, 2021a). Here, validation of expression patterns
indicated that pol-Inc78 was significantly down-regulated in the
V. anguillarum-challenged flounder at 6, 12, and 24 h
(Figure 5A). Correlation analysis showed that pol-Inc78 was
significantly and negatively correlated (P<0.05) with pol-miR-
n199-3p expression upon bacterial stimulation (Figure 5B).
Moreover, in vivo overexpression of pol-Inc78 significantly
decreased the expression of pol-miR-n199-3p in V.
anguillarum-infected flounder (Figure 5C). Exploration of the
potential regulatory effects of pol-Inc78 on inflammatory
cytokines mediated by pol-miR-n199-3p during infection
showed that overexpression of pol-Inc78 significantly
repressed IL-18 and TNF-a expression in V. anguillarum-
infected flounder (Figure 5D, E). An in vivo infection study was

conducted using flounder with or without pol-Inc78
overexpression. Results indicated significantly increased
bacterial loads in both the spleen and liver of fish

overexpressing pol-Inc78 (Figure 5F, G). Collectively, these
findings suggest that pol-Inc78 promotes bacterial
dissemination by inhibiting pol-miR-n199-3p.

Pol-Inc78, as a ceRNA, sponges pol-miR-n199-3p to
increase SARM expression

In our previous study on INcCRNA-miRNA-mRNA networks in V.
anguillarum-infected flounder, we predicted that the pol-Inc78-
pol-miR-n199-3p-SARM axis may be involved in immune-
related ceRNA networks (Ning & Sun, 2021a). In the current
study, we validated the interaction between pol-Inc78 and pol-
miR-n199-3p and the targeting of SARM by pol-miR-n199-3p.
Subsequently, we explored whether pol-Inc78 could regulate
SARM expression. In vivo analysis showed that
overexpression of pol-Inc78 significantly up-regulated SARM
expression (Figure 6A). Moreover, correlation analysis
showed that the expression levels of pol-Inc78 and SARM
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Figure 3 Pol-miR-n199-3p enhances host antibacterial defense by suppressing SARM expression

A: SARM and pol-miR-n199-3p were significantly and negatively correlated. Expression levels of SARM and pol-miR-n199-3p in flounder
challenged with or without Vibrio anguillarum for 6, 12, and 24 h were tested, then subjected to correlation analysis. r, correlation coefficient. B: Pol-
miR-n199-3p suppressed SARM expression upon V. anguillarum stimulation. Expression levels of SARM in flounder administered with pol-miR-
n199-3p agomir or negative control (agomir-NC), along with V. anguillarum infection for 12 h, were detected. C, D: Pol-miR-n199-3p promoted
expression of inflammatory cytokines that were reduced by SARM. Flounder were administered with pol-miR-n199-3p agomir or agomir-NC, along
with V. anguillarum infection for 12 h. Expression levels of IL-18 (C) and TNF-a (D) were then examined. E, F: Pol-miR-n199-3p inhibited V.
anguillarum infection. Flounder were administered with pol-miR-n199-3p agomir or agomir-NC, along with V. anguillarum infection for 12 h. Bacterial
loads in spleen (E) and liver (F) were then determined by plate count. Ctrl: Control. P-values were calculated with Student’s t-test. : P<0.05. Error
bars indicate SD.
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Figure 4 Pol-Inc78 regulates pol-miR-n199-3p expression by interactions

A: Pol-Inc78 contained the binding site for pol-miR-n199-3p. Sequence alignments between pol-miR-n199-3p seed sequence and its binding site in
wild-type of pol-Inc78 (pol-Inc78-wt), as well as mutant-type with binding site mutated (pol-Inc78-mut), are shown. Red box indicates seed sequence
in pol-miR-n199-3p, binding site in pol-Inc78-wt, and mutated sequence in pol-Inc78-mut. B: Pol-Inc78 interacted with pol-miR-n199-3p. HEK293T
cells were co-transfected with pol-miR-n199-3p mimic or miR-NC, along with pol-Inc78-wt or pol-Inc78-mut, or transfected with pol-Inc78-wt alone,
with Luc activity then examined and normalized. miR-NC, negative control of pol-miR-n199-3p mimic. Luc, luciferase. C: Pol-Inc78 inhibited pol-
miR-n199-3p expression. Flounder were administered with or without pol-Inc78 expression plasmid or administered with pCN3 vector for 3 d.
Expression of pol-miR-n199-3p was determined by RT-gPCR. Ctrl: Control. P-values were calculated with Student’s t-test. . P<0.05; ~: P<0.01.
Error bars indicate SD.
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Figure 5 Pol-Inc78 suppresses anti-Vibrio anguillarum response by inhibiting pol-miR-n199-3p
A: Pol-Inc78 expression declined in response to V. anguillarum infection. Expression levels of pol-Inc78 in flounder infected with or without (control)

V. anguillarum for 6, 12, and 24 h were examined. hpi: Hours post infection. B: Pol-Inc78 and pol-miR-n199-3p were significantly and negatively

correlated. Expression levels of pol-Inc78 and pol-miR-n199-3p in flounder stimulated with or without V. anguillarum for 6, 12, and 24 h were tested,

then subjected to correlation analysis. r, correlation coefficient. C—E: Pol-Inc78 suppressed expression of pol-miR-n199-3p and its mediated

inflammatory cytokines upon V. anguillarum stimulation. Flounder were administered with or without pol-Inc78 expression plasmid or administered
with pCN3 vector for 2.5 d, then injected with V. anguillarum for another 12 h. Expression levels of pol-miR-n199-3p (C), IL-1B (D), and TNF-a (E)
were examined. F, G: Pol-Inc78 promoted V. anguillarum dissemination. Flounder were administered with or without pol-Inc78 expression plasmid
or administered with pCN3 vector for 2.5 d, then injected with V. anguillarum for another 12 h. Bacterial loads in spleen (F) and liver (G) were
determined by plate count. Ctrl: Control. P-values were calculated with Student’s t-test. ": P<0.05; ™: P<0.01. Error bars indicate SD.

were significantly and positively correlated during bacterial
infection (Figure 6B), suggesting that pol-Inc78 regulates
SARM expression. Thus, we next tested whether the
regulatory effects of pol-Inc78 on SARM could be mediated by
pol-miR-n199-3p. A dual-luciferase reporter assay was
performed using HEK293T cells co-transfected with SARM 3’
UTR reporter, pol-miR-n199-3p mimic, and/or pol-Inc78
expression plasmid. Results showed that pol-Inc78
counteracted the inhibitory effects of pol-miR-n199-3p on
SARM 3'UTR (Figure 6C). Furthermore, comparing the
expression of SARM in flounder with pol-miR-n199-3p
overexpression, and with pol-miR-n199-3p and pol-Inc78 co-
overexpression, we found that pol-Inc78 relieved the inhibitory
effects of pol-miR-n199-3p on SARM expression (Figure 6D).
Together, these observations suggest that pol-Inc78 can act
as a ceRNA and sponge pol-miR-n199-3p to regulate the
expression of SARM as well as SARM-mediated inflammatory

cytokines, thereby modulating host antibacterial immunity
(Figure 7).

DISCUSSION

Bacterial diseases greatly impact the fish farming industry,
with vibriosis, one of the most prevalent aquaculture diseases
globally, causing substantial economic losses (Egidius, 1987).
Among the causative agents of vibriosis, V. anguillarum is
noteworthy due to its pathogenicity and ubiquitous existence
in the water environment, leading to widespread infections in
various aquatic animals, including Atlantic cod (Lokesh et al.,
2012), orange-spotted grouper (Huang etal., 2014), tongue
sole (Zhang etal., 2015), turbot (Gao etal., 2016), miiuy
croaker (Chu etal., 2017), and flounder (Gao etal., 2013).
The innate immune system acts as the first and central line of
defense in teleost fish, with the TLR signaling pathway playing
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Figure 6 Pol-Inc78 as a ceRNA sponges pol-miR-n199-3p to enhance SARM expression

A: Pol-Inc78 up-regulates SARM expression. Flounder were administered with or without pol-Inc78 expression plasmid or administered with pCN3
vector for 3 d. Expression levels of SARM were determined. B: SARM and pol-Inc78 were significantly and positively correlated. Expression levels
of SARM and pol-Inc78 in flounder infected with or without Vibrio anguillarum for 6, 12, and 24 h were examined, then subjected to correlation
analysis. r, correlation coefficient. C: Pol-Inc78 counteracted inhibition of pol-miR-n199-3p on SARM 3'UTR. HEK293T cells were co-transfected
with pol-miR-n199-3p mimic or miR-NC, together with pCN3 vector or pol-Inc78 expression plasmid, along with SARM 3'UTR, or transfected with
SARM 3’UTR alone. Luc activity was examined and normalized. miR-NC, negative control of pol-miR-n199-3p mimic. Luc, luciferase. D: Pol-Inc78
counteracted inhibitory effect of pol-miR-n199-3p on SARM expression. Flounder were administered with or without pol-Inc78 expression plasmid
for 2.5 d, then administered with pol-miR-n199-3p agomir for another 12 h. Expression levels of SARM were determined. Ctrl: Control. P-values
were calculated with Student’s t-test. : P<0.05; : P<0.01. Error bars indicate SD.
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Figure 7 Mechanistic diagram of ceRNA network and antibacterial regulation of pol-Inc78, pol-miR-n199-3p, and SARM

Fish SARM negatively regulates immune response by inhibiting inflammatory cytokines IL-18 and TNF-a. Pol-miR-n199-3p targets SARM and
promotes antibacterial defense by up-regulating SARM-dependent inflammatory cytokine expression. Pol-Inc78 acts as a ceRNA sponging pol-miR-
n199-3p to enhance SARM, thus ensuring appropriate inflammatory and antibacterial responses for host survival.
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a crucial role in antibacterial responses. Among the five TIR
adaptors, SARM is uniquely inhibitory and highly conserved
(O’Neill & Bowie, 2007). In the present study, we observed a
significant decline in the expression of flounder SARM during
V. anguillarum infection. The inhibitory role of SARM on the
TLR pathway also appears to be conserved across mammals.
For example, in human HEK293T cells, overexpression of
SARM significantly represses LPS-mediated up-regulation of
inflammatory cytokines, such as IL-18 and TNF-a (Carlsson
et al., 2016). Burkholderia pseudomallei infection can increase
SARM expression in mice, resulting in the suppression of
TRIF and interferon B (IFNB) production (Pudla et al., 2011).
Similarly, we found that flounder SARM significantly reduced
the expression of inflammatory cytokines IL-18 and TNF-a
upon V. anguillarum stimulation. Previous studies have shown
divergence in the function of SARM between invertebrates
and mammals. In worms and flies, SARM orthologs contribute
to host resistance against microbial pathogens (Liberati et al.,
2004; Monsanto-Hearne etal., 2017), while SARM” mice
exhibit higher survival from LPS-stimulated sepsis due to
increased IL-1P3 release (Carty et al., 2019). Here, we found
that overexpression of SARM in lower vertebrates such as
flounder significantly exacerbated bacterial dissemination,
indicating the functional resemblance of fish SARM to that of
mammals.

The molecular mechanism by which SARM regulates
immune function remains enigmatic, even in mammals.
Studies on invertebrate model animals have suggested a
potential miRNA-mediated modulation of SARM (Finger et al.,
2019; Monsanto-Hearne et al., 2017). In teleost fish, miRNAs
are recognized as ubiquitous and versatile regulators, critical
in immune responses. For instance, in the orange-spotted
grouper, miR-122 modulates the immune response to
Aeromonas hydrophila infection by targeting IL-15 (Liu et al.,
2020); in miiuy croaker, miR-144 and miR-217 act as negative
modulators of the inflammatory response against Vibrio
harveyi infection (Chu et al., 2021a). Recent studies have also
suggested that miRNAs are involved in the flounder response
to V. anguillarum challenge (Ning & Sun, 2020b). In the
present study, pol-miR-n199-3p was shown to target the 3’
UTR of SARM, leading to a reduction in expression. These
findings are consistent with the established mechanism of
miRNA modulation, whereby miRNAs interact with the 3'UTR
of the target gene, thus facilitating its degradation or
suppressing its translation at the post-transcriptional level
(Cannell etal., 2008). Accumulating evidence suggests that
fish miRNAs can affect pathogens. For example, flounder pol-
miR-novel_171 promotes gram-negative bacterial
dissemination (Li etal., 2020), pol-miR-150 negatively
regulates gram-positive bacterial infection (Sun et al., 2021),
and miR-206 increases Mycobacterium marinum burden in
zebrafish (Wright et al., 2021). Here, we found that pol-miR-
n199-3p played a protective role against pathogen infection in
flounder. Of note, the inhibition of V. anguillarum
dissemination by pol-miR-n199-3p was attributable to the
increase in SARM-mediated inflammatory cytokines.
Moreover, we found that SARM was linked to the regulation of
IncRNA.

Despite continued research on IncRNAs since the first
IncRNA (Xist) was discovered in humans (Borsani etal.,
1991), identification of IncRNAs in non-model species,
especially fish, has only gained momentum in recent years. In
our previous study, we systematically identified flounder

IncRNAs through bioinformatics analysis, highlighting pol-
Inc78 as an immune-related IncRNA (Ning & Sun, 2021a). In
the current study, functional experiments confirmed the
importance of pol-Inc78 in the host immune response to
bacterial challenge, with pol-Inc78 shown to serve as a
negative regulator. Recently, IncRNA-mediated ceRNA
crosstalk has become a hotspot of research. In mammals,
ceRNAs have been strongly implicated in the pathogenesis of
cancers, providing crucial diagnostic biomarkers and
therapeutic targets (Abdollahzadeh et al., 2019; Chen et al.,
2017; Wang etal., 2017a). In lower vertebrates, limited
research has been conducted on IncRNA-mediated ceRNA
mechanisms, except for a few studies associated with miiuy
croaker immunity. Specifically, in miiuy croaker, INcRNA IRL
promotes the immune response against bacterial infection by
counteracting the suppressive effects of miR-27c-3p on IRAK4
(Zheng et al., 2021a), while IncRNA AANCR increases MITA
expression through competitively binding to miR-210 and
regulates host antiviral responses (Chu et al., 2021b). Given
this context, determining whether ceRNA crosstalk occurs
widely among teleost fish is important. Here, we revealed that
flounder pol-Inc78 acts as a ceRNA to increase SARM
expression through sponging pol-miR-n199-3p, with this
ceRNA network regulating host defense responses to bacterial
infection. These results highlight the essential effects of
IncRNAs in host immunity and lend further support to the
ubiquity of ceRNA regulation in fish.

CONCLUSIONS

Our study identified SARM, pol-miR-n199-3p, and pol-Inc78 as
key regulators in the response of flounder to V. anguillarum
infection through modulation of inflammatory processes. Pol-
miR-n199-3p repressed SARM expression by targeting its 3’
UTR. Concurrently, pol-Inc78 acted as a ceRNA,
counteracting the inhibitory effects of pol-miR-n199-3p on
SARM. These observations provide new insights into the
mechanisms of SARM, as well as the roles of ceRNA in lower
vertebrates.
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