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Introduction
Heavy metals (HMs) are elements with long half-lives that 
are non-biodegradable and widespread in the environment 
(1). They have the potential to bioaccumulate and even 
small amounts can cause physiological effects (2). While 
some elements like iron (Fe), zinc (Zn), copper (Cu), and 
nickel (Ni) are essential for biological systems, elements 
such as arsenic (As), mercury (Hg), lead (Pb), cadmium 
(Cd), and chromium (Cr) are considered non-essential 
and can be toxic and hazardous to organisms in small 
amounts (3,4). 

Exposure to elevated levels of the metalloid As has 
been linked to hepatic and renal damage, as well as an 
increased susceptibility to bladder, lung, and skin cancers 
(5,6). Cd exposure can result in hypertension, anemia, 
osteoporosis, diabetes, and cardiovascular diseases 

(7,8). Pb exposure is associated with gastrointestinal, 
neurological, and hematological disorders, cognitive 
impairment in children, learning disabilities, fainting, and 
in severe cases, death (9-11). On the other hand, exposure 
to excessive levels of Co poses detrimental effects on the 
heart and skin (12). Additionally, the uptake of the above-
permissible limit of Mn is associated with the onset of 
Alzheimer’s and Parkinson’s diseases (13). Ni exposure 
above permissible limits can lead to genetic mutations, 
teratogenicity, neurological and cardiac disorders, and 
lung cancer (14,15). Vanadium, as a toxic metal, can bind 
to blood proteins and cause serious complications when 
individuals are exposed to its upper permissible limit (16).

Given that individuals spend approximately 90% 
of their time in enclosed spaces such as residential, 
commercial, administrative, and educational buildings, 
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Abstract
Background: Heavy metals (HMs) are toxic pollutants whose concentrations in confined spaces might 
cause severe health impacts. This study aimed to determine the concentration and health risk of As, Cd, 
Co, Pb, Mn, Ni, and V in indoor household dust in Isfahan during 2022-2023.
Methods: Ninety dust samples were collected from 30 sampling homes. After preparation and acid 
digestion of the samples in the laboratory, the concentrations of the elements were determined using the 
ICP-OES method and analyzed statistically.
Results: Except for Pb, the HMs’ mean concentrations were significantly lower than the permissible 
limit (P < 0.050). The maximum daily exposure through ingestion, inhalation, and dermal contact for 
children and adults were 66.1 and 79.1 mg/kg/d, respectively, with Pb as the relevant element in both 
groups. Furthermore, the maximum lifetime daily exposure doses of 8-10 × 26.1 mg/kg/d belonged to 
Pb. The maximum non-carcinogenic and carcinogenic risk values through direct ingestion, inhalation, 
and dermal contact were 4.83 × 1-10 and 1.40 × 8-10 for children and 5.23 × 2-10 and 7.91 × 9-10 for 
adults, which were associated with Pb in both groups.
Conclusion: The results showed that the HMs content in indoor household dust in Isfahan followed 
a decreasing trend of Pb > Mn > Ni > V > As > Co > Cd. Moreover, direct ingestion followed by dermal 
contact and inhalation were the most important exposure pathways to the HMs-contaminated dust for 
both children and adults.
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it is crucial to assess indoor environmental quality for 
the preservation of citizens’ health and safety (17-19). 
This issue is particularly important for children and 
adolescents, who have a higher relative inhalation rate per 
unit of body weight (20,21). Although outdoor air quality 
significantly impacts indoor air quality, indoor pollutant 
concentrations can be higher due to sources such as 
gas combustion, building materials, cleaning agents, 
and reduced air infiltration caused by energy-saving 
insulations (22,23).

Particulate matter (PM) is composed of various pollutant 
materials with diverse particle sizes and complex chemical 
compositions. PMs smaller than 10 µm can penetrate 
deep into the lungs and cause health problems (24-26). 
HMs derived from mobile and stationary sources in 
urban environments, such as industries, traffic emissions, 
atmospheric deposition, and geochemical processes, pose 
a public health concern. After being exposed to particles, 
these HMs can pose significant health risks and contribute 
to morbidity and mortality (13,27).

Health risk assessment is a conceptual approach that 
provides a framework for examining and estimating 
information related to health or biological effects (28). 
It involves the identification, collection, and integration 
of information on health hazards resulting from human 
exposure to chemical substances through ingestion, 
inhalation, and dermal contact. Understanding the 
relationships between exposure, concentration, and 
adverse effects is crucial in health risk assessment (29). 

Several studies have been conducted to determine the 
levels of potentially toxic elements in indoor household 
dust in Iran and other countries. In Khorramabad, Iran, 
Sabzevari and Sobhanardakani (20) discovered high levels 
of Pb, Cd, and Ni in dust deposited inside houses among 
the study cases. They concluded that indoor dust in the 
city could lead to adverse effects on human health. In 
another study, conducted by Hashemi et al (30), it was 
demonstrated that factors such as traffic sources, old 
building materials, and building paint colors resulted 
in the excessive accumulation of HMs in the surface 
dust of indoor environments in houses in Busher City, 
Southwest Iran. Studies such as the studies by Cheng et 
al (31) in Chengdu, China and Yaghi and Abdul‐Wahab 
(32) in Muscat, Oman, indicate that the accumulation 
of HMs in the indoor environment of urban houses can 
significantly surpass permitted limits, posing substantial 
health threats to city dwellers. To date, however, no study 
has been conducted to assess the content and health risks 
of potentially toxic elements in indoor household dust 
in the major city of Isfahan, which has a population of 
nearly 3 000 000 inhabitants. Therefore, this study aimed 
to determine the content and health risk assessment of As, 
Pb, Cd, Co, Mn, Ni, and V in indoor household dust in 
the city of Isfahan in 2022, providing valuable insights for 
the first time.

Materials and Methods
Study area
Isfahan metropolis, with an approximate area of 300 km2, 
is located at the geographical latitude of 38°32’ N and 
longitude of 39°51’ E. Evidence indicates that, on average, 
the residents of Isfahan are exposed to air pollution for 
approximately 150 days a year. Moreover, the presence 
of various industries has led to numerous environmental 
problems, particularly air pollution, in most areas of this 
metropolis (33,34).

Dust sampling
In this descriptive study, owing to constraints in financial 
resources and obtaining permissions for utilizing houses 
as case samples, a total of 30 residential buildings were 
chosen. Within each house, three dust samples were 
collected, resulting in a total of 90 samples. The collection 
process was carried out by a designated individual in 
all houses to mitigate sampling bias. Dust was collected 
during the winter of 2023, utilizing a polyethylene brush 
to gather the maximum amount of dust. We thoroughly 
assessed all surfaces and conducted sampling in cases 
where dust was detected. In certain situations, we 
encountered challenges with collecting sufficient material 
on the ground and in corners. Often, the collected material 
consisted mostly of carpet fibers and clothing lint. As a 
result, we redirected our focus toward higher surfaces 
such as the upper surfaces of kitchen cabinets, surfaces of 
bedroom cabinets, and wall cabinets. The samples were 
then transferred to the laboratory in 50 mL Falcon tubes 
and stored in a freezer until further analysis (6,35). The 
geographical coordinates of the sampling locations were 
recorded using a Garmin ETREX 32X GPS device, and 
their positions are shown in Figure 1.

Preparation of dust samples and HMs analysis
For instrumental analysis, high-purity chemicals and 
reagents were procured from Sigma-Aldrich Spain. In 
the laboratory, the collected samples from each location 
were combined to obtain a homogeneous sample. The 
samples were then sieved, and one gram of each sample 
was weighed using a digital balance model And-hr-200 
with an accuracy of 0.0001 g. Next, each sample was 
thoroughly mixed with 10 mL of nitric acid in a 1:1 
volumetric ratio, and the resulting solution was covered 
with a watch glass. The solution was heated to 90 °C and 
refluxed for 10 minutes. After cooling the solution to 
room temperature (25 °C), 5 mL of concentrated nitric 
acid was added, and the solution was covered again. The 
refluxing process was repeated for 30 minutes at 90 °C. The 
solution was then reduced to a volume of approximately 
5 mL without boiling and allowed to cool for 5 minutes 
at room temperature. Subsequently, 2 mL of double-
distilled water and 3 mL of 30% hydrogen peroxide were 
added to the solution, and the mixture was covered with 
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a watch glass to initiate the hydrogen peroxide reaction. 
After the completion of the reaction, the solution was 
again covered with a watch glass and heated to 90 °C until 
it reached a volume of 5 mL. To reflux the solution for an 
additional 15 minutes at a temperature of 90 °C, 10 mL of 
concentrated hydrochloric acid was added to the solution, 
which was covered and placed on a hot plate. After the 
solution cooled down, it was filtered through a filter paper 
(Whatman No. 42) and brought to a volume of 100 mL 
in a volumetric flask using double-distilled water (13,36). 
Finally, after preparing standard salt solutions for the 
studied elements and calibrating the atomic absorption 
spectrophotometer device, the concentrations of As, Pb, 
Cd, Co, Mn, Ni, and V were measured.

To ensure quality assurance and quality control, the Lu 
et al method involving the standard reference materials 
(SQC-001) was employed (37). The results showed that 
the average recovery rates for As, Pb, Cd, Co, Mn, Ni, and 

V were variable, ranging from 91% to 100%, 89% to 101%, 
94% to 102%, 90% to 99%, 93% to 101%, 88% to 99%, and 
96% to 103%, respectively.

Health risk assessment model
In this study, equations 1 to 3 were used to assess the 
health risk of exposure to dust particles contaminated 
with potentially toxic elements through direct ingestion, 
inhalation, and dermal contact for children and adults 
(38-40):

6      1 0
  

IngR EF EDDing C
BW AT

−× ×
= × ×

×
 (1)

In equation 1, the health risk of exposure to dust 
particles contaminated with potentially toxic elements 
through direct ingestion (mg/kg/d) is represented by 
Ding, and C is the average concentration of the elements 
in the dust sample (mg/kg). IngR shows the ingestion 

Figure 1. Sampling stations in Isfahan
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rate of contaminated dust particles, which is equal to 200 
mg/d for children and 100 mg/d for adults. EF and ED 
represent the frequency of exposure to contaminated dust 
particles (180 days/year for children and adults) and the 
duration of exposure (6 years for children and 24 years for 
adults), respectively. In addition, BW is the average body 
weight (15 kg for children and 70 kg for adults), and AT is 
the average exposure time to the pollutant mixture over a 
lifetime, which is 365 days/year multiplied by ED for non-
carcinogenic effects and 365 days/year multiplied by 72 
for carcinogenic effects (38,41,42).

6         1 0
  

SA SL ABS EF EDDdermal C
BW AT

−× × × ×
= × ×

×
 (2)

In equation 2, the health risk of exposure to dust 
particles contaminated with potentially toxic elements 
through inhalation (mg/kg/d) is shown by Dinh. InhR and 
PEF are the respiratory rate (6.7 m3/day for children and 
20.0 m3/day for adults) and the soil dispersion factor (1.36 
multiplied by 109 m3/kg), respectively (27,43).

6          1 0
  

SA SL ABS EF EDDdermal C
BW AT

−× × × ×
= × ×

×
 (3)

where Ddermal is the health risk of exposure to dust 
particles contaminated with potentially toxic elements 
through dermal contact (mg/kg/d). SA, SL, and ABS are 
the body surface area exposed to elements (2800 cm2 for 
children and 5700 cm2 for adults), skin adherence factor 
(0.200 mg/cm2/day for children and 0.070 mg/cm2/day for 
adults), and dermal absorption coefficient equal to 0.001, 
respectively (44).
The carcinogenic risk resulting from exposure to dust 
particles contaminated with As, Pb, Cd, Co, and Ni 
through inhalation was assessed using Eq. 4 (43):

      
 

C EF InhRchild EDchild InhRadult EDadultLADD
PEF AT BWchild BWadult

× × × = × + ×  
 (4)

where LADD is the average daily exposure dose to dust 
particles contaminated throughout the lifetime (mg/
kg/d).

The potential non-carcinogenic and carcinogenic risks 
associated with exposure to dust particles contaminated 
with the studied elements were calculated using Eqs. 5 to 7:

  DHQ
RfD

=  (5)

  HI HQi=∑  (6)

where HQ is the non-carcinogenic toxicity risk, D is 
the average daily absorbed concentration of elements 
resulting from exposure to dust particles contaminated 
through each route of absorption (mg/kg/d), and RfD 
(mg/kg) is the reference concentration of the studied 
elements (Table 1). Values of HI where HI ≤ 1 indicate 
no risk from exposure to dust particles contaminated and 
HI > 1 indicates potential effects or risks from exposure to 
dust particles contaminated (45).

CR = D × SF (7)

In equation 7, CR and SF are the carcinogenic risk and 
slope factor for carcinogenicity through inhalation of the 
contaminated dust particles, respectively (42). The SF 
values are provided in Table 1.

Statistical analysis
The data were statistically processed using SPSS version 
19. To examine the normality of the data distribution, the 
Kolmogorov-Smirnov test was used, and the homogeneity 
of variances was assessed using Levene’s test. Moreover, 
the mean concentrations of the HMs were assessed 
using the one-sample t-test based on the guidelines of 
the World Health Organization (WHO). Descriptive 
statistics, including minimum, maximum, mean, standard 
deviation, and coefficient of variation were calculated for 
the HMs in the dust samples.

Results
Descriptive statistics of the HMs from indoor dust samples 
are presented in Figure 2. Accordingly, the concentration 
of As, Pb, Cd, Co, Mn, Ni, and V (mg/kg) varied from 0.20 
to 4.20, 0.29 to 3762, 0.100 to 10.3, 0.901 to 50.7, 0.59 to 
615, 0.11 to 0.77, and 0.009 to 0.52, respectively. Except 
for Pb, the significance level (P value) of the normality 
test was greater than 0.050, confirming that the values of 
As, Cd, Co, Mn, Ni, and V follow a normal distribution in 
the dust samples.

The results of the one-sample t-test comparing the 
mean values with the WHO reference values showed that, 
except for Pb, which did not have a statistically significant 
difference from the reference value (P > 0.050), the mean 
values of As, Cd, Co, Mn, Ni, and V had a statistically 

Table 1. Reference concentrations (RfD) and carcinogenic slope factor (SF) of the studied elements (41,43,46-48)

Element

As Pb Cd Co Mn Ni V

RfDing 3.00*4-10 3.50*3-10 1.00*3-10 2.00*2-10 4.60*2-10 2.00*2-10 7.00*3-10

RfDinh 43.0*1-10 3.52*3-10 1.00*3-10 5.71*6-10 1.43*5-10 2.06*2-10 7.00*3-10

RfDdermal 1.23*4-10 5.25*4-10 1.00*5-10 1.60*2-10 1.84*3-10 5.40*3-10 7.00*5-10

Inhal. SF 15.1 0.009 6.30 9.80 - 0.840 -
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Figure 2. Descriptive statistics of the HMs concentration (mg/kg) in 
indoor dust samples from residential homes

significant difference from the reference value (P < 0.050) 
and were below the permissible limit.

The daily exposure values to HMs-contaminated 
indoor dust, separately for children and adults, through 

direct ingestion, inhalation, and dermal contact, as well 
as the average lifetime daily dose of exposure to particle-
contaminated dust are presented in Table 2. Moreover, the 
values of non-carcinogenic and carcinogenic risk indices 
resulting from exposure to HMs-contaminated indoor 
dust are provided in Table 3 separately for children and 
adults.

Based on the results, the maximum HM exposure 
values through direct ingestion, inhalation, and dermal 
contact with contaminated dust were 1.66 × 3-10 mg/kg/d 
for children and 1.97 × 4-10 79.1 mg/kg/d for adults, and 
were associated with Pb in both groups. The maximum 
lifetime daily dose of exposure to HMs-contaminated 
dust of 1.26 × 8-10 mg/kg/d was attributed to Pb.

The results showed that the maximum values of non-
carcinogenic risk indices through direct ingestion, 
inhalation, and dermal contact with contaminated dust 
were 4.83 × 1-10 for children and 5.23 × 2-10 for adults, 

Table 2. Daily exposure values to HMs-contaminated indoor dust, separately for children and adults, and through direct ingestion, inhalation, and dermal 
contact (mg/kg/d)

Element (mg/kg)

As Pb Cd Co Mn Ni V

Children

Ding 3.33*5-10 1.66*3-10 6.38*6-10 2.48*5-10 1.57*3-10 2.14*4-10 1.99*4-10

Dinh 9.30*10-10 4.63*8-10 1.78*10-10 6.93*10-10 4.39*8-10 5.97*9-10 5.55*9-10

Ddermal 9.32*8-10 4.64*6-10 1.79*8-10 6.94*8-10 4.40*6-10 5.98*7-10 5.56*7-10

Total 3.34*5-10 1.66*3-10 6.40*6-10 2.49*5-10 1.57*3-10 2.14*4-10 1.99*4-10

Adults

Ding 3.56*6-10 1.78*4-10 6.83*7-10 2.66*6-10 1.68*4-10 2.29*5-10 2.13*5-10

Dinh 5.24*10-10 2.61*8-10 1.00*10-10 3.91*10-10 2.48*8-10 3.37*9-10 3.13*9-10

Ddermal 1.42*8-10 7.08*7-10 2.73*9-10 1.06*8-10 6.72*7-10 9.14*8-10 8.49*8-10

Total 3.57*6-10 1.79*4-10 6.86*7-10 2.67*6-10 1.69*4-10 2.30*5-10 2.14*5-10

LADD 3.52*10-10 1.26*8-10 4.83*11-10 1.88*10-10 - 1.62*9-10 -

LADD, lifetime average daily dose.

Table 3. Values of non-carcinogenic and carcinogenic risk indices resulting from exposure to HMs-contaminated indoor dust, separately for children and 
adults

Element

As Pb Cd Co Mn Ni V

Children

HQing 1.11*1-10 4.74*1-10 6.38*3-10 1.24*3-10 3.41*2-10 1.07*2-10 2.84*2-10

HQinh 2.16*10-10 1.32*5-10 1.78*7-10 1.21*4-10 3.07*3-10 2.90*7-10 7.93*7-10

HQdermal 7.58*4-10 8.84*3-10 1.78*3-10 4.34*6-10 2.39*3-10 1.11*4-10 7.93*3-10

HI 1.12*1-10 4.83*1-10 8.16*3-10 1.36*3-10 3.96*4-10 1.08*2-10 3.63*2-10

CR 1.40*8-10 4.17*10-10 1.12*9-10 6.79*9-10 - 5.01*9-10 -

Adults

HQing 1.19*2-10 5.09*2-10 6.83*4-10 1.33*4-10 3.65*3-10 1.14*3-10 3.04*3-10

HQinh 1.22*10-10 7.41*6-10 1.00*7-10 6.85*5-10 1.73*3-10 1.64*7-10 4.47*7-10

HQdermal 1.15*4-10 1.35*3-10 2.73*4-10 6.63*7-10 3.65*4-10 1.69*5-10 1.21*3-10

HI 1.20*2-10 5.23*2-10 9.56*4-10 2.02*4-10 5.75*3-10 1.16*3-10 4.25*3-10

CR 7.91*9-10 2.35*10-10 6.30*10-10 3.83*9-10 - 2.83*9-10 -
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which were associated with Pb in both groups. The 
maximum values of carcinogenic risk indices through 
direct ingestion, inhalation, and dermal contact with 
contaminated dust of 1.40 × 8-10 for children and 7.91 × 9-10 
for adults were both attributed to As.

Discussion
Several factors have been identified as influential in 
determining the levels of HMs in PM, including street 
particles, indoor environments, and dry atmospheric 
deposition. These factors encompass local environmental 
conditions such as topography and climate, human 
activities like industrial processes, waste disposal, 
combustion of fossil fuels, and emissions from both 
exhaust and non-exhaust sources of traffic. Additionally, 
population growth and regional development have an 
impact on HM concentrations. The size and origin of 
particles also contribute to the variation in HM content 
(49-55). Furthermore, specific parameters related to the 
building itself play a role in the release of pollutants, 
particularly HMs, into the environment. The location of 
a building, especially its proximity to traffic centers, as 
well as the combustion of petroleum products for heating 
and cooking in enclosed spaces, smoking, building age, 
the number of occupants, and the presence of pets are 
considered influential factors (56-59).

The results showed that the average value of As in the 
samples was 5.06 mg/kg (Figure 2), which was statistically 
lower than the maximum permissible limit set by the 
WHO (P < 0.050). However, the use of As-containing 
chemicals (pesticides and herbicides) such as Pb arsenate 
and calcium arsenate, the discharge of wood preservative 
residues, or the discharge of residual pharmaceutical 
compounds containing As, such as As trioxide, are 
considered among the most important factors of soil/
sediment/water contamination by this element in open 
environments (60). However, the use of this element in 
the synthesis of oil dyes, plastics, and antibacterial agents, 
besides its release via the combustion of fossil fuels for 
heating and cooking can lead to Pb and As pollution in 
indoor environments (57,61-63).

Traffic emissions have been identified as the primary 
source of potentially toxic elements in soil and PM. 
The concentration of Pb in soil and PM is significantly 
influenced by traffic volume. The use of Pb as an anti-
wear additive in various motor oils and leaking lubricants 
results in the release of Pb into the environment. Moreover, 
vehicle brake wear may be another potential source of 
Pb emissions (64,65). Furthermore, the accumulated 
Pb from exhaust emissions can also be dispersed in the 
environment (6,66,67). Therefore, Pb is recognized as 
the most common element emitted from traffic (68). The 
mean concentration of Pb in the samples was 252 mg/
kg (Figure 2), which was higher than the other studied 
elements, but was not statistically different from the 

maximum permissible limit set by the WHO (P > 0.050). 
The high levels of Pb in dust samples can be attributed 
to the high traffic load and the combustion of fossil fuels 
in the metropolitan area of Isfahan. Moreover, the use of 
Pb in the synthesis of various building paints (oil-based, 
plastic-based, and antibacterial) to accelerate drying, 
increase durability and resistance to environmental 
factors (moisture), and maintain a fresh appearance (69), 
along with the combustion of fossil fuels for heating and 
cooking, and smoking (70) might cause Pb pollution in 
indoor dust. Therefore, the high concentration of Pb in the 
samples increases the likelihood of health consequences 
for individuals exposed to contaminated dust as depicted 
by Zarasvandi et al (71).

Cd is a toxic element found in lubricants, tires, and 
brake pads of vehicles (10,72,73). Therefore, emissions 
from lubricants, brake pad wear, and tire wear from motor 
vehicles can be considered potential sources of Cd release 
into the environment. However, indoor dust pollution with 
Cd should not be disregarded due to the presence of this 
element in the structure of building paints and residents’ 
smoking. The results showed that the average value of Cd 
(mg/kg) in the samples was 0.970, which was statistically 
lower than the maximum permissible limit set by the 
WHO. However, Sabzevari and Sobhanardakani reported 
a higher above-permissible-limit mean concentration 
of Cd in indoor dust samples from residential homes in 
Khorramabad (20).

Co alloy is widely used in engine components and 
many mechanical parts of automobiles, especially in 
parts requiring high resistance to wear. On the other 
hand, asphalt also contains significant amounts of Co. 
Therefore, corrosion of Co-coated car components, 
tire wear, and road surfaces can be considered potential 
sources of Co release into the environment. Some 
researchers assessed the concentration of some elements 
in atmospheric dust in Isfahan, finding that Co is among 
the major elements whose content is influenced by human 
activities (14,74,75). The results showed that the average 
Co concentration in indoor dust samples in residential 
houses in Isfahan is 3 mg/kg, which is lower than the 
WHO permissible limit (Figure 2).

Manganese, with a mean concentration of 950 mg/
kg, is one of the most abundant elements in the Earth’s 
crust. Currently, derivatives of this element, namely 
Methylcyclopentadienyl Mn tricarbonyl (MMT), are used 
as additives in gasoline and diesel as well as a substitute 
for Pb, namely Tetraethyl Pb (TEL) (72). Therefore, 
the release of this element into the environment can 
be attributed to both the Earth’s crust and the exhaust 
emissions of motor vehicles. Based on the results, the 
mean Mn concentration in the samples was 239 mg/kg, 
which is lower than the WHO permissible limit.

Nickel, besides being found in asphalt, is also used for 
coating some mechanical parts of automobiles, including 
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tires and brake pads (76-79). Therefore, the release of this 
element into the environment can be associated with the 
corrosion of Ni coatings on vehicle parts and the abrasion 
of road surface coatings. It is also known that tobacco 
smoke by residents can contribute to the emission of 
Ni into the indoor environment (80). However, the 
influence of the background concentration of Ni in the 
geological substrate should not be overlooked in indoor 
dust pollution. According to the results, the mean Ni 
concentration in the samples was 32.5 mg/kg, which is 
lower than the WHO permissible limit. Similar results 
were also reported by Sabzevari and Sobhanardakani (20). 
However, the mean Ni concentration in the indoor dust 
of residential houses in Khorramabad was reported to 
exceed the standard permissible limit (6).

The literature review indicates that the combustion 
of fossil fuels is one of the main sources of Vanadium 
emissions into the environment (81). The results showed 
that the mean V concentration in the samples was 30.2 mg/
kg, which is lower than the WHO maximum permissible 
limit. Although V is an indicator of oil pollution and oil 
leakage, tobacco smoking by residents can be one of the 
most significant causes of indoor dust pollution with 
Gul et al also attributed indoor dust pollution with V to 
tobacco smoking (57). The mean concentration of HMs 
in the dust samples of previous studies is compared with 
the findings of this research in Table 4.

The results showed that direct ingestion followed by 
dermal contact and inhalation were the most important 

exposure pathways to the HMs-contaminated dust for 
both children and adults. The findings of the study by 
Sobhanardakani who assessed the health risk of exposure 
to indoor dust in residential homes in Khorramabad city 
and those of Gul et al who evaluated the health risk of 
exposure to indoor dust in residential homes in Izmir, 
Turkey, also indicated that the exposure pathways for 
residents to contaminated dust followed the order of 
direct ingestion > dermal contact > inhalation (6,57). 
Kurt-Karakus, Hashemi et al, and Zararsiz and Öztürk 
also identified direct ingestion as the most important 
pathway of exposure for children to indoor dust 
contaminated with potentially toxic elements inside 
residential homes (30,90,91). According to the results, the 
direct ingestion of contaminated dust was approximately 
36 000 times higher for children and approximately 
6800 times higher for adults compared to inhalation. 
Furthermore, the exposure index values through the 
ingestion of contaminated dust followed the descending 
order of Pb > Mn > Ni > V > As > Co > Cd for both children 
and adults. 

It was observed that the rate of children’s exposure to 
HMs-contaminated dust was approximately 10 times 
higher than the rate of exposure for adults. Therefore, it 
can be acknowledged that children are significantly more 
exposed to potentially toxic elements as compared to 
adults, which can be attributed to their lower body weight 
and the higher rate of hand-to-mouth ingestion, i.e., their 
habit of putting hands in their mouths, which is consistent 

Table 4. Comparison of mean/median values of potentially toxic elements in household dust of residential areas in Isfahan with the findings from other regions

Area
Element (mg/kg)

Reference
As Pb Cd Co Mn Ni V

Muscat, Oman - 65.0 - - - - -  (32)

Aswan, Egypt - 102 3.72 - 188 - -  (58)

England - 150 1.20 - 524 53.1 -  (82)

Hong Kong, China - 148 - 17.0 453 158 52.3  (35)

Tokyo and Hiroshima, Japan - 49.1 1.04 4.43 224 56.5 24.6  (83)

Chengdu, China - 123 2.37 - - - -  (84)

Ogun, Nigeria 2.41 49.7 475 3.66 388 7.21 22.4  (85)

Sydney, Australia 13.5 112 - - 189 36.0 -  (86)

Sydney, Australia - 389 4.40 - 76.1 27.2 -  (61)

Wales, Austria - 29.0 - 9.00 234 49.0 12.0  (87)

Riyadh, Saudi Arabia - 29.0 - - - - -  (88)

Al-Qunfada, Saudi Arabia - 23.0 - 7.20 260 - -  (89)

Istanbul, Türkiye - 28.0 1.00 5.00 156 263 -  (90)

Ankara, Türkiye 4.41 27.5 0.348 2.25 65.9 32.3 26.4  (57)

Khorramabad, Iran - 32.1 11.3 - - 60.2 -  (20)

Bushehr, Iran - 209 5.00 - - 57.0 -  (91)

Isfahan, Iran 5.55 365 0.952 3.87 241 32.6 30.6 Present study
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with the results of studies by (56,92). Additionally, the 
results demonstrated that the minimum and maximum 
values of LADD (lifetime average daily dose) were 
associated with Cd and Pb with values of 4.83 × 10-11 μg/
kg/d and 1.26 × 10-8 μg/kg/d, respectively (Table 2).

The non-carcinogenic hazard index values followed the 
descending order of Pb > As > Mn > V > Ni > Cd > Co values 
for both children and adults. For children, the minimum 
and maximum values of the hazard index were associated 
with Co (1.36 × 10-3) and Pb (4.83 × 10-1), respectively. 
For adults, the corresponding values were 2.02 × 10-4 and 
5.23 × 10-2 for the same elements (Table 3). Furthermore, 
considering that the non-carcinogenic hazard index 
values for all evaluated elements were below the safe 
limits (1 ≥ HI), it can be concluded that the exposure of 
children and adults to HMs-contaminated dust particles 
will not pose a significant risk. This is in contrast to the 
maximum values of the carcinogenic hazard index, which 
were approximately twice as high for children (1.40 × 10-8) 
as for adults (7.92 × 10-9) through direct ingestion, 
inhalation, or dermal contact with contaminated dust 
(Table 3). Although Sobhanardakani found that the 
non-carcinogenic hazard index values for Pb, Cd, and 
Ni resulting from exposure to indoor dust in residential 
homes in Khorramabad were higher for older children 
than for adults, all index values were within the safe range 
(6). Gul et alalso reported that the carcinogenic hazard 
index values for Pb and Cd exposure were within the safe 
range for both children (4.88 × 10-7 and 1.033 × 10-5) and 
adults (4.88 × 10-7 and 4.88 × 10-7) (57). Similar findings 
were also reported by Kurt-Karakus (90), Hashemi et al 
(30), and Zararsız and Öztürk (91).

Conclusion
The results demonstrated that the HMs content in indoor 
household dust in Isfahan followed a decreasing trend 
of Pb > Mn > Ni > V > As > Co > Cd. Furthermore, the 
maximum values of the non-carcinogenic risk index for 
HMs exposure through direct ingestion, inhalation, or 
skin contact with contaminated dust were 4.83 × 1-10 for 
children and 5.23 × 10-2 for adults both associated with 
Pb. Moreover, ingestion was identified as the primary 
pathway of exposure. Moreover, the maximum values of 
the carcinogenic risk index for exposure to elements were 
approximately twice as high for children (1.40 × 10-8) as 
compared to adults (7.92 × 10-9), with Pb as the relevant 
element in both cases. Although the non-carcinogenic 
risk index values for all HMs were below the safe limit, 
it is recommended to determine the content, sources, 
and health risk assessment of exposure to contaminated 
dust in samples from other confined spaces such as 
educational, administrative, commercial, residential, and 
recreational facilities due to the potential risks associated 
with long-term exposure to toxic elements. Furthermore, 
considering the time and financial constraints of this 

study, it is suggested to assess the health risk of exposure 
to contaminated dust in suburban areas and rural regions 
in future studies.
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