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ABSTRACT

Video-based action recognition is becoming a vital tool in
clinical research and neuroscientific study for disorder
detection and prediction. However, action recognition
currently used in non-human primate (NHP) research
relies heavily on intense manual labor and lacks
standardized assessment. In this work, we established two
standard benchmark datasets of NHPs in the laboratory:
MonkeyinLab (MiL), which includes 13 categories of
actions and postures, and MiL2D, which includes
sequences of two-dimensional (2D) skeleton features.
Furthermore, based on recent methodological advances in
deep learning and skeleton visualization, we introduced
the MonkeyMonitorKit (MonKit) toolbox for automatic
action recognition, posture estimation, and identification of
fine motor activity in monkeys. Using the datasets and
MonKit, we evaluated the daily behaviors of wild-type
cynomolgus monkeys within their home cages and
experimental environments and compared these
observations with the behaviors exhibited by cynomolgus
monkeys possessing mutations in the MECP2 gene as a
disease model of Rett syndrome (RTT). MonKit was used
to assess motor function, stereotyped behaviors, and
depressive phenotypes, with the outcomes compared with
human manual detection. MonKit established consistent
criteria for identifying behavior in NHPs with high accuracy
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and efficiency, thus providing a novel and comprehensive
tool for assessing phenotypic behavior in monkeys.
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INTRODUCTION

Action recognition and object phenotype recognition are
critical skills essential for human survival and evolutionary
progress, with a profound connection to cognitive function,
emotional expression, and social communication. Within the
field of computer vision, the study of action and phenotype
recognition has become a focal point in intelligent surveillance
(Ben Mabrouk & Zagrouba, 2018), criminal investigation
(Hossain et al., 2013), human-computer interaction (Ahmad &
Khan, 2020), video prediction (Vyas etal., 2020), and
healthcare  (Venkataraman etal, 2013). In clinical
applications, action recognition has been widely utilized in
stroke rehabilitation using dynamical analysis of motion

Received: 08 March 2023; Accepted: 14 September 2023; Online: 15
September 2023

Foundation items: This work was supported by the National Key R&D
Program of China (2021ZD0202805, 2019YFA0709504, 2021ZD0200900),
National Defense Science and Technology Innovation Special Zone Spark
Project (20-163-00-TS-009-152-01), National Natural Science Foundation of
China (31900719, U20A20227, 82125008), Innovative Research Team of
High-level Local Universities in Shanghai, Science and Technology
Committee Rising-Star Program (19QA1401400), 111 Project (B18015),
Shanghai  Municipal Science and Technology Major Project
(2018SHZDZX01), and Shanghai Center for Brain Science and Brain-
Inspired Technology

#Authors contributed equally to this work

*Corresponding authors, E-mail: sxiong@fudan.edu.cn; xiaoxiao@fudan.
edu.cn


mailto:sxiong@fudan.edu.cn
mailto:xiaoxiao@fudan.&lt;linebreak/&gt;edu.cn
mailto:xiaoxiao@fudan.&lt;linebreak/&gt;edu.cn
mailto:sxiong@fudan.edu.cn
mailto:xiaoxiao@fudan.&lt;linebreak/&gt;edu.cn
mailto:xiaoxiao@fudan.&lt;linebreak/&gt;edu.cn

(Venkataraman et al., 2013) and in assessing parkinsonism
severity through gait-based characteristic recognition
(Ricciardi et al., 2019). Studies on action recognition in non-
human animals were first applied in pigeons (Dittrich & Lea,
1993), cats (Blake, 1993), and dogs (Delanoeije et al., 2020).
Monkeys boast a greater range of motor behaviors compared
to other experimental animals, as each of their body joints
exhibits multiple degrees of freedom, enabling the production
of a diverse array of postures. At present, however, action
analysis in non-human primates (NHPs) requires labor-
intensive manual observation and lacks standardized
assessment.

Deep learning-based algorithms for human action
recognition have demonstrated high accuracy and stability (Li
et al., 2018; Simonyan & Zisserman, 2014; Tran et al., 2015).
However, few deep learning tools are available for NHP
applications. DeepLabCut provides unlabeled two-dimensional
(2D) posture estimation with supervised learning and has
been widely applied across various species, including flies,
worms, rodents, and monkeys (Mathis et al., 2018; Nath et al.,
2019). However, its accuracy for multiple actions and postures
remains unsatisfactory (Supplementary Figure S1). The Kinect
device is a powerful tool for automatic recognition of human
bone points (Li etal., 2021b; Tran etal., 2017), but cannot
easily provide information about the bone joints of monkeys.
OpenMonkeyStudio harnesses a multi-view camera setup to
generate three-dimensional (3D)-based estimations of the
posture of unlabeled monkeys, demonstrating good accuracy
(Bala et al., 2020). However, its optimal functioning requires
62 precisely arranged high-resolution video cameras, resulting
in considerable resource costs, while a reduction to eight
cameras yields a performance rate of only 80% accompanied
by impaired accuracy (Bala etal., 2020). While Liu etal.
(2022) developed MonkeyTrail, a deep learning-based
approach for determining movement trajectories of caged
macaques, there remains a need for a tool dedicated to
phenotypic behavior recognition and fine action identification.

Rett syndrome (RTT), which predominantly affects girls, is
one of the most severe neurodevelopmental disorders
worldwide, primarily arising from mutations in the gene
encoding methyl-CpG-binding protein 2 (MECP2) located on
the X chromosome and subsequent downstream gene
expression (Amir etal., 1999; Shah & Bird, 2017).
Characterized by neurological regression, RTT profoundly
affects motor abilities, especially mobility, hand skills, and gait
coordination, accompanied by stereotyped features. Patients
with RTT also experience anxiety, depression, and cognitive
abnormalities (Chahrour & Zoghbi, 2007). Compared to the
most widely used rodent model of RTT, NHP models offer the
advantage of evolutionary homology with humans.
Cynomolgus monkeys and humans share similar brain
connectivity patterns with advanced cognitive function and
behavioral characteristics, potentially providing a superior
translational model involving MECP2 mutant monkeys (Chen
etal., 2017; Qin et al., 2019). In this study, we used this model
to measure daily behaviors and detect pathological states,
utilizing a deep learning-based algorithm for automatic action
recognition.

We first created a benchmark dataset, called MonkeyinLab
(MiL), which included 13 categories of NHP actions and
postures, as an experimental laboratory-based model, with
longitudinal video recordings (2 045 videos). Consequently,
based on MiL, we established the MiL2D dataset containing
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15 175 annotated images of 2D skeleton data and 15 bone
points. Furthermore, we developed the MonkeyMonitorKit
(MonKit) toolbox leveraging advanced deep learning
techniques for video- and skeleton-based action recognition,
enabling precise identification of phenotypic behaviors in
NHPs. Finally, using the two datasets and toolbox, we
detected daily behavior and estimated fine motor activities
potentially related to RTT symptoms in five MECP2 mutant
RTT monkeys and 11 age-matched wild-type (WT) monkeys.
Results showed that MonKit performance was comparable to
human observations. By providing a validated, automatic, and
objective behavioral analysis in NHPs, our toolkit and datasets
hold promise for both experimental and clinical studies.

MATERIALS AND METHODS

Animals

Video recordings were obtained from 12 cynomolgus monkeys
(Macaca fascicularis) to create the dataset and from 16
cynomolgus monkeys for testing both the dataset and MonKit.
All monkeys were aged 6-8 years (5.5-12 kg) and were fed
separately in single cages (see Table 1). Five MECP2 mutant
RTT monkeys and 11 age-matched WT monkeys were used
in the study. Five male WT monkeys were video-recorded in
their home cages (0.8 mx0.8 mx0.8 m or 1.0 mx0.8 mx0.8 m)
as a baseline control (C1-C5). The term “home cage” refers to
the daily living environment where monkeys typically resided
and engaged in basic physiological activities, such as
sleeping, eating, and drinking (Supplementary Figure S2). For
behavioral observations and other experiments, six female WT
monkeys (T1-T5) and five sex- and age-matched MECP2
mutant monkeys (M1-M5) were moved to a standardized test
cage (1.0 mx1.0 mx1.0 m) without access to food and water
(Supplementary Figure S2). All home and test cages were
situated in a controlled environment (temperature: 22+1 °C;
relative humidity: 50%+5%) under a 12 h light/12 h dark cycle
(lights off at 2000h and on at 0800h). The monkey facility
where the experiments were conducted is accredited by
AAALAC International and all experimental protocols were
approved by the Institutional Animal Care and Use Committee
of Yunnan Key Laboratory of Primate Biomedical Research
(approval ID: LPBR201903003, to Prof. Yongchang Chen).

Video data collection

Each monkey was photographed in two distinct time-windows,
once in the morning and once in the afternoon, during periods
without feeding and foraging. Prior to video data collection,
each monkey was placed in the test cage for one day for
habituation and adaptation. To ensure accuracy during
recording, each monkey was observed for at least 3 days, with
recording time controlled from 0800h to 1100h and from
1300h to 1700h. Total recording time for each monkey was
3-10 h (3-6 h in home cage and 6-10 h in test cage). The
recording equipment used included a network camera (model:
DS-2CD1021FD-IW1, Hikvision, China) anddigital HD
camcorder (model: HDR-CX405, Sony, Japan). The camera
frame rate was 30 fps, with resolutions of 720x576 pixels in
the home cage and 1 920x1 080 pixels in the test cage. The
images were compressed to 256x340 pixels in the training
and test sets.

Video data annotation
Video annotations were constructed utilizing Python scripts.
The behavior recognition video data were set to an accuracy



Table 1 Animal information and recording environment

Serial number Gender Age (Year) Recording time (min) Shooting environment

WT in cage (C1) Male Unknown 268 Home cage with a plank in the middle.

WT in cage (C2) Male 7 170 Home cage with a plank in the middle.

WT in cage (C3) Male 7 325 Home cage with a plank in the middle.

WT in cage (C4) Male 6 165 Home cage with a plank in the middle.

WT in cage (C5) Male 8 148 Home cage with a plank in the middle.

WT in test (T1) Female 6 600 Test cage with two rails in the top and a plank in the middle.
WT in test (T2) Female 8 378 Test cage with two rails in the top and a plank in the middle.
WT in test (T3) Female 6 381 Test cage with two rails in the top and a plank in the middle.
WT in test (T4) Female 6 421 Test cage with two rails in the top.

WT in test (T5) Female 8 204 Test cage with two rails in the top.

WT in test (T6) Female 7 374 Test cage with two rails in the top.

MECP2 mutant (M1) Female 7 493 Test cage with two rails in the top.

MECP2 mutant (M2) Female 8 383 Test cage with two rails in the top and a plank in the middle.
MECP2 mutant (M3) Female 7 385 Test cage with two rails in the top and a plank in the middle.
MECP2 mutant (M4) Female 6 623 Test cage with two rails in the top and a plank in the middle.
MECP2 mutant (M5) Female 7 387 Test cage with two rails in the top.

of 0.033-0.04 s (25-30 fps), while the bone point data were
configured with a pixel range circle. To identify bone points
accurately and eliminate line-of-sight “jitter”, a self-constructed
Python script was used, accounting for context information.

Deep learning experimental setup

All experiments were conducted using PyTorch v1.7.1 for
deep models, in conjunction with Nvidia Quadro RTX8000
GPU (memory: 48 Gb), Intel Xeon Gold 5220R CPU (2.2 GHz,
24 Cores), and Ubuntu v18.04 operating system.

For action recognition preprocessing, we regarded RGB and
optical flow images obtained via OpenCV and Dense_flow as
spatial and temporal features. These images were cropped
around their centric pixels and standardized to a size of
224x224 pixels. Before the training phase, multi-site random
crop (unified 224x224 pixel scale) and random horizontal flip
(triggering probability set to 0.5) were employed for data
augmentation. The model was trained for 50 epochs with a
batch size of 90. Stochastic gradient descent (SGD) was used
as an optimizer, with the initial learning rate, momentum
factor, dropout rate, and weight decay set to 0.01, 0.9, 0.8,
and 0.0005, respectively. Specifically, cross-entropy loss with
learning rate decay was used, setting the step size and
multiplicative factor to 20 and 0.1, respectively. The number of
samplings for grouping was set to 8. During the testing stage,
three patches (left, centered, and right) were cropped from the
full pixel image to augment the test data, and the final score
was calculated according to the weighted summation of the
scores between RGB and optical flow, with their weighted ratio
set to 1:1.5.

For keypoint recognition preprocessing, the images were
cropped around their centric pixels and standardized to a size
of 256x%256 pixels. The space coordinates (x and y) of the
keypoints, center point, and bounding box of each monkey
were saved to a json file. Before the training phase, geometric
transformation (e.g., rotation, flip), image processing (e.g.,
contrast, brightness), and different ChangeColor temperature
were combined for data augmentation by IMGAUG toolbox
and Pytorch's transformer module. To simulate the
environment with iron bars, CageAUG was used to enhance
the image data (Li etal., 2021a). The keypoint coordinates
were converted into a heatmap and input into the network.
The model was trained for 140 epochs, with the batch size set

to 64. Adam was employed as an optimizer, and the initial
learning rate, momentum factor, and weight decay were set to
0.01, 0.9, and 0.0001, respectively. The mean square error
(MSE) was chosen as the loss function. During the testing
phase, the accuracy rate was derived using PCKh as the
benchmark standard of keypoint evaluation.

Statistical analysis

Analyses were conducted in small groups and ongoing power
analysis was used to estimate the number of replicates
required. The tests were specified to be two-sided, with similar
variance observed between groups. Data exceeding three
standard deviations (SDs) from the mean were excluded.
Student’s t-test (two-tailed, unpaired) followed by the Mann-
Whitney test was applied to identify significant differences
using Prism v9.0.0(86). Data are presented as meantstandard
error of the mean (SEM), and statistical significance was
considered at P<0.05. For behavior recognition and daily
behavior classifications, analyses were performed based on
videos of monkeys in the different cages. Each video
recording lasted for at least 3 h on different days. Null values
(means that did not detect any specific behavior in a video)
were removed during analysis.

RESULTS

MiL dataset

To establish uniform standards for identifying activities and
behaviors in NHPs, we introduced the MiL benchmark dataset
and used Python scripts to analyze each video. To increase
sample diversity for training and testing, different sized sliding
windows (20 to 110 frames) were set for the videos for data
augmentation, ensuring that a specific action appeared
several times in the dataset with different durations and
combinations. According to the original standards for manual
identification in previous studies (Chen etal.,, 2017; Feng
et al., 2011; Harlow & Suomi, 1971; Hirasaki et al., 2000; Ma
etal., 2017; Richter, 1931; Sun etal., 2017), the daily
behaviors of monkeys were divided into 13 categories,
including 10 action and three posture categories. Based on
observations of long-term videos for each monkey in a single
cage, the categories were identified in a total of 2 045 videos,
forming the MIL dataset (Figure 1). The action categories

Zoological Research 44(5): 967-980, 2023 969



included: climb, hang, turn, walk, shake, jump, move down, lie
down, sit down, and stand up. Postures were detected during
low activity periods and included: stand, sit, and huddle. The
definitions of each category are shown in Table 2. The MiL
dataset of the 13 categories covered nearly all daily behaviors
of NHPs housed under single-cage conditions.

Two-stream model based on temporal shift and split
attention (TSSA) for action detection

The specific network block diagram is shown in Figure 2A.
Initially, the category tag was input into each action video, with
video durations of approximately 1-4 s, covering all daily
monkey actions. Utilizing a random sampling approach
coupled with sparse temporal grouping, eight representative

frames depicting each discrete action were extracted from
each individual short video. The corresponding optical flow
picture and RGB flow information were input into the temporal
shift (TS) (Lin etal.,, 2019) and split attention (SA) (Zhang
et al., 2022) (TSSA) network, respectively through the parts of
RGB net and optical flow net for training. In each net module,
residual neural network (ResNet)-50 was used as the
backbone network, with the addition of a self-attention
mechanism module to the feature map position of each layer.
The feature map was subsequently partitioned into different
cardinals, and a series of transformations were applied with
different weights to enhance the importance of certain
cardinals and overall network performance. Finally, the
corresponding action category was output through softmax

Figure 1 Examples of MiL dataset, with videos corresponding to actions and postures (labels)
A-J: Ten action categories. A: Climb; B: Hang; C: Turn; D: Walk; E: Shake; F: Jump; G: Move down; H: Lie down; I: Stand up; J: Sit down. K-M:
Three posture categories. K: Stand; L: Sit; M: Huddle. Each row represents non-contiguous frames randomly sampled in the corresponding video.

Video lengths range from 20 to 110 frames.

Table 2 Definitions of 10 actions and three postures in MiL dataset

Actions

Climb Move slowly from the ground to the side wall or from side wall to the top of the cage by using all arms and legs.
Hang Grab the levers in the top of the cage or move from one lever to another.

Turn Bend over from standing position or turn around using all arms and legs.

Walk Stand mainly use legs only and walk on the ground or on the horizontal pole in the cage.
Shake Body shaking with two feet still.

Jump Move quickly from ground into the air or to the side wall by mainly using legs only.

Move down Move quickly from the side wall to the ground.

Lie down From standing on four legs to laying prone.

Sit down Move from other posture to sitting or squatting.

Stand up Move from sitting or squatting posture to standing.

Postures

Stand Remain standing on two legs.

Sit Remain sitting of the ground or the horizontal pole.

Huddle Crawl or lay on the ground and curl up body.
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Figure 2 Two-stream action recognition model and heatmaps of feature visualization

A: Overview of TSSA Network architecture. (i) Video segments are randomly sampled as input; (ii) Two video modalities, RGB and optical flow,
serve as inputs in the two-stream model; (iii) Separate networks with the same architecture, each containing Res-blocks as backbone and shift and
split attention modules in blocks; (iv) Output from previous block is used as input for feature extraction in the next block. Single-stream net predicts
action scores using average fusion, and class scores are combined for the final prediction. B: Grad-Cam++ heat maps of action recognition. Heat
maps obtained from test videos classified under the trained model. Colors represent different weights (ranging from 0-1, blue to red) signifying the
importance of the area related to the prediction result. Red area in the frames provided the most important discriminative features used by the

model in the final predictions.

and onehot encoding. The evaluation index was top-1 and the
final accuracy rate achieved using the two-stream neural
network based on TSSA fusion (Xiao et al., 2022) was 98.99%
(RGB 89.83%, Flow 93.05%, RGB+Flow 98.99%). The
outcomes of action recognition, represented by the confusion

matrix, are provided in Supplementary Figure S3.
Furthermore, the Grad-Cam++ approach (Chattopadhay et al.,
2018), a method used for feature visualization of CNN model
predictions, was applied for heatmap construction (Figure 2B).
The heatmap indicated the varied contributions of the attention
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module on distinct areas in the classification results. The
weighted combination of positive partial derivatives from the
final convolutional layer in the feature map was used to
provide a specific class score, as shown from red to blue. We
observed distinct postures resulting from a single action, thus
providing discriminative features for action predictions. For
instance, the network effectively captured the “Hang” category
based on specific position characteristics (e.g., the angle
between the monkey's body and ceiling was almost 90°, and
the arms held the rails from the ceiling). Similarly, the “Jump”
category” was characterized by a change in vertical position.
The algorithm also captured characteristics such as head
drooping and hip raising for the "Lie down" category, while for
the "Stand up" category, the attention module focused on
tracking the movement of the head and body. Through feature
visualization, we determined the localizations of each object
and weights of features. Most of the attention module areas
corresponded to the monkey’s body.

Action recognition and daily behavior classifications
Eleven WT monkeys and five MECP2 mutant monkeys were

video recorded in their home or test cages, allowing for the
observation of spontaneous daily behaviors. Using the
proposed two-stream action recognition model and the MiL
dataset, different daily behavior patterns were observed
among the three groups of monkeys. As expected, WT
monkeys in their home cages spent more time engaged in
low-activity behaviors and less time in other categories
compared to both their behavior and that of MECP2 mutants
in the test cages (Figure 3A; Supplementary Figure S4). The
MECP2 mutant monkeys exhibited decreased activity duration
and patterns in comparison to WT monkeys within the
confines of the test cages (Figure 3A). Specifically, WT
monkeys in the test cages spent significantly more time in the
Climb (P=0.078 compared to MECP2 mutants), Turn, and Lie
down categories (Figure 3B, D, H). The groups in the test
cages demonstrated significantly higher percentages of Hang
and Walk compared to the WT monkeys in the home cages
(Figure 3C, E), while exhibiting lower levels of low-activity
behavior (Figure 3J). Notably, the MECP2 mutant monkeys
spent markedly less time performing Jump and Move down

Figure 3 Action recognition of daily performance in WT monkeys in home cage, WT monkeys in test cage, and MECP2 mutant monkeys

in test cage

A: Percentage of time spent in detected action categories. B—J: Time spent in B: Climb, C: Hang, D: Turn, E: Walk, F: Jump, G: Move Down, H: Lie
Down, I: Stand Up, and J: Low Activity. Each dot represents a video clip more than 3 h in length in one day. *: P<0.05; **: P<0.01; ***: P<0.001; ****:

P<0.0001.
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(Figure 3F, G). Moreover, the MECP2 mutant monkeys
showed reduced activity in high intensity and challenging
actions, consistent with RTT patients experiencing severe
motor disabilities. As expected, the behavioral performance of
the WT monkeys differed in the home and test cages.

MonKit toolbox and keypoint prediction
Based on the MiL dataset, we established the MiL2D dataset

A [0-Right ankle

1 - Right knee

2 - Left knee

3 - Left ankle

4 - Hip

5 - Tail

6 - Chin

7 - Head top

8 - Right wrist

9 - Right elbow
10 - Right shoulder
11 - Left shoulder
12 - Left elbow
13 - Left wrist

14 - Neck

of images with 2D skeleton and key bone points. The MiL2D
dataset consisted of 15 175 annotated images spanning a
large variation of poses and positions seen in the 13 MiL
categories. In total, 15 skeleton keypoints were marked in
detail (Figure 4A). MaskTrack R-CNN (Yang et al., 2019) was
used to track the positions of the monkeys (Figure 4B). The
dataset included diverse configurations of cage environments,
and monkeys with corresponding skeleton points were

Figure 4 lllustrations of MiL2D dataset with 15 skeleton keypoints

A: Definition and location of 15 bone points. 0, right ankle; 1 right knee; 2, left knee; 3, left ankle; 4, hip; 5, tail; 6, chin; 7, head top; 8, right wrist; 9,
right elbow; 10, right shoulder; 11, left shoulder; 12, left elbow; 13, left wrist; 14, neck. B: Representative images with bounding boxes using
MaskTrack R-CNN tracking and 2D skeleton. C: Representative images of monkey panorama, corresponding skeleton point diagram, and partial

enlargement of monkey.
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detected clearly in the MiL2D dataset (Figure 4C).

Using the MiL2D dataset, we conducted a monkey bone
recognition task to train and test the MonKit toolbox based on
a high-resolution network (HRNet) (Wang etal., 2021)
(Figure 5). Images from the original input video were
processed to 256x 340 pixels. MaskTrack R-CNN was used to
track the position of the monkeys (Figure 5B). Subsequently,
the rectangle information representing the position of each
monkey was intercepted and input into the HRNet to generate
a heatmap (Figure 5D). The MSE loss function was applied to
compare the target and calculate the loss. Finally, the 15 bone
points were transformed into x and y space coordinates
(Figure 5E; Supplementary Figure S5). The achieved
accuracy of 98.8% with the MiL2D and OpenMonkeyStudio
datasets is consistent with our previous study, which only
used the OpenMonkeyStudio dataset for training (Li etal,,
2021a).

Posture recognition and estimates of fine motor activities
We detected and predicted three postures (huddle, sit, and
stand) observed in the daily life of monkeys using accurate
height information obtained from bone points. The y-axis
coordinates of four skeleton points (0, right ankle; 3, left ankle;
4, hip; 7, head top) were acquired through HRNet, and
(YmaxYmin) Was calculated to determine height information
(Figure 6A), while excluding interference from the monkey’s

Tracking via
MaskTrack
R-CNN

Capture the bounding box of the monkey
in the first frame of the input video

Tracking result graph

tail. Based on analysis, the three groups of monkeys (WT in
home cage, WT in test cage, and MECP2 mutant) showed no
significant differences in time spent in the three postures
(Figure 6B-D; Supplementary Figure S6).

Utilizing the MonKit dataset and keypoint prediction, we also
detected fine motor activities characterized by stereotyped
patterns and head-down behaviors with relatively small motion
amplitudes. Stereotyped behavior patterns mainly refer to
repetitive and purposeless body movements at a fixed
frequency, often observed in RTT patients as a feature of
autism. In monkeys, stereotyped behaviors include turning
over, circling, pacing, and cage shaking. In the current study,
we determined bone point recognition by HRNet to estimate
stereotyped behaviors in monkeys. The coordinates of the
center point of the monkeys were determined by calculating
the sum of the 15 bone points with their respective vector
directions. The formula used was:

1 1
Ceenter (X,Y) = (Nzll-ioxia NZ,’:Oyi) (1)

where N is the number of bone points (n=15 in this study). The
average spatial position values (x and y) of the bone points
were calculated. Stereotyped behavior is characterized by
repetitive movements, implying that the vector direction of a
specific action should be equivalent to zero, indicating that
animals move in reciprocal motion patterns (Figure 7A). The

Cc

Feature maps
{4 Conv unit
¥~ Down samp

“u Upsamp
—

l

===

Train via HRNet

Results of predicted keypoints

Figure 5 MonKit for action tracking and posture estimation based on MaskTrack R-CNN and HRNet

A: Input videos. B: Tracking results obtained by MaskTrack R-CNN, showing frames 1, 4, 7, 10, 13, 16, and 19, respectively. C: Inputs of tracked
monkeys in HRNet network for training or testing. D: Heatmap of 15 keypoints (neck position is obtained by taking the center of the left and right
shoulders). E: Heatmap conversion to obtain x and y positions of bone points.
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specific formula used was as follows: where vector (V) of the x and y dimensions in a certain period

is less than a certain threshold (7). Three of the five MECP2

Vi + Vit 4V, V, +V, +--+V, )<T (2 s
(Ve + Vi et Vo )+ (Vy + Wy e V) (2) mutant monkeys spent more than 20% of their time in
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Figure 6 Posture recognition detected by MonKit in WT monkeys in home cage, WT monkeys in test cage, and MECP2 mutant monkeys
A: Diagram of height calculation for huddle, sit, and stand postures. B-D: Time spent in B: Huddle, C: Sit, and D: Stand. Each dot represents an
individual monkey with average time spent in each video clip.
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Figure 7 Stereotyped behavior patterns and head-down posture detected by MonKit

A: Series of representative images of stereotyped pacing behavior. B: Stereotyped behavior in WT monkeys in home cage, WT monkeys in test
cage, and MECP2 mutant monkeys. C: Representative images of normal and head-down behavior and diagram of chin and neck bone points.
D: Head-down posture in WT monkeys in home cage, WT monkeys in test cage, and MECP2 mutant monkeys. Each dot represents an individual
monkey with average time spent in each video clip.
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stereotyped behavior, while four of the WT monkeys also
performed stereotyped behaviors in the test cage, suggesting
that stereotyped patterns may also represent anxiety or
hyperactivity states in monkeys (Figure 7B).

Depressive behavior has been observed in a considerable
minority of female RTT patients (Hryniewiecka-Jaworska
etal., 2016). In addition to the huddling posture, a fetal-like,
self-enclosed posture, with the head positioned at or below the
shoulders during the awake state, is also considered as a
measure of depression-like  behavior in  monkeys
(Hryniewiecka-Jaworska etal., 2016). Here, we detected
head-down behavior using the y-axis coordinates of the bone
points corresponding to the neck and chin in monkeys during
performance of low activity. The formula used was:

h= YChinyneck(3) (3)

with h<0 indicating a head-down posture (Figure 7C). Based
on MonKit detection, the duration of time spent in the head-
down posture showed no significant increase in either the
MECP2 mutant monkeys or WT monkeys in the test group
compared to the WT monkeys in the cage group (Figure 7D).

Quality control and manual comparison

To confirm the accuracy of MonKit, we performed manual
analysis of the videos and compare the results to those
obtained from MonKit detection. As manual detection is very

A MonKit
cl c2 c3 c4 cs5
T T2 3 T4 TS
M1 M2 M3 M4 M5
B Manual

c1 cz c3 c4 Ccs
™ T2 T3 T4 TS
M1 M2 M3 M4 M5

Figure 8 Comparison of MonKit and manual detection accuracy

labor-intensive and time-consuming, we randomly selected
one video from each monkey and analyzed the first 20 min of
each video (Figure 8A, B). Discrepancies among the 11 action
categories were compared based on MonKit and manual
detection, revealing that the detection error of MonKit was
consistently below 5% for all actions (Figure 8C). The
precision and recall results are shown in Supplementary Table
S1 and Supplementary Videos S1 and S2. The low activity
category showed the largest detection error (4.9% on
average) (Figure 8C). Similarly, three monkeys were randomly
selected to manually analyze posture, stereotyped behavior,
and head-down behavior. MonKit detection yielded similar
time counts for the sit (Figure 8D), stand (Figure 8E), and
huddle (Figure 8F) postures as manual detection. Additionally,
the detection accuracy for stereotyped behavior and head-
down behavior showed similar results between MonKit and
manual detection (Figure 8G, 8H).

DISCUSSION

In the current study, the daily behaviors of cynomolgus
monkeys in both home and test cages were video recorded
and automatically analyzed using MonKit. To the best of our
knowledge, MonKit is the first deep learning-based toolkit
designed for identifying fine motor activities in NHPs. MECP2
mutant monkeys, as a disease model of RTT, and age-
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A: MonKit detection of 11 action categories in all individual monkeys. B: Manual detection of 11 action categories in all individual monkeys.
C: Detection error (time in MonKit—time in Manual) of 11 action categories. D—H: Time spent in sit (D, monkeys C1, C5, and M5), stand (E, monkeys
C1, C5, and M5), huddle (F, monkeys C1, C5, and M5), stereotyped (G, monkeys of M5, T1, and T4), and head-down behaviors (H, monkeys M1,

T1, and C1).
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matched control monkeys were placed in test cages to
evaluate their motor functions, stereotyped behaviors, and
depressive phenotypes.

We first created two benchmark datasets (MiL and MiL2D)
to facilitate action recognition in free-moving monkeys in their
daily life settings, serving as experimental and preclinical
models in the laboratory (Figure 9A). Using longitudinal videos
recorded using one camera at a single angle, which is

Dataset
MonkeyinLab (MiL)

Manual methods MonKit
Unstandardized Automatic
Labor-intensitive Efficient
Time-consuming Reliable
Accuracy l Accuracy T
Sensitivityl Sensitivity T

Figure 9 Schematic of datasets and MonKit

comparatively low cost and easy to produce, we proposed
MonKit as an effective deep learning and 2D skeleton-based
model for the capture of discriminative spatiotemporal features
of daily actions and postures in monkeys, enabling the
identification of variances between different environments and
genotypes (Figure 9B). Our findings revealed that monkeys
exhibited increased physical activities and higher levels of
stereotyped behaviors in the test cages compared to their

MonKit

18N MOT14
VYSS1 -—
s T Fr:
JeN 994
1PNYH

-
Add-

Keypoint recognition

Action recognition

Stereotyped behavior  Depressive behavior

A: Action recognition dataset (MonkeyinLab, MiL) and keypoint dataset (MiL2D). B: Original videos are input into TSSA and HRNet networks to
obtain action recognition and keypoints, with fine motor identification analysis then conducted on the recognition results. C: Upper part shows angle

of the camera shooting the cage. Lower part shows comparison of manual and MonKit methods.
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home cages. Notably, the MECP2 mutant monkeys
demonstrated differences in active behaviors, such as
climbing, jumping, and moving down, but no significant
differences in stereotyped or depressive behavioral
phenotypes. MonKit exhibited good performance, with a
detection accuracy closely matching that of manual detection.
The model achieved a detection error of less than 5% for all
actions and showed no difference in the recognition of
postures and fine motor activities compared to manual human
detection (Figure 9C). These results highlight the efficacy and
high accuracy of MonKit in automatic action recognition.

Compared to widely used rodent models, NHP models offer
substantial advantages due to their evolutionary homology
with humans, similar brain connectivity patterns, advanced
cognitive functionality, and other behavioral characteristics
(Qin etal., 2019). Thus, action recognition of phenotypic
behaviors is a key feature of NHP models (Liu etal., 2016;
Zhou et al., 2019). To date, however, action analysis in NHPs
has predominantly relied on manual labor and subjective
assessments, resulting in labor-intensive and time-consuming
processes with limitations in sensitivity and accuracy. To
overcome these challenges, the application of deep learning-
based methods has achieved high performance via end-to-
end optimization and has gained acceptance in many
prediction tasks, such as action recognition and feature
extraction. Currently, most action recognition and pose
estimation models are based on 3D-CNN (Kay et al., 2017; Ng
etal., 2015; Tran etal., 2015), long short-term memory
(LSTM) (Li et al., 2018; Sharma et al., 2015), two-stream CNN
(Feichtenhofer et al., 2016; Karpathy et al., 2014; Simonyan &
Zisserman, 2014; Soomro et al., 2012), ResNet (He etal.,
2016a, 2016b; Xie etal., 2017), and HRNet models (Wang
etal., 2021). The two-stream model, first proposed by
Karpathy et al. (2014), has evolved to incorporate CNN-based
local spatiotemporal information, thus achieving connectivity in
the spatiotemporal domain and improving CNN performance
by analyzing additional motion information.

In this study, we adopted a random sampling strategy with
sparse temporal grouping (Wang etal,, 2016) to ensure
effective temporal structure modeling over a long-term range.
Additionally, we proposed a novel spatiotemporal two-stream
model based on TSSA (Lin etal., 2019; Zhang et al., 2022)
modules. The TS module enabled learning of temporal
features, while the SA mechanism facilitated focus learning
(i.e., with an attention mechanism) to generate further
discriminative features for improved recognition. In our
previous study, the TSSA network showed 98.99% accuracy
on the MiL dataset (Xiao et al., 2022). By employing a random
sampling strategy with sparse temporal grouping from input
videos, we effectively modeled long-term content with
enhanced robustness and generalization.

Keypoints (body part positions) and bone skeleton-based
action recognition have been widely applied in human
behavior analysis (Li e t al., 2020; Lo Presti & La Cascia,
2016). While human datasets for bone recognition, such as
coco and MPII, are relatively well-established (Andriluka et al.,
2014; Chen etal., 2018), animal datasets and keypoint and
bone recognition methods are still in their developmental
stages. The MacaquePose dataset, comprising 16 393
monkeys captured in 13 083 pictures, provides manually
labeled keypoints for macaques in naturalistic scenes, serving
as a valuable resource for training and testing networks to
analyze monkey movement (Labuguen etal., 2021). Other
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tools like DeepLabCut (Mathis etal., 2018), LiftPose3D
(Gosztolai et al.,, 2021), DANNCE (Karashchuk et al., 2021),
OpenMonkeyStudio (Bala etal.,, 2020), and MaCaQuE
(Berger et al., 2020) have also been proposed for 2D and 3D
tracking of animals, such as Drosophila, chickadees, rodents,
and NHPs, in the laboratory and other environments. In our
study, we created the MiL2D dataset containing 2D skeleton
annotated images and further generated the MonKit toolkit,
not only enabling action recognition and posture estimation
but also allowing measurement of fine motor activities from
longitudinally observed monkeys in different groups. Fine
motor abilities are integral to a diverse range of movement
skills and interact continuously with psychological, cognitive,
emotional, and social functions (Van Damme etal., 2015).
Impairments in motor and fine motor abilities offer insights into
pathophysiological disruptions associated with neurological
diseases and mental disorders, such as Parkinson’s disease,
Alzheimer's disease, attention deficit hyperactivity disorder
(ADHD), autism spectrum disorders (ASD), schizophrenia,
and depression (Downey & Rapport, 2012; Mendes et al.,
2018; Sabbe etal., 1996; Viher etal.,, 2019). As a severe
neurodevelopmental disorder, RTT exhibits a phenotype
characterized by motor dysfunctions, as well as autistic
features and emotional and cognitive deficits. Here, we
observed a severe decline in motor ability in MECP2 mutant
monkeys, consistent with that observed in RTT patients.
However, we found similar levels of repetitive stereotyped
behaviors in the test cage monkeys and MECP2 mutant
monkeys, both higher compared to the home cage monkeys.
This observation may be attributed to the test cage monkeys
experiencing a heightened state of anxiety, as anxiety is
reported to be an intrinsic motivator for repetitive behaviors in
children with ASD (Cashin & Yorke, 2018; Joosten etal.,
2009).

In conclusion, our MiL and MiL2D datasets, along with the
MonKit toolkit, demonstrate the feasibility of an automatic and
objective analysis system for quantifying NHP behavioral
models (Figure 9A, C). Our experimental setup, consisting of
one camera at a fixed angle, is cost-effective, convenient, and
simple to install (Figure 9C). Currently, MiL and MiL2D
analyses of video recordings have focused on a single
monkey in a single cage, but future extensions of the system
will encompass social interactions among multiple monkeys.
Notably, MonKit can serve as an auxiliary tool for efficient,
accurate, and interference-free behavior recognition and
symptom identification in NHPs. To further improve the
performance of our approach, we will introduce few-shot
learning (Cao et al., 2020) and more effective backbones in
the future (Qin etal., 2020). Although no significant
differences were found in head-down behavior of the MECP2
mutant monkeys, it does not eliminate the potential existence
of emotional or cognitive deficits in monkeys with this
genotype. Taking advantage of the capabilities of MiL2D and
MonKit in fine activity analysis, we can explore additional
phenomena, such as grooming, manual performance in
cognitive tasks, eating patterns, circadian rhythm, social
isolation, and aggressive behavior, thus contributing to the
establishment of a comprehensive behavioral analysis system
for NHPs in both basic and clinical studies.
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