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Abstract: In this article, a new human-based metaheuristic algorithm named Dollmaker Optimization Algorithm 

(DOA) is introduced, which imitates the strategy and skill of the dollmaker when making dolls. The basic inspiration 

of DOA is derived from two natural behaviors in the doll making process (i) making general changes to the doll-

making materials and (ii) making precise small changes on the appearance characteristics of the dolls. The theory of 

DOA is proposed and then modeled mathematically in two phases (i) exploration based on the simulation of large 

changes made on doll-making materials and (ii) exploitation based on the simulation of small changes on the made 

dolls. The performance of DOA in optimization is evaluated on twenty-three standard benchmark functions of 

unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types. The optimization results show that 

DOA has achieved suitable results for optimization problems with its ability in exploration, exploitation, and balance 

them during the search process. Comparison of DOA results with twelve competing algorithms shows that the proposed 

algorithm has superior performance compared to competing algorithms by providing better results in all twenty-three 

benchmark functions and getting the rank of the first best optimizer. In addition, the efficiency of DOA in handling 

real-world applications is evaluated in the optimization of four engineering design problems. Simulation results show 

that DOA has acceptable performance in real world and engineering applications by providing better values for design 

variables and objective functions compared to competing algorithms. 

Keywords: Optimization algorithm, Engineering application, Human-inspired, Dollmaker, Exploration, Exploitation. 

 

 

1. Introduction 

Optimization, the process of refining and 

enhancing systems, processes, or algorithms for 

maximum efficiency, lies at the heart of numerous 

scientific, engineering, and computational endeavors 

[1]. It encompasses a wide spectrum of applications, 

from solving complex mathematical problems to 

fine-tuning algorithms in artificial intelligence [2]. At 

its core, optimization involves finding the best 

solution among a set of feasible alternatives, taking 

into account specific constraints and objectives [3]. 

In mathematical terms, optimization problems often 

entail maximizing or minimizing an objective 

function while adhering to given constraints. This 

concept extends beyond mathematics and finds 
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application in computer science, engineering, finance, 

and many other fields [4, 5].  

Metaheuristic algorithms, inspired by natural 

processes and phenomena, represent a powerful class 

of optimization techniques that have gained 

prominence across diverse domains. These 

algorithms leverage principles from biology, physics, 

and social behavior to efficiently solve complex 

problems where traditional optimization approaches 

may struggle [6].  

The main research question is that given the 

numerous of existing metaheuristic algorithms, there 

remains a necessity to introduce newer algorithms? 

In response to this query, the No Free Lunch (NFL) 

theorem [7] definitively asserts that the satisfactory 

performance of a metaheuristic algorithm in 

resolving a specific set of optimization problems does 

not ensure analogous success in addressing other 

optimization challenges. The NFL theorem 

underscores that there is no any metaheuristic 

algorithm universally superior as an optimizer for all 

types of optimization problems. The NFL theorem, 

while keeping active the study field of developing 

metaheuristic algorithms, motivates researchers to 

provide more effective solutions for optimization 

problems by designing newer metaheuristic 

algorithms. 

Based on the best knowledge obtained from the 

literature review, no metaheuristic algorithm has 

been designed so far inspired by the doll making 

process. This is while piecing together the doll-

making materials and making a doll similar to the 

given pattern is an intelligent process that has a 

special potential for designing a new optimizer. In 

order to address this research gap, in this study, a new 

metaheuristic algorithm is designed based on the 

mathematical modeling of the doll making process. 

Motivated by the NFL theorem and confirming 

the originality of the proposed approach based on the 

best knowledge obtained from the literature review, 

the aspects of innovation, originality, and novelty of 

this study are in introducing a new metaheuristic 

algorithm called Dollmaker Optimization Algorithm 

(DOA) for optimization applications. The key 

contributions of this study are as follows:  

• DOA has been designed inspired by dollmaker 

strategies in the human activity of doll-making.  

• The inspiration for DOA comes from the 

dollmaker's performance when making large 

changes to doll-making materials and making 

detailed changes to made dolls.  

• The theory of DOA has been expressed and 

mathematically modeled in two phases (i) 

exploration based on the simulation of large 

changes made on doll-making materials and (ii) 

exploitation based on the simulation of small 

changes on the made dolls.  

• The efficiency of DOA has been evaluated to 

optimize twenty-three standard benchmark 

functions of unimodal, high-dimensional 

multimodal, and fixed-dimensional multimodal 

types.  

• The performance of DOA has been evaluated in 

real-world applications to optimize four 

engineering design problems.  

• The results obtained from DOA have been 

compared with the performance of twelve well-

known metaheuristic algorithms. 

The rest of the structure of the paper is organized 

as follows: Literature review is presented in Section 

2. The proposed Dollmaker Optimization Algorithm 

(DOA) approach is introduced and modeled in 

Section 3. The simulation studies and results are 

presented in Section 4. The performance of DOA in 

real-world applications is presented in Section 5. 

Finally, conclusions and several suggestions for 

further research are provided in Section 6. 

2. Literature review 

Metaheuristic algorithms are stochastic 

approaches that are able to provide acceptable 

solutions for optimization problems based on random 

search in the problem solving space and using 

random processes and trial and error [8]. The inherent 

stochastic nature of metaheuristic algorithms 

introduces an element of unpredictability, rendering 

no guarantees or promises of reaching the global 

optimum. Consequently, the outcomes obtained 

through these methods are often characterized as 

quasi-optimal [9]. In the adept implementation of 

metaheuristic algorithms, the interplay between 

exploration and exploitation emerges as pivotal for 

navigating the inherent randomness within problem-

solving spaces [10]. Exploration denotes the 

algorithm's adeptness in conducting expansive 

searches across the problem-solving space. This 

capability serves as a mechanism to steer clear of 

local optima, enabling the algorithm to traverse the 

entire space and identify global optimal regions 

through comprehensive exploration. Conversely, 

exploitation signifies the algorithm's prowess in 

honing in on identified solutions and promising 

regions within the problem-solving space. This facet 

involves targeted searches, concentrating efforts 

around areas that show potential for yielding 

improved solutions. In the context of metaheuristic 

algorithms, the skillful orchestration of exploration 

and exploitation stands out as a critical determinant 
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of optimization success. Achieving an optimal 

balance between these two facets throughout the 

search process is essential. This delicate equilibrium 

allows the algorithm to harness the advantages of 

both exploration and exploitation, maximizing the 

chances of discovering high-quality solutions while 

avoiding the entrapment in suboptimal regions [11]. 

The efforts of researchers in achieving better quasi-

optimal solutions for optimization problems and 

more effective management of exploration and 

exploitation have led to the design and development 

of countless metaheuristic algorithms.  

Metaheuristic algorithms have been developed 

from various natural phenomena, biological sciences, 

genetics, physics, human activities, and other 

evolutionary phenomena. Based on the source of 

inspiration used in the design, metaheuristic 

algorithms are classified into five groups: swarm-

based, evolutionary-based, physics-based, human-

based, and game-based approaches. 

Swarm-based algorithms simulate the collective 

behaviors observed in birds, animals, insects, reptiles, 

aquatic, and other live organisms. Ant Colony 

Optimization (ACO) [12], Particle Swarm 

Optimization (PSO) [13], Artificial Bee Colony 

(ABC) [14], and Firefly Algorithm (FA) [15] 

exemplify this category. ACO mimics ant 

communication for efficient pathfinding, while PSO 

emulates group movements of fish and birds. ABC 

simulates hierarchical behaviors within bee colonies, 

and FA takes inspiration from the Information 

exchange through optical communication among 

fireflies. Natural behaviors among living organisms 

such as foraging, hunting, migration, digging, flight 

strategy, and chasing process have been sources of 

inspiration in designing swarm-based algorithms 

such as: Pufferfish Optimization Algorithm [16], 

Grey Wolf Optimizer (GWO) [17], Wombat 

Optimization Algorithm (WOA) [18], Termite Alate 

Optimization Algorithm (TAOA) [19], Whale 

Optimization Algorithm (WOA) [20], African 

Vultures Optimization Algorithm (AVOA) [21], 

Swarm Space Hopping Algorithm (SSHA) [22], 

Reptile Search Algorithm (RSA) [23], Marine 

Predator Algorithm (MPA) [24], Migration-

Crossover Algorithm (MCA) [25], White Shark 

Optimizer (WSO) [26], and Tunicate Swarm 

Algorithm (TSA) [27]. 

Evolutionary-inspired algorithms rooted in 

biological and genetic principles, emulate concepts 

such as natural selection, survival of the fittest, and 

genetic processes. Genetic Algorithm (GA) [28] and 

Differential Evolution (DE) [29] are prominent 

examples that simulate the natural reproduction 

process, incorporating genetic concepts like mutation, 

crossover, and selection. 

Physics-based algorithms simulate laws, phenomena, 

transformations, forces, cycles, and other concepts in 

physics. Simulated Annealing (SA) [30] simulates 

the annealing process in metallurgy, while 

Gravitational Search Algorithm (GSA) [31] models 

gravitational forces and Newton's laws of motion. 

Water Cycle Algorithm (WCA) [32] mimics the 

transformations within the natural water cycle. Some 

other physics-based metaheuristic algorithms are: 

Lichtenberg Algorithm (LA) [33], Archimedes 

Optimization Algorithm (AOA) [34], and 

Propagation Search Algorithm (PSA) [35]. 

Human-based metaheuristic algorithms mimic 

various aspects of human life such as choices, 

decisions, interactions, communication, and other 

human activities. Teaching-Learning Based 

Optimization (TLBO) [36] mimics the dynamics of 

learning in a classroom setting. Mother Optimization 

Algorithm (MOA) [9] simulate the Eshrat's attentive 

care from her children. Ali Baba and the Forty 

Thieves (AFT) [37] leverages the narrative of Ali 

Baba and the Forty Thieves to model decision 

processes, creating an algorithm that adapts and 

learns from past experiences to make better choices 

over time. Some other human-inspired algorithms 

are: Doctor and Patient Optimization (DPO) [38], 

Teamwork Optimization Algorithm (TOA) [39], 

Driving Training-Based Optimization (DTBO) [40], 

and Election-Based Optimization Algorithm (EBOA) 

[41]. 

Game-based metaheuristic algorithms have been 

developed inspired by the strategies of players, 

referees, and coaches in various individual and team 

games under the rules of the game. One of the most 

cited algorithms of this group is Darts Game 

Optimizer (DGO), which imitates the strategy of 

players in tabletop darts and collecting points [42]. 
Simulating the skill of golf players during ball shots 

to guide them towards the score holes was the design 

idea of Golf Optimization Algorithm (GOA) [43]. 
The players' efforts to find the hidden object in the 

playground have been the inspiration for Hide Object 

Game Optimizer (HOGO) [44]. Some other game-

inspired algorithms are: Football Game Based 

Optimization (FGBO) [45], Puzzle Optimization 

Algorithm (POA) [46], Orientation Search Algorithm 

(OSA) [47], Dice Game Optimizer (DGO) [48], Ring 

toss game based optimization (RTGBO) [49], and 

Shell game optimization (SGO) [50]. 
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3. Dollmaker Optimization Algorithm 

In this section, the source of inspiration and 

theory of the proposed Dollmaker Optimization 

Algorithm (DOA) approach is described, then its 

implementation process is mathematically modeled. 

3.1 Inspiration of DOA 

The doll is one of the popular children's toys 

series, which has different types and each one is made 

with different materials and sizes. The art of doll 

making has many fans both as a hobby and as a job 

and skill. From a general and simple point of view, 

the doll making process can be explained as follows: 

First, in the first step, the dollmaker must choose a 

pattern for the doll she wants to make. After choosing 

the pattern, the dollmaker must choose the materials 

she wants. She then sews the materials together, 

stuffs the doll with cotton, wool or any other type of 

stuffing material and then decorates it. After 

completing these steps, it is time to take care of the 

doll's details such as facial features, clothes, hair, and 

shoes. The dollmaker tries her best to make the doll 

according to the selected pattern. As it seems, the 

activity of doll making is an intelligent process, 

during which the selection of the pattern, the sewing 

together of the material of the doll, and the attention 

to the appearance details are much more significant. 

These special skills in the doll making process have 

been used as a source of inspiration in the DOA 

design, which is discussed further. 

3.2 Algorithm Initialization 

The proposed DOA approach is a population-

based optimizer where dolls form the population 

members. Population members specify values for 

design variables based on their position in the 

problem-solving space. Therefore, each doll can be 

modeled as a candidate solution using a vector so that 

the elements of this vector represent the decision 

variables. The different parts of the doll correspond 

to the decision variables of the problem. Algorithm 

population can be mathematically modeled based on 

the community of these vectors together using a 

matrix according to Eq. (1). Also, the initial position 

of the population members is initialized completely 

randomly using Eq. (2). 
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𝑁×𝑚

 (1) 

𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑) (2) 

 

Where, 𝑋 is the DOA’s population matrix, 𝑋𝑖  is 

the ith doll (i.e., candidate solution), 𝑥𝑖,𝑑  is its dth 

dimension in the search space (i.e., decision variable), 

N is the number of dolls (i.e., population size), m is 

the number of decision variables, r is a random 

number within the interval [0,1], while 𝑙𝑏𝑑 and 𝑢𝑏𝑑 

stand for the lower and upper bounds of the dth 

decision variable, respectively. 

The objective function of the evaluable problem 

corresponds to the solution proposed by each member 

of the population. The set of evaluated values for the 

objective function can be represented using a vector 

according to Eq. (3). 
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⋮
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⋮
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𝑁×1

 (3) 

 

Where, F is the vector of objective function 

values and 𝐹𝑖 is the obtained objective function value 

based on the ith candidate solution. 

The evaluated values for the objective function 

contain valuable information about the quality of the 

candidate solutions (i.e., population members). In 

such a way that the best evaluated value for the 

objective function corresponds to the best member of 

the population. Since DOA is an iteration-based 

approach, the positions of the population members 

and thus the objective function values are updated in 

each iteration. Therefore, the position of the best 

population member must also be updated and stored 

in each iteration. At the end of the DOA 

implementation, the position of the best member is 

presented as the solution for the given problem.  

3.3 Mathematical modelling of DOA 

The mathematical model of DOA is obtained 

based on the simulation of the doll making process. 

The position of the DOA population members is 

updated based on the modeling of the dollmaker's 

strategies during doll making. In a simple way, the 

process of making a doll can be considered in two 

parts: (i) sewing materials-doll making based on the 

selected pattern and (ii) beautifying the doll based on 

attention to appearance details such as facial features, 

hair, clothes, etc. In each iteration, based on the 

modeling of the doll-making process, the positions of 

the DOA members are updated in two phases (i) 

exploration based on the simulation of pattern 
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selection and sewing the doll-making materials 

together and (ii) exploitation based on the simulation 

of beautification of the doll's appearance. Each of 

these phases is explained and modeled 

mathematically. 

3.3.1 Phase 1: Pattern selection and sewing 

(exploration phase)  

The process of choosing a pattern and sewing 

doll-making materials leads to extensive changes in 

the doll's appearance. Modeling these extensive 

changes in the doll's appearance leads to large 

changes in the position of the population members 

and thus increases the exploration ability of the 

algorithm in the global search. In DOA design, the 

best member is considered as a doll pattern (𝑃 =
𝑋𝑏𝑒𝑠𝑡  ). On the other hand, the vector elements of 

each member represent the doll-making materials 

that must be sewn according to the selected pattern.  

Based on the mathematical modeling of the doll 

making and sewing process according to selected 

pattern, a new position for each DOA member is 

obtained using Eq. (4). This new position replaces the 

previous position of the corresponding member if it 

improves the value of the objective function 

according to Eq. (5). 

 

𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + 𝑟 ∙ (𝑃𝑗 − 𝐼 ∙ 𝑥𝑖,𝑗),     (4) 

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 ≤ 𝐹𝑖 ,

𝑋𝑖 , 𝑒𝑙𝑠𝑒 ,
   (5) 

 

Where, 𝑃 is the selected doll-making pattern, 𝑃𝑗 is its 

jth dimension, 𝑋𝑖
𝑃1  is the new position for the ith 

member based on first phase of DOA, 𝑥𝑖,𝑗
𝑃1 is its jth 

dimension, 𝐹𝑖
𝑃1 is its objective function value, 𝑟 is a 

random number drawn from the interval [0, 1], and 𝐼 

is randomly selected number, taking values of 1 or 2. 

3.3.2 Phase 2: Beautifying the details of the doll 

(exploitation phase)  

The process of handling the appearance details in 

doll making, such as facial features, hair, and clothes, 

leads to small and precise changes in the appearance 

of the doll. Modeling these small changes in the doll's 

appearance leads to small changes in the position of 

the population members and thus increases the 

exploitation ability of the algorithm in local search. 

In DOA design, it is assumed that the dollmaker tries 

to bring the doll's appearance closer to the doll 

making pattern over time.  

Based on the modeling of this process, a new 

position has been calculated for each DOA member 

using Eq. (6). Then, if the value of the objective 

function is improved, this new position replaces the 

previous position of the corresponding member 

according to Eq. (7). 

 

𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + (1 − 2 𝑟𝑖,𝑗) ∙  

𝑢𝑏𝑗−𝑙𝑏𝑗

𝑡
    (6) 

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 ≤ 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒 
   (7) 

 

Where, 𝑋𝑖
𝑃2 is the new calculated position for the ith 

member based on second phase of DOA, 𝑥𝑖,𝑗
𝑃2 is the 

its 𝑗th dimension, 𝐹𝑖
𝑃2 is its objective function value, 

𝑟 is a random number drawn from the interval [0, 1], 
and 𝑡 is the iteration counter. 

 

 Algorithm 1. Pseudocode of DOA. 

Start DOA. 

1. 
Input problem information: variables, objective 

function, and constraints. 

2. Set DOA population size (N) and iterations (T). 

3. 
Generate the initial population matrix at random 

using Eq. (2). 𝑥𝑖,𝑑 ← 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑) 

4. Evaluate the objective function. 

5. 

 

For 𝑡 = 1 to T 

6.  For 𝑖 = 1 to 𝑁 

7.  
Phase 1: Pattern selection and sewing (exploration 

phase) 

8.   Determine doll-making pattern. 𝑃 ← 𝑋𝑏𝑒𝑠𝑡 

9.   
Calculate new position of ith member using Eq. (4). 

𝑥𝑖,𝑑
𝑃1 ← 𝑥𝑖,𝑑 + 𝑟 ∙ (𝑃𝑑 − 𝐼 ∙ 𝑥𝑖,𝑑) 

10.   

Update ith member using Eq. (5).  

𝑋𝑖 ← {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 < 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
 

11.  
Phase 2: Beautifying the details of the doll 

(exploitation phase) 

12.   
Calculate new position of ith member using Eq. (6). 

𝑥𝑖,𝑑
𝑃2 ← 𝑥𝑖,𝑑 + (1 − 2𝑟) ∙

(𝑢𝑏𝑑−𝑙𝑏𝑑)

𝑡
 

13.   

Update ith member using Eq. (7).  

𝑋𝑖 ← {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 < 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
 

14.  end 

15.   Save the best candidate solution so far. 

16.  end  

17. 
 Output the best quasi-optimal solution obtained with 

the DOA. 

End DOA. 
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3.4 Repetition process, pseudocode, and flowchart 

of DOA 

The first iteration of DOA is completed by 

updating the position of all population members 

based on the first and second phases. Then, based on 

the updated values, the algorithm enters the next 

iteration and the process of updating the position of 

the population members continues based on Eqs. (4) 

to (7) until the last iteration of the algorithm. At the 

end of each iteration, the position of the best member 

is updated and saved as the best candidate solution. 

After the complete implementation of DOA, the 

algorithm outputs the best candidate solution as a 

solution to the problem. The pseudocode of DOA 

implementation steps is presented in Algorithm 1. 

4. Simulation Studies and Results 

In this section, the performance of the proposed 

DOA approach in optimization applications is 

evaluated. For this purpose, a set of twenty-three 

standard benchmark functions has been selected from 

unimodal, high-dimensional multimodal, and fixed-

dimensional multimodal types [51]. Also, in order to 

measure the quality of DOA in the optimization 

process, the performance of the proposed algorithm 

is compared with the performance of twelve famous 

algorithms: GA [28], PSO [13], GSA [31], TLBO 

[36], MVO [52], GWO [17], WO [20], MPA [24], 

TSA [27], RSA [23], AVOA [21], and WSO [26]. 

The simulation results are reported using six 

statistical indicators: mean, best, worst, standard 

deviation (std), median, and rank.  

4.1 Evaluation of Unimodal Functions 

Unimodal functions are suitable criteria for 

measuring the exploitation ability of metaheuristic 

algorithms in local search. The optimization results 

of unimodal functions F1 to F7 using DOA and 

competing algorithms are reported in Table 1. Based 

on the results obtained, DOA is the first best 

optimizer for benchmark functions  F1 to F7.  The 
 

Table 1. Optimization results of unimodal functions (F1 to F7) 
 DOA GA PSO GSA TLBO MVO GWO WOA TSA MPA RSA AVOA WSO 

F1 

mean 0 27.14679 0.089852 1.19E-16 2.19E-48 2.19E-48 0.133176 2.19E-48 4.37E-47 2.36E-48 2.19E-48 2.19E-48 58.6581 
best 0 15.955 0.000433 4.77E-17 6.79E-52 6.79E-52 0.093903 6.79E-52 1.36E-50 3.04E-50 6.79E-52 6.79E-52 4.712689 
worst 0 50.66591 1.243992 3.33E-16 1.55E-47 1.55E-47 0.179155 1.55E-47 3.11E-46 1.56E-47 1.55E-47 1.55E-47 212.6302 
std 0 12.52707 0.372093 8.57E-17 6.33E-48 6.33E-48 0.033234 6.33E-48 1.27E-46 6.32E-48 6.33E-48 6.33E-48 63.18205 
median 0 25.09709 0.008651 1.01E-16 2.01E-49 2.01E-49 0.13397 2.01E-49 4.02E-48 3.60E-49 2.01E-49 2.01E-49 40.42377 
rank 1 9 7 6 2 3 8 2 5 4 2 2 10 

F2 

mean 0 2.481671 0.797 4.88E-08 9.91E-30 9.91E-30 0.230664 9.91E-30 1.98E-28 6.30E-28 9.91E-30 9.91E-30 1.904458 
best 0 1.553367 0.040301 3.10E-08 9.52E-32 9.52E-32 0.142466 9.52E-32 1.90E-30 1.65E-29 9.52E-32 9.52E-32 0.589605 
worst 0 3.387835 2.21905 1.10E-07 8.56E-29 8.56E-29 0.324414 8.56E-29 1.71E-27 4.19E-27 8.56E-29 8.56E-29 6.626493 
std 0 0.652269 0.865309 2.24E-08 3.35E-29 3.35E-29 0.075419 3.35E-29 6.69E-28 1.31E-27 3.35E-29 3.35E-29 2.124325 
median 0 2.439984 0.519906 4.56E-08 9.28E-31 9.28E-31 0.23883 9.28E-31 1.86E-29 3.15E-28 9.28E-31 9.28E-31 1.36211 
rank 1 11 9 7 3 4 8 2 5 6 2 2 10 

F3 

mean 0 1930.395 345.4371 423.1948 5.56E-12 5.58E-12 14.21626 17763.71 1.11E-10 7.80E-12 5.56E-12 5.56E-12 1589.816 
best 0 1267.527 19.37375 218.9078 6.44E-23 4.84E-17 5.317104 1837.744 1.29E-21 5.65E-19 6.44E-23 6.44E-23 925.9979 
worst 0 3078.452 912.5999 1055.822 9.17E-11 9.17E-11 43.55639 30872.71 1.83E-09 9.17E-11 9.17E-11 9.17E-11 3153.371 
std 0 765.8958 345.3349 263.7433 2.75E-11 2.76E-11 12.88865 10245.38 5.51E-10 2.72E-11 2.75E-11 2.75E-11 751.6498 
median 0 1869.623 260.8096 356.2979 5.05E-15 5.96E-15 10.57255 18088.59 1.01E-13 8.11E-13 5.05E-15 5.05E-15 1386.878 
rank 1 11 8 9 3 4 7 12 6 5 2 2 10 

F4 

mean 0 2.51837 5.589303 1.100142 0.000208 0.000208 0.487143 46.1212 0.004158 0.000208 0.000208 0.000208 15.39364 
best 0 1.972962 2.038398 1.27E-05 4.54E-06 4.54E-06 0.236733 0.805081 9.08E-05 4.54E-06 4.54E-06 4.54E-06 10.60421 
worst 0 3.553565 11.89067 4.385664 0.001684 0.001684 0.857417 81.62169 0.033678 0.001684 0.001684 0.001684 21.21382 
std 0 0.55884 2.996113 1.660907 0.000502 0.000502 0.23043 35.45728 0.010046 0.000502 0.000502 0.000502 3.45709 
median 0 2.477499 5.235566 0.807541 6.91E-05 6.91E-05 0.472794 49.32789 0.001382 6.91E-05 6.91E-05 6.91E-05 15.81772 
rank 1 8 9 7 2 4 6 11 5 3 2 2 10 

F5 

mean 0 531.2315 4105.96 40.54285 25.1797 24.99605 86.97562 25.64407 26.76871 22.09678 12.90721 1.338448 9612.804 
best 0 204.9855 24.7466 24.39427 24.13091 24.10889 25.94922 25.06069 24.13078 21.61512 1.206539 1.206592 1200.463 
worst 0 2010.139 80170.14 150.2052 26.93663 25.51563 337.6917 26.91992 27.15817 22.70481 27.1591 1.357941 82518.45 
std 0 508.8431 24085.41 53.07648 1.130638 0.623396 121.4899 0.673237 0.996632 0.474651 17.65108 0.049822 24027.66 
median 0 424.5561 77.96324 24.80443 24.77036 24.70271 28.06676 25.4556 27.09322 22.08456 1.356977 1.354673 4993.98 
rank 1 11 12 9 6 5 10 7 8 4 3 2 13 

F6 

mean 0 30.56429 0.229516 0.17305 1.2957 0.761205 0.307442 0.24565 3.460993 0.17305 5.920566 0.17305 89.98014 
best 0 14.09712 0.120465 0.119982 0.398002 0.351125 0.202828 0.142249 2.399644 0.119982 3.439722 0.119982 15.22048 
worst 0 56.00716 0.614451 0.225021 2.128811 1.293145 0.402021 0.451924 4.500415 0.225021 6.677521 0.225021 340.5878 
std 0 16.21709 0.177487 0.043839 0.604112 0.36869 0.071327 0.125119 0.876788 0.043839 1.23173 0.043839 114.3272 
median 0 28.36403 0.192708 0.178412 1.245799 0.804883 0.311319 0.222756 3.568235 0.178412 6.32392 0.178412 62.08455 
rank 1 12 5 2 9 8 7 6 10 3 11 4 13 

F7 

mean 2.54E-05 0.009629 0.164091 0.047206 0.001567 0.000945 0.010542 0.001343 0.004084 0.000692 0.000232 0.000261 0.000286 
best 2.35E-06 0.002906 0.061734 0.013043 0.000375 0.000412 0.003843 0.000134 0.001404 0.00017 9.17E-05 8.13E-05 0.000103 
worst 6.89E-05 0.019642 0.366195 0.085356 0.002913 0.001896 0.0204 0.005114 0.009377 0.001051 0.000481 0.000507 0.000497 
std 2.66E-05 0.005741 0.094558 0.029871 0.001022 0.000534 0.006035 0.001835 0.002961 0.000312 0.000157 0.000165 0.000139 
median 1.83E-05 0.009362 0.158424 0.046212 0.001542 0.000971 0.010494 0.000888 0.0035 0.000751 0.0002 0.000232 0.00031 
rank 1 10 13 12 8 6 11 7 9 5 2 3 4 

Sum rank 7 72 63 52 33 34 57 47 48 30 24 17 70 
Mean rank 1 10.28571 9 7.428571 4.714286 4.857143 8.142857 6.714286 6.857143 4.285714 3.428571 2.428571 10 
Total rank 1 13 11 9 5 6 10 7 8 4 3 2 12 
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analysis of the simulation results shows that DOA has 

provided superior performance for handling 

unimodal functions by providing better results 

compared to competing algorithms. 

4.2 Evaluation of High-dimensional Multimodal 

Functions 

High-dimensional multimodal functions F8 to 

F13 are suitable criteria for measuring the exploration 

ability of metaheuristic algorithms in global search. 

The results of DOA implementation and competing 

algorithms on functions F8 to F13 are reported in 

Table 2. Based on the optimization results, DOA is 

the first best optimizer for functions F8 to F13. 

Comparison of simulation results shows that DOA 

with high ability in exploration has provided superior 

performance for handling high-dimensional 

multimodal functions compared to competing 

algorithms. 

4.3 Evaluation of Fixed-dimensional Multimodal 

Functions 

Fixed-dimensional multimodal F14 to F23 are 

suitable criteria for measuring the ability of 

metaheuristic algorithms in balancing exploration 

and exploitation during the search process. The 

optimization results of F14 to F23 using DOA and 

competing algorithms are reported in Table 2. Based 

on the obtained results, DOA is the first best 

optimizer for functions F14 to F23. Analysis of 

simulation results shows that DOA by balancing 

exploration and exploitation has provided superior 

performance compared to competing algorithms for 

fixed-dimensional multimodal optimization. 

The convergence curve obtained from the 

performance of DOA and competing algorithms is 

drawn in Figure 1. 

5. DOA for real-World engineering 

applications 

One of the most important tasks of metaheuristic 

algorithms is their efficiency in handling real world 

and engineering applications. For this purpose, the 

performance of DOA and competing algorithms has 

been evaluated to address four engineering design 

issues: pressure vessel design (PV) [53], speed 

reducer design (SR) [54], welded beam design (WB) 

[20], and tension/compression spring design (TCS) 

[20]. Mathematical models of these problems are 

available in the mentioned references. 

 

Table 2. Optimization results of high-dimensional multimodal functions (F8 to F13) 
 DOA GA PSO GSA TLBO MVO GWO WOA TSA MPA RSA AVOA WSO 

F8 

mean -12498.6 -8571.09 -6903.15 -3551.27 -6058.52 -6486.83 -8047.28 -10923.9 -6520.74 -9697.79 -5914.18 -12174.9 -7351.6 
best -12622.8 -9738.69 -8334.05 -4614.84 -7343.22 -7160.27 -9296.19 -12322.8 -7635.27 -10415.6 -6125.52 -12324 -9132.8 
worst -11936.3 -7334.28 -5528.37 -2972.82 -5131.71 -5611.35 -7190.47 -7945.2 -4853.87 -9079.55 -5421.48 -11655.8 -6442.85 
std 256.1381 785.8267 879.9175 594.8246 725.7787 544.7651 876.6688 2091.028 926.1619 455.0936 267.1615 235.5707 888.3561 
median -12577.8 -8543.41 -7039.91 -3479.65 -6028.22 -6471.94 -7954.19 -11776.6 -6487.72 -9703.24 -5966.46 -12243.8 -7296.1 
rank 1 5 8 13 11 10 6 3 9 4 12 2 7 

F9 

mean 0 56.80313 68.40265 33.50678 8.136836 8.136836 95.20529 8.136836 162.7367 8.136836 8.136836 8.136836 30.05767 
best 0 32.4179 42.15101 16.78524 4.218008 4.218008 53.07454 4.218008 84.36015 4.218008 4.218008 4.218008 19.64073 
worst 0 77.48891 110.062 51.49186 13.54467 13.54467 140.0999 13.54467 270.8934 13.54467 13.54467 13.54467 47.62651 
std 0 15.7339 23.75593 11.82388 3.225068 3.225068 30.46679 3.225068 64.50135 3.225068 3.225068 3.225068 9.821795 
median 0 55.42619 66.18456 31.85476 7.833751 7.833751 94.19074 7.833751 156.675 7.833751 7.833751 7.833751 29.10191 
rank 1 6 7 5 2 3 8 2 9 2 2 2 4 

F10 

mean 8.88E-16 3.240236 2.485635 0.058397 0.058397 0.058397 0.572728 0.058397 1.167943 0.058397 0.058397 0.058397 4.767728 
best 8.88E-16 2.564946 1.50717 5.30E-09 4.38E-15 1.42E-14 0.089534 1.56E-15 7.57E-15 4.38E-15 1.22E-15 1.22E-15 3.157463 
worst 8.88E-16 4.281638 4.500794 0.158552 0.158552 0.158552 2.238518 0.158552 3.171046 0.158552 0.158552 0.158552 7.296848 
std 0 0.48896 1.030056 0.099236 0.099236 0.099236 0.799656 0.099236 1.984723 0.099236 0.099236 0.099236 1.449472 
median 8.88E-16 3.275591 2.544806 8.41E-09 5.05E-15 1.89E-14 0.268439 6.63E-15 2.09E-14 5.05E-15 1.89E-15 1.89E-15 4.758482 
rank 1 11 10 7 5 6 8 3 9 4 2 2 12 

F11 

mean 0 1.311805 0.165302 6.415549 0.000416 0.001608 0.356127 0.000416 0.008312 0.000416 0.000416 0.000416 1.527795 
best 0 1.14695 0.002575 2.666538 0 0 0.22673 0 0 0 0 0 0.983417 
worst 0 1.536421 0.779505 11.24762 0.000966 0.017221 0.477028 0.000966 0.019314 0.000966 0.000966 0.000966 2.923811 
std 0 0.148333 0.27341 3.257752 0.000398 0.005398 0.09789 0.000398 0.007958 0.000398 0.000398 0.000398 0.649631 
median 0 1.289042 0.109185 6.50714 0.000423 0.000438 0.371221 0.000423 0.008454 0.000423 0.000423 0.000423 1.425144 
rank 1 7 5 9 2 3 6 2 4 2 2 2 8 

F12 

mean 1.57E-32 0.516917 1.608203 0.459194 0.335744 0.307753 1.086292 0.290147 5.445224 0.272261 1.444939 0.272261 3.182297 
best 1.57E-32 0.152587 0.161499 0.073048 0.12856 0.085656 0.098165 0.056183 0.974647 0.048732 0.991714 0.048732 1.009694 
worst 1.57E-32 0.940286 4.754493 1.120546 0.739394 0.681629 3.600025 0.666861 13.28784 0.664392 2.129247 0.664392 6.775412 
std 3.78E-48 0.297123 1.529211 0.441376 0.244852 0.235959 1.368371 0.248742 4.907015 0.245351 0.434558 0.245351 2.183355 
median 1.57E-32 0.518172 1.49152 0.320247 0.268527 0.255313 0.69286 0.221576 4.04661 0.202331 1.458074 0.202331 2.807788 
rank 1 8 11 7 6 5 9 4 13 2 10 3 12 

F13 

mean 1.35E-32 2.537667 3.338477 0.178122 1.108471 0.584994 0.156863 0.318692 2.553878 0.129917 0.127694 0.127694 3203.844 
best 1.35E-32 1.268438 0.134622 0.095543 0.664537 0.118305 0.105416 0.13126 1.891704 0.094585 0.094585 0.094585 12.3843 
worst 1.35E-32 3.602348 11.2958 0.971217 1.497775 0.979144 0.24964 0.728344 3.4911 0.174555 0.174555 0.174555 55323.73 
std 3.78E-48 0.893195 3.616823 0.256327 0.281016 0.316012 0.05014 0.206751 0.705027 0.03575 0.035251 0.035251 16587.25 
median 1.35E-32 2.681348 3.085504 0.123316 1.111873 0.576816 0.152954 0.273687 2.38306 0.121349 0.119153 0.119153 39.48181 
rank 1 10 12 6 9 8 5 7 11 4 2 3 13 

Sum rank 6 47 53 47 35 35 42 21 55 18 30 14 56 
Mean rank 1 7.833333 8.833333 7.833333 5.833333 5.833333 7 3.5 9.166667 3 5 2.333333 9.333333 
Total rank 1 8 9 8 6 6 7 4 10 3 5 2 11 
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Table 3. Optimization results of fixed-dimensional multimodal functions (F14 to F23) 
 DOA GA PSO GSA TLBO MVO GWO WOA TSA MPA RSA AVOA WSO 

F14 

mean 0.998004 1.403333 3.670276 3.63959 1.358244 3.758727 1.358243 2.757099 8.18865 1.368734 3.235489 1.446536 1.446712 
best 0.998004 1.044723 1.044723 1.04476 1.044723 1.044723 1.044723 1.044723 1.932389 1.044723 1.109103 1.044723 1.044723 
worst 0.998004 2.431301 11.47978 11.22258 1.694612 10.23762 1.694612 10.23762 14.6476 1.904192 11.47978 3.312462 2.341651 
std 0 0.453039 4.522659 3.378872 0.320831 4.523842 0.320833 3.595382 6.388951 0.346885 3.526134 0.669671 0.456907 
median 0.998004 1.506957 2.180353 3.216621 1.501789 2.857107 1.501789 1.546613 11.07371 1.501789 2.638739 1.501789 1.546611 
rank 1 5 11 10 3 12 2 8 13 4 9 6 7 

F15 

mean 0.000307 0.014544 0.003072 0.002941 0.001377 0.003843 0.003204 0.001568 0.015513 0.001922 0.001847 0.001164 0.002056 
best 0.000307 0.000824 0.000314 0.000829 0.000332 0.000314 0.000314 0.000361 0.000314 0.000352 0.000786 0.000314 0.000329 
worst 0.000307 0.060619 0.018243 0.007401 0.00557 0.019213 0.019109 0.005638 0.103766 0.006779 0.006421 0.005564 0.018243 
std 3.42E-19 1.96E-02 7.22E-03 2.55E-03 1.88E-03 8.72E-03 7.36E-03 1.98E-03 3.80E-02 2.20E-03 2.01E-03 1.92E-03 5.46E-03 
median 0.000307 0.01325 0.001285 0.002181 0.001199 0.001238 0.001334 0.001168 0.00087 0.001618 0.001247 0.000435 0.000796 
rank 1 12 9 8 3 11 10 4 13 6 5 2 7 

F16 

mean -1.03163 -1.03141 -1.03141 -1.03141 -1.03141 -1.03141 -1.03141 -1.03141 -1.03 -1.02932 -1.02943 -1.03141 -1.03141 
best -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03161 -1.03163 -1.03163 
worst -1.03163 -1.02969 -1.02969 -1.02969 -1.02969 -1.02969 -1.02969 -1.02969 -1.00185 -1.00238 -1.00348 -1.02969 -1.02969 
std 2.47E-16 0.000718 0.000718 0.000718 0.000718 0.000718 0.000718 0.000718 0.008933 0.008842 0.008339 0.000718 0.000718 
median -1.03163 -1.03163 -1.03163 -1.03163 -1.03162 -1.03163 -1.03163 -1.03163 -1.03163 -1.0316 -1.03119 -1.03163 -1.03163 
rank 1 7 2 2 8 4 5 3 9 11 10 2 6 

F17 

mean 0.397887 0.458562 0.706528 0.397921 0.397986 0.397922 0.397922 0.397922 0.397953 0.398379 0.40923 0.397921 0.397922 
best 0.397887 0.397893 0.397888 0.397888 0.397898 0.397888 0.397888 0.397888 0.397892 0.397888 0.398647 0.397888 0.397888 
worst 0.397887 1.603208 2.527926 0.398094 0.398142 0.398095 0.398094 0.398095 0.398187 0.401001 0.475655 0.398094 0.398094 
std 0 0.362446 0.84922 8.05E-05 0.000104 8.04E-05 8.05E-05 8.05E-05 0.000107 0.001225 0.023275 8.05E-05 8.05E-05 
median 0.397887 0.397962 0.397913 0.397895 0.39797 0.397896 0.397895 0.397896 0.397915 0.397972 0.403142 0.397895 0.397895 
rank 1 11 12 2 8 6 3 5 7 9 10 2 4 

F18 

mean 3 7.428352 3.598769 3.598769 3.59877 3.59878 3.598769 3.598792 11.18138 6.412647 6.068332 3.598769 3.598769 
best 3 3.002614 3.000878 3.000878 3.000879 3.000882 3.000878 3.000878 3.000843 3.013279 3.00179 3.000879 3.000878 
worst 3 31.47844 7.190825 7.190825 7.190826 7.190831 7.190826 7.19087 86.69911 28.73222 28.20614 7.190825 7.190825 
std 1.57E-15 12.39497 1.654736 1.654736 1.654735 1.654731 1.654736 1.654737 33.05035 8.045268 10.12022 1.654736 1.654736 
median 3 3.203033 3.11195 3.11195 3.11195 3.111964 3.11195 3.11195 3.106629 4.693452 3.162393 3.111951 3.11195 
rank 1 12 3 4 7 8 5 9 13 11 10 6 2 

F19 

mean -3.86278 -3.85393 -3.85407 -3.85407 -3.85309 -3.85272 -3.85407 -3.85197 -3.85413 -3.73129 -3.83106 -3.85407 -3.85407 
best -3.86278 -3.86276 -3.86278 -3.86278 -3.86256 -3.86278 -3.86278 -3.86276 -3.86268 -3.86277 -3.85373 -3.86278 -3.86278 
worst -3.86278 -3.82658 -3.82689 -3.82689 -3.82665 -3.82678 -3.82689 -3.82649 -3.82851 -3.31987 -3.77948 -3.82689 -3.82689 
std 3.06E-15 1.18E-02 1.16E-02 1.16E-02 1.11E-02 1.18E-02 1.16E-02 1.14E-02 1.09E-02 1.76E-01 2.83E-02 1.16E-02 1.16E-02 
median -3.86278 -3.85408 -3.85415 -3.85415 -3.85374 -3.8533 -3.85415 -3.8529 -3.85419 -3.73218 -3.83449 -3.85415 -3.85415 
rank 1 6 3 3 7 8 5 9 2 11 10 4 3 

F20 

mean -3.322 -3.18573 -3.21805 -3.26912 -3.19858 -3.21307 -3.2267 -3.20495 -3.21171 -2.56654 -2.77361 -3.2215 -3.25324 
best -3.322 -3.26324 -3.31577 -3.31577 -3.29979 -3.31576 -3.31577 -3.31071 -3.31403 -3.22929 -3.05177 -3.2891 -3.31577 
worst -3.322 -2.98585 -3.0732 -3.22501 -2.96297 -3.02701 -3.11916 -3.05619 -3.06896 -1.85588 -1.76712 -3.13146 -3.15744 
std 5.97E-16 0.089041 0.100858 0.027776 0.108921 0.102318 0.084727 0.103642 0.087284 0.430915 0.381955 0.078192 0.057732 
median -3.322 -3.19871 -3.2533 -3.27476 -3.21363 -3.23417 -3.26502 -3.23027 -3.2049 -2.62387 -2.84781 -3.23417 -3.2678 
rank 1 11 6 2 10 7 4 9 8 13 12 5 3 

F21 

mean -10.1532 -6.32629 -5.75988 -7.15746 -6.85362 -9.11209 -8.66278 -9.10772 -6.02322 -7.48198 -5.25381 -9.79103 -8.23648 
best -10.1532 -9.30974 -10.1328 -10.1378 -9.44556 -10.1445 -10.1378 -10.1438 -10.1245 -10.0502 -5.60812 -10.1453 -10.1453 
worst -10.1532 -2.67925 -2.91651 -2.94365 -3.61378 -5.16941 -4.94259 -5.07451 -2.75776 -4.94259 -4.94247 -9.4797 -2.94365 
std 2.8E-15 3.323573 3.429165 4.169174 2.534973 2.191722 2.644992 2.234237 4.118955 2.668872 0.287213 0.287213 3.818368 
median -10.1532 -6.84722 -5.19094 -9.47976 -7.12446 -9.66389 -9.65576 -9.68701 -5.06923 -7.7078 -5.23938 -9.77661 -9.6876 
rank 1 10 12 8 9 3 5 4 11 7 13 2 6 

F22 

mean -10.4029 -7.39418 -6.51403 -9.84827 -7.90855 -10.0914 -8.3401 -8.0498 -6.95672 -8.03305 -5.36124 -10.0918 -9.75137 
best -10.4029 -9.88697 -10.3587 -10.3951 -9.63881 -10.3949 -10.3784 -10.3748 -10.32 -10.3929 -5.66449 -10.3951 -10.3951 
worst -10.4029 -3.18596 -2.94388 -5.40846 -4.28686 -9.66401 -3.48283 -2.11701 -2.02811 -4.93469 -4.93469 -9.66528 -3.5691 
std 4.72E-15 2.368753 4.176814 1.449131 2.106412 0.356691 3.178741 3.638883 4.539533 2.819459 0.356579 0.356579 1.987714 
median -10.4029 -7.88166 -5.12907 -10.1313 -8.20216 -10.1349 -9.74675 -9.71899 -7.64722 -9.0997 -5.40504 -10.1356 -10.1313 
rank 1 10 12 4 9 3 6 7 11 8 13 2 5 

F23 

mean -10.5364 -6.58572 -6.6397 -10.0809 -8.12183 -10.3022 -9.34622 -8.56444 -7.51932 -9.07171 -5.48951 -10.3026 -10.3026 
best -10.5364 -9.87879 -10.513 -10.5244 -9.7604 -10.5241 -10.5243 -10.5234 -10.4352 -10.4468 -5.7113 -10.5244 -10.5244 
worst -10.5364 -3.21988 -2.92646 -6.01233 -4.83532 -10.0579 -5.33925 -2.54813 -2.88379 -5.37894 -5.24503 -10.0581 -10.0581 
std 3.72E-15 3.151682 4.612978 1.304319 1.995703 0.208558 2.662232 3.874934 4.349108 1.820117 0.208735 0.208734 0.208734 
median -10.5364 -7.096 -4.36246 -10.2535 -8.78108 -10.2708 -10.2221 -10.1502 -10.1095 -9.44035 -5.45793 -10.271 -10.271 
rank 1 12 11 5 9 4 6 8 10 7 13 3 2 

Sum rank 10 96 81 48 73 66 51 66 97 87 105 34 45 
Mean rank 1 9.6 8.1 4.8 7.3 6.6 5.1 6.6 9.7 8.7 10.5 3.4 4.5 
Total rank 1 10 8 4 7 6 5 6 11 9 12 2 3 

 

 

The implementation results of DOA and 

competing algorithms on four engineering design 

problems are reported in Table 4. Based on the 

optimization results, DOA is the first best optimizer 

in handling all four engineering design problems. 

Analysis of simulation results shows that DOA has 

an effective performance to tackle optimization tasks 

in real world and engineering applications by 

providing better results compared to competing 

algorithms. 

6. Conclusions and future Works 

In this paper, a new human-inspired metaheuristic 

algorithm named Dollmaker Optimization Algorithm 

(DOA) was introduced, which imitates the doll 

making process.   
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Figure. 1 Convergence curves of benchmark functions (F1 to F23) 

 

 

The basic inspiration of DOA is derived from the 

strategies and skills of the dollmaker when making 

large changes to the doll-making materials and 

making precise changes to the made doll in order to 

bring its shape closer to the pattern. The theory of 

DOA was expressed and mathematically modeled in 

two phases (i) exploration based on the simulation of 

large changes made on doll-making materials and (ii) 

exploitation based on the simulation of small changes 

on the made dolls.  
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Table 4. Optimization results of engineering applications 
 DOA GA PSO GSA TLBO MVO GWO WOA TSA MPA RSA AVOA WSO 

PV 

mean 5882.901 31918.61 42099.39 21123.16 28408.74 6061.177 6463.371 7722.295 6214.961 5882.901 10512.38 6242.74 5882.913 
best 5882.901 12949.24 15010.37 6759.244 13525.85 5889.198 5926.998 6346.685 5909.136 5882.901 6593.516 5882.908 5882.901 

worst 5882.901 57355.81 88182.59 45002.15 43088.14 7061.063 7144.982 10167.43 7243.051 5882.901 19104.28 7187.374 5883.139 
std 2.94E-12 16500.98 32344.02 15934.73 13579.14 537.6844 530.3106 1879.148 617.8341 4.61E-05 4375.98 593.5255 0.083873 

median 5882.901 30708.89 35346.85 20194.28 27622.94 5905.27 6437.443 7272.22 5981.248 5882.901 10137.87 6171.503 5882.901 
rank 1 12 13 10 11 4 7 8 5 2 9 6 3 

SR 

mean 2996.348 8.93E+13 1.32E+14 3511.18 4.95E+13 3004.496 3031.932 3251.509 3029.562 2996.348 3230.905 3001.394 2996.35 
best 2996.348 4330.813 4772.934 3269.576 4521.608 2999.1 3005.025 3008.508 3012.594 2996.348 3094.299 2996.351 2996.348 

worst 2996.348 6.33E+14 6.39E+14 4138.362 2.27E+14 3011.336 3064.544 4517.361 3046.542 2996.348 3330.88 3008.48 2996.367 
std 1.47E-12 2.26E+14 2.86E+14 337.977 9.40E+13 5.250691 25.75427 647.0683 13.02429 1.26E-05 92.45705 6.220521 0.006835 

median 2996.348 4.98E+13 3.74E+13 3475.09 2.57E+13 3004.427 3033.202 3130.586 3029.147 2996.348 3220.991 3001.319 2996.349 
rank 1 12 13 10 11 5 7 9 6 2 8 4 3 

WB 

mean 1.724852 5.66E+12 6.79E+13 2.307414 2.54E+13 1.727077 1.745007 2.397287 1.74245 1.724852 2.265817 1.745101 1.724852 
best 1.724852 2.564353 2.66433 1.770318 1.977066 1.725508 1.729279 1.791787 1.732598 1.724852 1.918369 1.724895 1.724852 

worst 1.724852 1.10E+14 8.22E+14 2.583019 4.29E+14 1.730919 1.776049 4.300487 1.748876 1.724852 3.804345 1.798654 1.724852 
std 1.08E-15 3.88E+13 3.07E+14 0.315295 1.51E+14 0.002512 0.02089 1.155755 0.008069 3.72E-08 0.630209 0.034926 3.38E-09 

median 1.724852 4.975513 5.083608 2.319265 4.800336 1.726406 1.741559 2.033636 1.743335 1.724852 2.181651 1.736944 1.724852 
rank 1 11 13 9 12 4 6 10 5 3 8 7 2 

TCS 

mean 0.012665 0.023632 3.62E+13 0.019486 0.017921 0.012717 0.016715 0.013413 0.01291 0.012665 0.017366 0.012987 0.012666 
best 0.012665 0.01796 0.017315 0.014172 0.01738 0.012688 0.012893 0.012688 0.012712 0.012665 0.013034 0.012667 0.012665 

worst 0.012665 0.03219 3.62E+14 0.024328 0.018478 0.012736 0.017603 0.015233 0.013282 0.012665 0.086405 0.014007 0.012671 
std 1.54E-18 0.005797 1.76E+14 0.005154 0.000518 1.71E-05 0.002238 0.001355 0.000224 4.84E-09 0.025867 0.000595 1.91E-06 

median 0.012665 0.022861 0.017315 0.019165 0.017865 0.012721 0.017343 0.013096 0.012918 0.012665 0.013213 0.012839 0.012665 
rank 1 12 13 11 10 4 8 7 5 2 9 6 3 

Sum rank 4 47 52 40 44 17 28 34 21 9 34 23 11 
Mean rank 1 11.75 13 10 11 4.25 7 8.5 5.25 2.25 8.5 5.75 2.75 
Total rank 1 11 12 9 10 4 7 8 5 2 8 6 3 

The performance of DOA was evaluated in the 

optimization of twenty-three standard benchmark 

functions of unimodal, high-dimensional multimodal, 

and fixed-dimensional multimodal types. The 

optimization findings showed that DOA has achieved 

good results with its high ability in exploration, 

exploitation, and balance them during the search 

process in the solution space. In order to measure the 

quality of DOA in the optimization process, the 

obtained results were compared with the performance 

of twelve well-known algorithms. The simulation 

findings showed that DOA has provided superior 

performance by providing better results and getting 

the rank of the first best optimizer compared to 

competing algorithms. In addition, the performance 

of DOA was evaluated in real-world applications to 

address four engineering design issues The 

simulation findings showed that DOA has an 

effective performance in optimizing real-world and 

engineering applications by achieving better values 

for design variables and objective functions 

compared to competing algorithms.  

The introduction of DOA raises several research 

proposals for future studies. The development of 

binary and multi-objective versions of DOA is one of 

the most prominent research proposals of this paper. 

Using DOA to solve optimization problems in 

different sciences and real-world applications are 

among the other suggestions of this paper for further 

studies.  
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