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ABSTRACT

Astyanax mexicanus has repeatedly colonized cave
environments, displaying evolutionary parallelisms in many
troglobitic traits. Despite being a model system for the
study of adaptation to life in perpetual darkness, the
parasites that infect cavefish are practically unknown. In
this study, we investigated the macroparasite communities
in 18 cavefish populations from independent lineages and
compared them with the parasite diversity found in their
sister surface fish populations, with the aim of better
understanding the role that parasites play in the
colonization of new environments. Within the cavefish
populations, we identified 13 parasite taxa, including a
subset of 10 of the 27 parasite taxa known for the surface
populations. Parasites infecting the cavefish belong to five
taxonomic groups, including trematodes, monogeneans,
nematodes, copepods, and acari. Monogeneans are the
most dominant group, found in 14 caves. The
macroparasites include species with direct life cycles and
trophic  transmission, including invasive species.
Surprisingly, paired comparisons indicate higher parasite
richness in the cavefish than in the surface fish. Spatial
variation in parasite composition across the caves
suggests historical and geographical contingencies in the
host-parasite colonization process and potential evolution
of local adaptations. This base-line data on parasite
diversity in cavefish populations of A. mexicanus provides
a foundation to explore the role of divergent parasite
infections under contrasting ecological pressures (cave vs.
surface environments) in the evolution of cave adaptive
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INTRODUCTION

Hosts and parasites are engaged in complex interactions of
constant reciprocal adaptation, imposing strong selective
forces on each other, in some cases, influencing their
evolutionary trajectories (e.g., Bush etal., 2019). During the
colonization of a new environment, hosts may lose parasites
(enemy release hypothesis; Colautti et al., 2004) and maintain
a subset of their original diversity, generating new parasite
assemblages (Hoberg etal, 2012). Changes in these
dynamics can alter host-parasite interactions (Best etal.,
2017; Wolinska et al., 2008), and produce rapid adaptations
(Eizaguirre etal., 2012). Parasite selective pressures have
implications for natural and sexual selection, for example,
behavioral modulation could change host habitat selection to
avoid or promote parasite infection (Demandt et al., 2018;
Eizaguirre & Lenz, 2010; Jolles et al., 2020; Mikheev et al.,
2013), or parasite-influenced assortative mating could directly
or indirectly influence mate choice (Milinski, 2014).

Differences in parasite infections are commonly associated
with trophic disparity or environmental filters leading to local
adaptations (Hablutzel et al., 2017; Karvonen & Seehausen,
2012; Wegner et al., 2003). For instance, hosts may display
defensive mechanisms to resist unique parasitic infections in
the ecosystem (Eizaguirre etal., 2011, 2012), which could
result in positive or negative fitness effects on the residents
and/or immigrants and hybrids (Karvonen & Seehausen,
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2012), even limiting genetic flow between populations (Erin
et al., 2019). The complexity of the transmission strategies of
parasites (i.e., direct or indirect life cycles) and host life
history, using only aquatic hosts (autogenic life cycle) or
cycling through both aquatic and terrestrial hosts (allogenic life
cycle), are crucial factors influencing successful dispersal and
colonization (Criscione & Blouin, 2004). Trophically-
transmitted species (indirect life cycle) rely heavily on suitable
hosts to complete their life-cycle. However, in ecosystems with
limited nutrient availability, the opportunities for host-shifts are
reduced. For parasites with direct life cycles, the host
represents the environment (Lymbery, 2015), acting as a
buffer against challenging external conditions. Therefore, the
trade-off with the environment can shape the evolution of host-
parasite interactions (Brunner & Eizaguirre, 2016; Brunner
et al., 2017).

Astyanax mexicanus displays an extraordinary evolvability,
enabling it to repeatedly colonize cave environments
characterized by low food availability and perpetual darkness.
Across different subterranean rivers, A. mexicanus has
independently evolved phenotypes typical of troglobitic
organisms, such as the absence of eyes and pigmentation.
Currently, there are 35 known cave populations distributed
along three mountain ranges in Northeastern Mexico
(Espinasa etal., 2018, 2020; Miranda-Gamboa et al., 2023;
Proudlove, 2019), acting as biogeographic barriers for the fish
divergence and delimiting their phylogeographic patterns
(Gardufio-Sanchez etal.,, 2022; Herman etal., 2018). The
cave and surface populations represent two independent
lineages, corresponding to independent waves of recent
colonization (Herman et al., 2018; Ornelas-Garcia et al., 2008;
Strecker et al., 2004), referred to as “Lineage 1” and “Lineage
2” (Gardufio etal., 2022; Moran etal.,, 2023). Notably, A.
mexicanus serves as a fascinating model, as cavefish can still
interbreed with surface-dwelling fish, leading to the existence
of natural hybrid populations (Moran etal., 2022) and
providing the opportunity to study the inheritance of cave-
adaptive traits. Cavefish have undergone a range of
adaptations in response to perpetual darkness, encompassing
morphological, behavioral, and physiological modifications
(Gross & Powers, 2020; Hyacinthe et al., 2019; Jeffery, 2020;
Kowalko, 2020; Wilkens & Strecker, 2017). These adaptations
have led to various evolutionary outcomes, including the
enhancement of sensory structures to navigate in the dark
(Yoshizawa etal., 2010) and metabolic changes to resist
prolonged periods of starvation (Riddle etal.,, 2018; Xiong
et al., 2022).

Despite the progress and establishment of A. mexicanus as
a study model, little is known about its natural interactions.
Studies on wild populations have addressed aspects of its diet
(Espinasa etal., 2017), microbiome (Ornelas-Garcia et al.,
2018), circadian rhythm (Beale etal., 2013), olfactory
responses (Blin et al., 2020), and parasites (Peul} et al., 2020;
Santacruz et al., 2020b), covering only a few caves. Surface-
dwelling A. mexicanus harbors a diverse range of
macroparasites, forming ancient and highly host-specific
parasite associations, primarily with helminths such as
trematodes, monogeneans, acanthocephalans, and
nematodes (Pérez-Ponce de Ledén & Choudhury, 2005;
Santacruz et al., 2020a, 2020b). Previous studies have also
shown that parasites can exert selective pressures on host
adaptive traits (Binning et al., 2017; Hoste, 2001; Nadler et al.,
2021), thereby maintaining or eroding differences in host

contact hybridization zones (Theodosopoulos et al., 2019), or
fueling host divergence and speciation (Karvonen &
Seehausen, 2012). Therefore, to fully understand the
mechanisms operating in cavefish adaptation, it is crucial to
investigate their biotic interactions, including potential host-
parasite interactions occurring within the cave systems.

Caves are an ideal ecological setting to test how repeated
colonization of novel habitats impacts host-parasite
interactions. This first requires a comprehensive
understanding of parasite diversity. Thus, in the current study,
we aimed to: (1) characterize the macroparasite species
diversity in 18 cave and six surface populations of A.
mexicanus, corresponding to independent colonization
lineages, (2) test the spatial rearrangement of parasite
assemblages under contrasting ecological pressures (cave
and surface rivers), and (3) determine whether the same
parasite lineages are shared across surface and cavefish
populations.

MATERIALS AND METHODS

Sample collection

Fish samples were collected from 2015 to 2021 in populations
in three geographical areas, i.e., Sierra de Micos (Colmena),
Sierra de El Abra, and Sierra de Guatemala, consisting of 18
cavefish populations and six nearby surface fish populations
(Table 1). Permission for the collection of cave specimens was
obtained from the relevant authorites (SEMARNAT
SGPA/DGVS/2438/15-16, SGPA/DGVS/05389/17, and
SGPA/DGVS/1893/19). Upon capture, most fish were
immediately euthanized in cold water with an overdose of
tricaine (MS-222) and preserved in absolute ethanol for later
DNA extraction and parasitological screening. Other fish were
scanned immediately after euthanization on the same
sampling day, with voucher specimens preserved in ethanol.
After collection, certain fish specimens were transported to the
laboratory, where they were kept in isolation for parasite
screening several days later. Fish euthanization was carried
out in strict accordance with the American Veterinary Medical
Association Guidelines for the Euthanasia of Animals: 2020
edition (https://www.avma.org/sites/default/files/2020-
02/Guidelines-on-Euthanasia-2020.pdf). The fish  were
deposited in Coleccion Nacional de Peces, Instituto de
Biologia, National Autonomous University of Mexico (UNAM).
The parasitological material was deposited in the National
Collections of the UNAM, Mexico City: Coleccion Nacional de
Helmintos (CNHE) and Coleccién Nacional de Acaros
(CNAC).

Parasite load

Fish analyzed on the same day as sampling or stored in
alcohol immediately after collection showed no differences in
parasitic loads, while fish analyzed days later showed some
changes in parasitic abundance. Parasitological screening
was performed under a stereomicroscope (Leica Zoom 2000,
Germany). Each fish was fully screened to collect
macroparasites (i.e., helminths, crustaceans, and mites). The
scan included the skin, gills, mouth, and external eyes for
ectoparasites, and internal eyes, heart, gonads, liver,
gastrointestinal tract, gall bladder, spleen, and abdominal
cavity for endoparasites. Parasites were removed from the
host tissues with surgical needles, washed in 6.5% saline
solution, counted, and stored in molecular biology-grade
ethanol.
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Table 1 Characteristics of fish populations sampled from cave and surface populations of Astyanax mexicanus: lineage, geographic

region, population, number of fish individuals, fish screened in lab or field, and fish screened completely or only the gills

Lineage 1 (L1) or Lineage 2 (L2) Geographic region Population name n Field (F) or Lab (L) Complete (C) or gills (G)
L1 Micos Micos 39 F C
L1 Guatemala Molino 20 F CIG
L1 Guatemala Escondido 5 F C
L1 Guatemala Vazquez 5) F/L (¢}
L1 Guatemala Caballo Moro 5 F C
L2 Abra Pachén 19 B (¢}
L2 Abra Yerbaniz 2 L G
L2 Abra Japones 4 F (¢}
L2 Abra Tigre 5 L C/IG
L2 Abra Sabinos 29 F CIG
L2 Abra Arroyo 21 F C/IG
L2 Abra Tinaja 31 F/L C/IG
L2 Abra Montecillos 12 F/L (e}
L2 Abra Jos 9 F C
L2 Abra Palma Seca 18 L CIG
L2 Abra Pichijumo 5 F/L (¢}
L2 Abra Chica 25 F C
L2 Abra Toro 2 B (¢}
L1 Abra Puente Guémez 12 F (e}
L1 Abra Guayalejo 10 B (¢}
L2 Abra Otates 9 F C
L1 Abra Nacimiento Mante 3 B (¢}
L1 Abra Florido 3 F (e}
L1 Micos Santa Anita 16 F (¢}
Taxonomic identification etal., 2015). Genetic distances were estimated as

The identification of parasites followed standard morphological
techniques for each group of parasites. Trematodes and
monogeneans were stained with Gomori’s trichrome or Mayer’
s paracarmine, while nematodes, acari, and copepods were
cleared in alcohol-glycerin (1:1) solution. Monogeneans were
excised, with the anterior or posterior body end preserved in
ethanol and the remaining half partially enzymatically digested
to preserve sclerotized structures: haptor or male copulatory
organ (MCO). They were then mounted in Gray-Weiss
solution as permanent slides. Parasites were observed and
photographed under a motorized inverted microscope
(Olympus 1X81, Japan) equipped with differential interference
contrast (DIC) optics. The ultrastructure of certain parasites
was assessed by scanning electron microscopy (SEM) using a
10 kV Hitachi Stereoscan Model SU1510 microscope following
Santacruz et al. (2020b). All parasites were identified at the
highest possible taxonomic level. All literature records of
helminths in A. mexicanus were compiled from their original
sources (e.g., Salgado-Maldonado etal., 2004; Salgado-
Maldonado, 2006; Santacruz, 2013; Santacruz et al., 2020a,
2020b), in addition to new records generated in this work. New
species will be described in separate studies.

Molecular analysis

To further investigate parasite conspecificity across surface
and cavefish populations, specimens fixed in 100% ethanol
were individually sequenced. The molecular markers used
were the mitochondrial gene cytochrome ¢ oxidase subunit 1
(COI) and nuclear genes 18S and 28S, depending on the
genetic library available for each parasite group
(Supplementary Tables S1, S2). Phylogenetic position was
then determined using maximum likelihood with the IQ-TREE
v1.6.2 web platform (http://igtree.cibiv.univie.ac.at/) (Nguyen
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uncorrected P-distances in MEGA v7 (Kumar et al., 2018).

Data analysis

We calculated parasite species richness as the number of
parasite taxa identified for each host; prevalence as the
proportion of infected hosts by a given parasite species;
abundance as the number of conspecific parasites in the host
population; and intensity as the number of conspecific
parasites in the population of infected hosts (Bush et al., 1997,
Roézsa etal., 2000). Using a Wilcoxon test, we conducted
paired comparisons of the parasite richness between two
caves and their respective lineage’s surface populations: i.e.,
Micos Cave vs. Santa Anita River for Lineage 1, and Arroyo
Cave vs. Otates River for Lineage 2.

To evaluate the similarity of parasite assemblages, we used
the diversity values of the infracommunity, defined as all
parasite species in a host at one point in time (Bush et al,,
1997). With the abundance values of each parasite species,
we used the Bray-Curtis dissimilarity metric as a distance
measure and performed non-metric multidimensional scaling
(NMDS) using the "metaMDS" function in the R package
"vegan v1.13-1" (Oksanen et al., 2019). In the NMDS each
point represents an infracommunity. The more similar the
infracommunities are, the closer the points are to each other.
We used locality, habitat (cave or surface), and geographic
region as factors in the analysis. Figures were produced using
the R package "ggplot2" (Valero-Mora, 2010). For analysis,
we excluded individuals with incomplete data (only gill parasite
data) and/or individuals kept in the laboratory before parasite
screening. To evaluate the extent to which these differences
may be explained by locality, habitat, or geographic region, we
performed permutational multivariate analysis of variance
(PERMANOVA).



RESULTS

Sampling

In total, we sampled 309 fish, including 256 cavefish and 53
surface fish, from 18 cave and six surface populations,
respectively (Table 1; Figure 1). We categorized the samples
according to their geographical regions (Sierra de Guatemala,
Sierra de El Abra, and Sierra de la Colmena (Micos)) and

lineages (“Lineage 1" and "Lineage 2").
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We recovered 13 macroparasite taxa from the cavefish
populations, including endoparasites and ectoparasites with
contrasting transmission strategies and in different life stages
(larvae and adults). The taxa belong to five taxonomic groups:
i.e., trematodes, monogeneans, nematodes, copepods, and
acari (Table 2; Figure 1). The most common parasites were
monogeneans, found in 14 cavefish populations, followed by
nematodes in eight, trematodes in five, acari in two, and
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Figure 1 Geographical location of caves sampled in Northeastern México

A: Pie charts show proportions of parasite species by taxonomic group. Data from Jos and Molino caves are only available for gill parasites.
Asterisk indicates fish populations kept in the laboratory before parasite screening. B—F: Photomicrographs of representative parasites in cavefish.
B: Cacatuocotyle cf. chajuli monogeneans attached to cavefish anal fin; C: Anterior end of nematode Procamallanus neocaballeroi Lineage 1;
D: Trematode Clinostomum sp.; E: Oribatid mite; F: Copepod Lernaea cyprinacea.
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Table 2 Inventory and life history traits of parasites infecting surface fish and cavefish populations of A. mexicanus across its

geographical distribution

Parasite . Global Site of Life cycle .
Parasite . ; Stage Transmission pathway
group SF CF infection (D) Au/Allo
Trematoda Ascocotyle tenuicollis Gills L | Allo Snail (first), fish (second), bird (definitive) (1)
Centrocestus ) Snail (first), fish/amphibian (second), bird/mammal
. Gills L | Allo .
formosanus (definitive) (2)
Clinostomum sp. Skin L | Allo Mollusc (first), fish (second), bird (definitive) (3)
Cre[')totrematlf)a. Gut A _ Au _
aguirrepequefioi
Genarchella . ) -
astyanactis Gut A | Au Snail (first), copepod (second), fish (definitive) (4)
Diplostomum sp. f:\l:tf body L | Allo Mollusc/fish (first), fish (second), bird (definitive) (5)
R . _ Snail (first), Diptera/Ephemeroptera (second), fish
Magnivitellinum simplex gut A Au (definitive) (6)
Prostenhystera obesa Gall bladder A = Au =
Trematoda gen. sp. 1 Gut A - Au -
Trematoda gen. sp. 2 Gut A = Au =
Wallinia mexicana Gut A - Au -
Schyzocotyle _ ' ' -
Cestoda R e E Gut A Au Copepod (first), fish (definitive) (7)
MonogeneaAnacanthocoty le Gills A D Au Direct
anacanthocotyle
Cacatuocotyle cf Skin A D Au Direct
chajuli
Chara'athec'/um of Gills A D Au Direct
costaricensis
Gyrodactylus sp. Skin A D Au Direct
Microcotyle sp. Gills A D Au Direct
Urocleroides sp. Gills A D Au Direct
Urocleidoides Gills A D Au Direct
strombicirrus
Nematoda Contracaecum sp. Mesentery L | Allo Copepod (first), fish (second), bird (definitive) (8)
Eustrongylides sp. Mesentery L | - -
Hystherothylacium sp. Mesentery L | = =
Pharyngodonidae gen. _ _ _ _ _
sp.
Procamallanus ) ) N
e e Gut AL | Au Copepod (first), fish (definitive) (9)
Procamallanus ) ) -
neocaballoroi Lineage 2 Gut AL | Au Copepod (first), fish (definitive) (9)
Rhabdochona ' ' -
e LT | Gut AL | Au Copepod/Ephemeroptera (first), fish (definitive) (10)
Rhabdochona ) ) _—
mexicana Lineage 3 Gut AL | Au Copepod/Ephemeroptera (first), fish (definitive) (10)
: Copepod (first), fish (second), amphibian/reptile
Spiroxys sp. Mesentery L | Allo (definitive) (11)
Copepoda Lernaea cyprinacea * Skin A D Au Direct
Acari Oribatida gen. sp. Skin & gills A D Au Direct (12)

Gray cells indicate positive records in cavefish (CF) and/or surface fish (SF) populations. Life stage of parasites found in fish as larvae (L) or adult
(A), type of life cycle: direct (D) or indirect (I); and autogenic (Au) or allogenic (Allo) are indicated. Asterisk indicates invasive species. (1) De Nufiez
(2001); (2) Pinto et al. (2018); (3) Dias et al. (2003); (4) Ditrich et al. (1997); (5) Field & Irwin (1995); (6) Davies et al. (2021); (7) Marcogliese & Esch
(1989); (8) Kaie & Fagerholm (1995); (9) Moravec & Vargas-Vazquez (1996); (10) Moravec (1976); (11) Hasegawa & Otsuru (1978); (12) Olmeda

etal. (2011).

copepods in one. No parasites were found in the Yerbaniz and
Vazquez caves. Except for an acari harbored by hosts in the
Pichijumo and Jos caves, and unidentified trematodes from
the Palma Seca and Caballo Moro caves, all parasites are a
subset of the 27 taxa or lineages found across the distribution
range of surface fish populations (Table 2). Five parasite taxa
are shared in four or more caves: monogeneans
Cacatuocotyle cf. chajuli Mendoza-Franco, Caspeta-
Mandujano & Salgado-Maldonado, 2012 and Characithecium
cf. costaricensis Mendoza-Franco, Reina, & Torchin, 2009;
nematodes corresponding to Lineage 1 (sensu Santacruz
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etal., 2020b) of Procamallanus neocaballeroi Caballero-
Deloya, 1977 and Spiroxys sp.; and trematode Genarchella
astyanactis Watson, 1976. One invasive species, the anchor
worm (Lernaea cyprinacea Linnaeus, 1758), was found in a
host from Micos Cave.

The genetic lineages of the parasites are shared across the
cave and surface populations. The sequence data of some
species were deposited in GenBank under accession
numbers: C. cf. chajuli 28S (0Q888696-99) and COI
(0Q873440-43); C. cf. costaricensis, 28S (0Q888690-95)
and COI (OQ884019-22); Spiroxys sp., COI (0OQ884015-18);



and G. astyanactis COI (OQ873428).

Infection patterns

Per-cavefish parasite richness varied between 0—4 taxa, with
a mean of 0.93 taxa per host (SD=0.95, n=251) and a
maximum found in individuals from Micos Cave. Parasite
species richness in surface populations ranged between 0-3
taxa, with a mean of 0.72 (SD=1.18, n=56) (Supplementary
Table S3; Figure 2). The prevalence, abundance, and intensity
of each parasite taxa were calculated, excluding fish kept at
the laboratory before screening or incompletely screened for
parasites (e.g., only gills). The dataset contained 183 cavefish
individuals, 115 (62.8%) of which were infected by at least one
parasite. The parasite with the highest prevalence (100%) was
the gill monogenean C. cf. costaricensis in the Pachon and
Toro caves, followed by the nematode Spiroxys sp. (81%) in
Micos Cave (Figure 3). The intensity and abundance of
infection were heterogenous for all parasite taxa
(Supplementary Table S3). The greatest abundance and
intensity for a single parasite species was displayed by C. cf.
chajuli infecting fish from Toro Cave, with 55-87
monogeneans in a single fish.

The paired comparisons between cave and surface hosts
showed differences in infection profiles. The two cavefish
populations analyzed showed higher parasite species richness
than their sister surface populations from the same lineage
(Figure 4). Parasite richness was significantly higher in Micos
Cave vs. Santa Anita River (Wilcoxon test, P<0.007), with a
total of nine parasite taxa in the cave population and a subset
of two of the nine taxa in the Santa Anita surface population.
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We also found significant differences between Arroyo Cave
vs. Otates River (Wilcoxon test, P=0.03). Spiroxys sp. was the
sole species shared at both sites, and the Otates River
population harbored the trematode Prostenhystera obesa
(Diesing, 1850), which was not found in the other cave
population.

Spatial variation in parasite communities

We analyzed 125 infracommunities, 11 from cavefish and six
from surface fish populations. NDMS analysis showed that the
parasite communities were differentiated by population
(PERMANOVA, P=0.001); individuals from Micos Cave were
the most differentiated (Figure 5A). Habitat (cave or surface)
also had a significant effect on parasite composition
(PERMANOVA, P=0.002) (Figure 5B). The strongest clusters
were based on geographic region (PERMANOVA, P=0.001)
(Figure 5C).

DISCUSSION

The colonization of a new environment involves changes in
the host-parasite interaction dynamics. Many parasites
colonize new habitats through host-mediated dispersal, which
involves a trade-off between life-history and the evolutionary
pressures acting on dispersal traits (Perkins etal., 2013).
Hence, during colonization the host may lose parasites
generating a mosaic of parasite assemblages across different
landscapes (Hoberg etal., 2012). Here, we explored the
parasite diversity in cavefish and surface fish populations. Our
study showed that parasites are very common in caves,
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Figure 3 Parasite prevalence in cavefish and surface fish

Parasite prevalence varies among host populations and habitat. Sampled surface fish populations are shaded in gray.

forming heterogeneous parasite communities across cavefish
populations, suggesting that parasites have managed to
colonize these environments with their hosts, and persist after
niche change.

In the studied cavefish populations, we identified 13 parasite
taxa from distantly related taxonomic groups. Across their
geographical distribution, our data suggest a high diversity of
parasites in surface fish compared to other fish species in the
same area. The cavefish harbors a subset of the total parasite
diversity known for surface fish, sharing 10 of the 27 parasite
taxa.

The most common cavefish parasites belong to the "core
parasite fauna" of Middle American characids (Pérez-Ponce
de Ledn & Choudhury, 2005). Here, based on their prevalence
and abundance, we propose a "cavefish core parasite fauna",
including trematode G. astyanactis, monogeneans C. cf.
chajuli and C. cf. costaricensis, and nematodes P.
neocaballeroi and Spiroxys sp. The presence of these
parasites in four or more caves suggests a moderate
deterministic pattern: intrinsic traits of the parasites may
enable them to elude the same ecological filters, thus allowing
repeated colonization of the caves.

Due to their direct transmission strategy requiring only the
fish host to complete their life-cycle, monogeneans are the
most likely candidates for co-invading the caves alongside
with their hosts. Indeed, in our study the monogeneans have
been successful colonizers, since they were found in 14 of the
18 caves analyzed. The infrequent presence of monogeneans
in surface populations suggests the occurrence of repeated
cave invasions, increasing the probability of infected
individuals entering the caves and facilitating the
establishment of cavefish-monogenean interactions.
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In contrast, the remaining members of the "cavefish core
parasite fauna" display a trophic transmission strategy; some
of them mature and reproduce in the fish whereas others
require the fish to be eaten by a predator for the parasite to
complete its life-cycle. This scenario implies that other
organisms suitable as intermediate hosts also colonized the
caves, giving rise to interaction networks occurring in
perpetual darkness. For G. astyanactis and P. neocaballeroi,
both infect copepods that are eaten by the fish (Ditrich et al.,
1997; Moravec & Vargas-Vazquez, 1996). Instead, Spiroxys
sp. found as a larva in fish, can mature in amphibians and
reptiles (e.g. Li etal., 2014). That is, trophically-transmitted
parasites are a good proxy for host diet and host predators
predictions (Johansen etal.,, 2019; Leung & Koprivnikar,
2019). In Pachon cavefish, the diet of non-adult fish is
reported to include copepods, ostracods, and isopods
(Espinasa et al., 2017), similar to our observations in adult
cavefish from different caves (Santacruz, pers. obs.).
Regarding predators, their numbers are proposed to be
significantly reduced in caves, attributed to cavefish behaviors
such as vibration attraction behavior (VAB) and loss of
schooling (Kowalko etal., 2013; Yoshizawa etal., 2010).
Therefore, one possible alternative is that immature Spiroxys
sp. somehow enter the caves, leading to a dead-end for the
parasite.

The presence of the anchor worm L. cyprinacea in cavefish
from Micos Cave is noteworthy. Considered an invasive
species (Narciso et al., 2019; Zhu et al., 2020), this copepod
can cause intense inflammation at the site of attachment,
leading to secondary infections (Salinas etal., 2019). The
parasite has been usually co-introduced with carp across the
world (Steckler & Yanong, 2012). Although no carp were



found in the studied caves, the parasites may have entered
during flooding events with already infected surface fish.
Another intriguing association that requires further
investigation is the infection of mites, not yet taxonomically
determined, in the gills and skin of fish from the Pichijumo and
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Jos caves. While this specific parasite has not been recorded
in surface fish, it is worth noting that oribatid mites, in general,
have rarely been reported as parasites (Olmeda et al., 2011;
Santacruz et al., 2022).

The heterogeneous nature of parasite communities across
caves can be attributed to different scale-specific effects (e.g.,
host immunity, diet, and sex) (see Bolnick etal., 2020a,
2020b; Poulin & Valtonen, 2002). Numerous studies have
shown that exposure to different parasites may result in local
adaptations; for instance, differences in resistance or
susceptibility in sticklebacks as a result of a parasite-mediated
selection on the immune response and/or the mate choice
(Eizaguirre et al., 2012; Milinski, 2014; Scharsack et al., 2007;
Stutz et al., 2014, 2015). In our paired comparisons between
cave and surface parasite infections, we uncovered
differences between the two environments, with a tendency for
higher levels of infection and aggregation within the caves,
and no evidence of parallel infection levels in the same host
ecomorphotype. This difference could lead to divergence in
the host immune response across cave populations. For
instance, the Pachén Cave population exhibits a more
sensitive immune response than certain surface fish
populations (Peul’ etal., 2020), confirming that local
adaptations may partially explain why cavefish are more
parasitized in particular populations. Additionally, cavefish
populations lack some ecological pressures, including
predation or interspecific competition, which may allow
individuals to tolerate greater parasitic loads. Moreover, since
the caves show contrasting abiotic variations compared to
those of the surface rivers (Ornelas-Garcia etal., 2018), it
leads to the question of how such abiotic differences are
shaping host-parasite interactions. For instance, water
temperature preferences in cavefish (see Tabin etal., 2018)
have been linked to contrasting parasite infections in other fish
species (also see Karvonen et al., 2013).

Genetic analysis of the parasite taxa examined revealed
shared lineages between the cave and surface populations,
which may have multiple possible explanations. For instance,
it might be possible that niche change has not yet promoted
the parasite divergence, as the parasites may have recently
entered the caves, resembling the recent dispersion of their
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Figure 5 Non-metric multidimensional scaling (NMDS) plot of 125 infracommunities based on Bray-Curtis distance
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host (see Herman etal.,, 2018). Another possibility is the
presence of subterranean connections between cave
populations (as suggested by Bradic etal., 2012), or that
flooding events in some caves maintain gene flow between
parasite populations. Additionally, the connectivity between
surface and cave environments may contribute to the lack of
differentiation between the surface and cave parasite lineages
(see Moran et al., 2022). These phenomena are not mutually
exclusive. However, it should be noted that our study was
limited to a few genetic markers and a small number of
parasite individuals. Conducting further analyses on other
genomic regions would provide a more detailed picture of the
evolutionary history of parasites and to test if they recover the
same patterns and time frame of colonization as their hosts.
Given their close association with cavefish and high
prevalence, abundance, and intensity of infection, as well as
their direct transmission route, monogeneans are prime
candidates for investigating host-parasite phylogenetic
congruence and coevolution. Both species of monogeneans
found in the cavefish, ie., C. cf. chajuli and C. cf.
costaricensis, are considered species complexes, which will
be described elsewhere (Santacruz, personal communication).

Research on parasites in troglobitic organisms has been
limited, with only a few studies focusing on blind catfish
(Moravec & Huffman, 1988) or cave animals such as guppies
and salamanders (e.g., Dyer & Peck, 1975; Tobler etal.,
2014). Astyanax mexicanus serves as a study model in the
field of eco-evo-devo (Casane & Rétaux, 2016; Jeffery, 2020;
Krishnan & Rohner, 2017). Thus, gaining an understanding of
its ecological interactions in its natural environment is crucial
for unraveling the mechanisms driving its adaptation to caves.
The variation in parasite infections across different caves
provides an invaluable opportunity to examine the role of
parasites in the contrasting physiological, morphological,
metabolic, and behavioral adaptive changes that have allowed
A. mexicanus to colonize an extreme environment.

CONCLUSIONS

We studied the parasites infecting the cavefish, providing the
first parasitological records for more than half of their known
populations. Our results indicate: (1) Great parasite diversity
comprised by distantly related parasites, with contrasting life
histories; (2) Most of the parasites found in the caves are a
subset of the parasite diversity known for surface-dwelling
populations; (3) Some parasite species are more frequent in
the caves than in surface (i.e. monogeneans), making up the
"cavefish core parasite fauna"; (4) The parasite communities
vary across cavefish populations; (5) Infection patterns
presented notable differences between cave and surface-
dwelling populations. Additional caves remain to be explored
to determine whether the patterns observed in our study
persist. Nonetheless, our parasite inventory opens numerous
avenues and questions regarding how host-parasite
interactions are shaped in extreme cave environments.
Further investigations that consider biotic variables in caves,
together with the evolutionary history of parasites, should
provide insights into the factors driving parasite diversification
in caves.
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