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Abstract: This paper introduces a novel nature-inspired optimization algorithm called the Addax Optimization 

Algorithm (AOA), which emulates the natural behavior of addax in the wild. The core inspiration for AOA is drawn 

from the addax's foraging strategy and digging skills. The theoretical foundation of AOA is expounded and 

mathematically modeled in two phases: (i) exploration based on modeling addax position change during foraging and 

(ii) exploitation based on addax position change modeling during digging. The efficiency of AOA in handling real-

world engineering applications is evaluated on four engineering design problems. The optimization results show that 

AOA is achieved effective solutions for optimization problems with its high ability in exploration, exploitation, and 

establishing a balance between them during the search process. The outcomes derived from applying AOA are 

compared with the performance of twelve well-known optimization algorithms. The simulation results show that AOA 

is provided superior performance compared to competitor algorithms, by achieving better results and ranking as the 

first best optimizer. The simulation findings show that the proposed AOA approach has an effective performance for 

handling optimization tasks in engineering applications. 

Keywords: Optimization, Optimization algorithm, Engineering application, Bio-inspired, addax, Exploration, 

Exploitation. 

 

 

1. Introduction 

Optimization problems encompass a variety of 

potential solutions, with the ultimate aim of attaining 

the best feasible outcome known as the global 

optimum [1]. In mathematical terms, these problems 

typically consist of decision variables, constraints, 

and an objective function. The objective in 

optimization is to set the decision variables within the 

constraints so that the objective function reaches its 

optimal value, whether it be a maximum or minimum 

[2]. Across mathematics, engineering, industry, real-

world scenarios, and other scientific disciplines, a 

multitude of optimization challenges exist that 

require specialized techniques for solution [3, 4].  

Metaheuristic algorithms stand out as highly 

effective stochastic methods for addressing 

optimization challenges. By employing random 

search within the problem-solving realm, along with 
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random operators and trial and error processes, these 

algorithms can uncover suitable solutions [5]. The 

nature of this random optimization approach means 

that there is no assurance or promise of reaching the 

global optimum with the use of metaheuristic 

algorithms. Hence, the solutions achieved through 

these methods are deemed quasi-optimal. This 

realization, coupled with the aspiration to attain 

improved quasi-optimal results, serves as the primary 

driving force and motivation for researchers working 

on advancing various metaheuristic algorithms [6]. 

Two crucial concepts that play a key role in the 

effective implementation of metaheuristic algorithms 

for navigating random searches within problem-

solving spaces are exploration and exploitation. 

Exploration refers to the algorithm's capacity for 

conducting broad searches across the problem-

solving space, allowing it to avoid getting trapped in 

local solutions and to pinpoint global optimal regions 

through thorough exploration. Exploitation, on the 

other hand, refers to the algorithm's ability to conduct 

focused searches around identified solutions and 

promising areas within the problem-solving space, 

aiming to yield improved solutions. Alongside the 

important roles of exploration and exploitation, a 

critical factor contributing to the success of 

metaheuristic algorithms in optimization is the 

skillful balance between these two aspects 

throughout the search process [7]. 

In the realm of metaheuristic algorithms, a key 

question arises regarding the need for continued 

development and introduction of new algorithms, 

despite the plethora of existing ones. The No Free 

Lunch (NFL) theorem [8] addresses this by 

highlighting that the effectiveness of a metaheuristic 

algorithm in solving specific optimization problems 

does not guarantee similar success across all 

problems. This implies that no single algorithm can 

be universally deemed the best optimizer for all 

optimization tasks. The NFL theorem underscores the 

unpredictability of implementing a metaheuristic 

algorithm in any given optimization scenario, fueling 

ongoing research efforts to devise more efficient 

solutions through the innovation of new 

metaheuristic algorithms. 

This paper introduces a novel and innovative 

contribution through the development of the Addax 

Optimization Algorithm (AOA), a bio-inspired 

metaheuristic designed to tackle optimization 

challenges across diverse scientific fields and 

engineering applications. The distinctive 

contributions of this research are summarized as 

follows: 

• AOA is crafted by emulating the natural 

behaviors of addax in their habitat.  

• The basic inspiration of AOA is taken from 

addax's foraging and digging capabilities.  

• The theory of AOA is articulated and 

mathematically modeled in two phases: (i) 

exploration based on the simulation of the 

foraging process and (ii) exploitation based on the 

simulation of the drilling skill.  

• The effectiveness of AOA in handling real-world 

engineering applications is challenged to 

optimize four engineering design problems.  

• The outcomes obtained from AOA are compared 

with the performance of twelve widely 

recognized metaheuristic algorithms. 

The paper is organized as follows: Section 2 

presents the literature review, followed by the 

introduction and modeling of the proposed Addax 

Optimization Algorithm (AOA) in Section 3. The 

efficiency of AOA in addressing real-world 

engineering applications is explored in Section 4. 

Section 5 concludes the paper with recommendations 

for future research. 

2. Literature review 

Inspired by natural processes, living organisms, 

physics laws, genetics, biology, human behavior, and 

other natural evolutionary phenomena, metaheuristic 

algorithms have been created. They are classified into 

five groups based on their design inspiration: swarm-

based, evolutionary-based, physics-based, human-

based, and game-based approaches. 

Swarm-based metaheuristic algorithms mimic the 

collective behavior seen in various creatures in nature 

such as birds, animals, insects, reptiles, and aquatic 

organisms. Some of the well-known examples of 

these algorithms include Ant Colony Optimization 

(ACO) [9], Particle Swarm Optimization (PSO) [10], 

Artificial Bee Colony (ABC) [11], and Firefly 

Algorithm (FA) [12]. ACO is inspired by the 

effective communication strategy of ant swarms in 

finding the shortest path to food sources. PSO draws 

from the group movements of fish and birds to 

effectively locate food. ABC models the hierarchical 

behaviors within a bee colony to efficiently gather 

food. FA takes its cue from the coordination and 

exchange of information among fireflies. The diverse 

abilities and behaviors seen in wildlife, like hunting, 

foraging, migrating, and digging, are harnessed in 

developing metaheuristic algorithms such as: Termite 

Alate Optimization Algorithm (TAOA) [13], Reptile 

Search Algorithm (RSA) [14], Tunicate Swarm 

Algorithm (TSA) [15], Electric Eel Foraging 

Optimization (EEFO) [16], Grey Wolf Optimizer 

(GWO) [17], African Vultures Optimization 

Algorithm (AVOA) [18], Whale Optimization 
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Algorithm (WOA) [19], and White Shark Optimizer 

(WSO) [20]. 

Evolutionary-inspired metaheuristic algorithms 

are created by mimicking principles and concepts 

from biological and genetic sciences. These 

algorithms are influenced by ideas like natural 

selection, survival of the fittest, Darwin's theory of 

evolution, and genetic principles. Genetic Algorithm 

(GA) [21] and Differential Evolution (DE) [22] are 

among the most well-known algorithms in this 

category, developed by replicating the natural 

reproduction process and incorporating genetic 

concepts like mutation, crossover, and selection. 

Artificial Immune System (AIS) design is based on 

mimicking the defense mechanisms of the human 

body against pathogens and illnesses [23].  

Physic-based metaheuristic algorithms involve 

mimicking various phenomena, cycles, processes, 

laws, forces, and other concepts from the field of 

physics. Simulated Annealing (SA) is a well-known 

example of such algorithms, which mirrors the 

melting and freezing process of annealing metals, 

where metals are heated to a liquid state and then 

slowly cooled to form crystalline structures [24]. 

Physical forces and Newton's laws of motion are 

employed in designing algorithms such as: Spring 

Search Algorithm (SSA) by imitating Hooke's law 

and the tension force of a spring in a system 

consisting of weights connected to springs [25], 

Gravitational Search Algorithm (GSA) by imitating 

the gravitational attraction between masses that are at 

different distances from each other [26], and 

Momentum Search Algorithm (MSA) by imitating 

the force resulting from the impact of two balls [27]. 

Human-based metaheuristic algorithms are 

created by mimicking the behaviors, choices, 

thoughts, decisions, communication, interactions, 

and other activities exhibited by humans in their 

personal and social lives. Among these algorithms, 

Teaching-Learning Based Optimization (TLBO) 

stands out as it replicates the educational dynamics 

between teachers and students working together in a 

classroom setting [28]. The Mother Optimization 

Algorithm (MOA) draws its inspiration from Eshrat's 

attentive care towards her children [6]. Similarly, the 

Election-Based Optimization Algorithm (EBOA) 

models the strategies employed in elections and 

voting systems [29]. Reflecting on the importance of 

collaboration in team settings, the Teamwork 

Optimization Algorithm (TOA) focuses on 

emphasizing cooperation and teamwork to attain 

common goals [30]. Other examples of human-

inspired algorithms include the: Random Selected 

Leader Based Optimizer (RSLBO) [31], Multi leader 

optimizer (MLO) [32], and Mixed Leader Based 

Optimizer (MLBO) [33]. 

Game-based metaheuristic algorithms are 

developed by imitating the rules of individual and 

group games as well as the behavior of players, 

coaches, referees and other influential people in these 

games. Darts Game Optimizer (DGO) is one of the 

most prominent game-based metaheuristic 

algorithms, which is inspired by the efforts of players 

in the game of darts in order to collect more points in 

their throws towards the scoreboard [34]. The design 

of Golf Optimization Algorithm (GOA) is imitated 

the skills of players in hitting the ball in the game of 

golf to put the ball in the hole [35]. Hide Object Game 

Optimizer (HOGO) is introduced based on players' 

efforts to find the hidden object on the playing field 

[36]. Holding league matches and competition 

between clubs has been a source of inspiration in 

designing algorithms such as: Football Game Based 

Optimization (FGBO) [37] and Volleyball Premier 

League (VPL) [38]. Some other game-based 

metaheuristic algorithms are Shell game optimization 

(SGO) [39], Orientation Search Algorithm (OSA) 

[40], Puzzle Optimization Algorithm (POA) [41], 

Ring toss game based optimization (RTGBO) [42], 

and Dice Game Optimizer (DGO) [43]. 

According to the literature review, there hasn't 

been any metaheuristic algorithm developed yet that 

is influenced by the natural behavior of addax in their 

habitat. Nevertheless, the foraging strategy and 

digging prowess displayed by addax showcase 

intelligent behaviors that could serve as the 

foundation for a novel optimizer. To fill this research 

gap on metaheuristic algorithms, this paper 

introduces a novel algorithm that is inspired by the 

mathematical representation of addax natural 

behaviors in the wild, as elaborated in the subsequent 

section. 

3. Addax optimization Algorithm 

In this section, first, the basic inspiration 

employed in designing the proposed Addax 

Optimization Algorithm (AOA) approach is 

described, then its implementation steps are 

mathematically modeled. 

3.1 Inspiration of AOA 

The addax, also known as the screwhorn antelope 

and white antelope, is a species of antelope that native 

to the Sahara Desert. This animal's coat varies in 

color based on the season, with a nearly all-white or 

sandy blonde appearance in the summer and a 

grayish-brown color with white hindquarters and legs 

in the winter, along with long, brown hair on the head, 
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shoulders, and neck [44]. Addax has prominent red 

nostrils and scraggly beards. The head of this animal 

has black and brown patches. Black and long hair 

protrudes between the spiral and curved horns of the 

addax and ends in a short mane on the neck [45]. 

Females’ addaxes stand from 95 to 110 cm at the 

shoulder, with male from 105 to 115 cm. The body 

and head length are 120 to 130 cm in both sexes, with 

a long tail from 25 to 35 cm. The weight of females 

varies from 60 to 90 kg, and that of males varies from 

100 to 125 kg [44]. An image of the addax is shown 

in Fig. 1. 

Addax's diet mainly consists of grasses, and 

leaves of any available shrubs, leguminous herbs and 

bushes. Considering that addax can live without 

water for a long time, this animal is well adapted to 

live in its desert habitat. Addax herds consist of five 

to twenty members of both female and male species, 

led by the oldest female [46]. With its good digging 

ability, Addax digs inside the sand in order to rest and 

deal with the heat. Also, these dug depressions 

protect addax from sandstorms. Addax usually rests 

in shady and dug-out places and wander widely only 

to forage. This animal has a good ability to track 

rainfall and as a result moves to areas with more 

vegetation [47]. 

Within the natural behaviors exhibited by 

addaxes in their habitat, (i) the foraging strategy and 

(ii) digging skills stand out prominently. The 

proposed Addax Optimization Algorithm (AOA) 

leverages mathematical modeling of these intelligent 

activities in nature, as elaborated below. 

3.2 Algorithm Initialization 

The proposed AOA methodology presents a 

population-based metaheuristic algorithm where 

addaxes form the population. AOA excels in offering 

effective solutions to optimization challenges 

through an iterative process, harnessing the search 

capabilities of its members. Each addax defines 

 

 
Figure. 1 Addax taken from: free media Wikimedia 

Commons 

values for design variables based on its location in the 

problem-solving space. Consequently, the position of 

each addax within the population serves as a potential 

solution for the given problem. In the AOA 

framework, the habitat of addaxes mirrors the 

problem-solving space, with the position of each 

addax representing a candidate solution. 

Mathematically, the position of each addax, 

considered a candidate solution, can be represented 

as a vector with a length equal to the number of 

decision variables. Additionally, the AOA population, 

comprising addaxes and their associated vectors, can 

be formally modeled as a matrix using Eq. (1). The 

initial placement of addaxes in the problem-solving 

space is randomly initialized according to Eq. (2). 
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𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑) (2) 

 

In this context, 𝑋 denotes the population matrix 

of AOA, 𝑋𝑖  refers to the ith addax (candidate 

solution), and 𝑥𝑖,𝑑 signifies its dth dimension in the 

search space (decision variable). N represents the 

number of addax in the population, m is the count of 

decision variables, r is a random number within the 

interval [0,1], while 𝑙𝑏𝑑 and 𝑢𝑏𝑑 stand for the lower 

and upper bounds of the dth decision variable, 

respectively. 

Given that the position of each addax serves as a 

candidate solution, the corresponding objective 

function for each addax can be assessed. The values 

evaluated for the objective function form a vector as 

per Eq. (3). 
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In this context, F represents the vector of assessed 

objective functions, where 𝐹𝑖 denotes the evaluation 

of the objective function based on the ith addax. 

The computed values of the objective function 

serve as effective indicators for assessing the 

performance of each addax in offering a potential 

solution. In line with this, the best calculated value of 

the objective function aligns with the best member of 
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the addax group, while the worst calculated value 

corresponds to the worst member. Given that AOA 

operates on an iterative basis with the addax's 

position being adjusted in every iteration, it becomes 

imperative to update and retain the best member as 

the prime candidate solution in each iteration.  

3.3 Mathematical modelling of AOA 

The proposed AOA approach is a population-

based metaheuristic algorithm that imitates the 

natural behavior of addax in the wild in order to 

update the position of its population members in the 

problem solving space. Addaxes have a high ability 

to track rain and identify areas with more vegetation 

in order to foraging. In addition, this animal has a 

high skill in digging in order to create suitable 

depressions in order to rest and deal with sandstorms. 

These clever addax behaviors are the main sources of 

inspiration in the design of AOA. According to this, 

in AOA design, the position of each addax in the 

problem solving space is updated in each iteration 

based on two phases (i) exploration based on foraging 

process simulation and (ii) exploitation based on 

digging skill simulation. Each of these update phases 

is described in detail below and is mathematically 

modeled.  

3.3.1 Phase 1: foraging process (exploration 

phase)  

During the first phase of AOA, the adjustment of 

the population members' positions in the problem-

solving space is determined by mathematically 

modeling the shifts observed in the addaxes' positions 

during foraging. Residing in arid landscapes, addaxes 

primarily feed on grasses, shrub leaves, leguminous 

plants, herbs, and existing bushes. Their adept 

foraging process stems from their ability to track 

rainfall and locate areas with abundant vegetation. 

Despite being part of a herd, addaxes conduct 

individual and extensive searches to locate food 

sources. The extensive positional changes in addaxes 

during foraging are modeled in AOA, resulting in 

significant shifts in the positions of population 

members within the problem-solving space. 

Consequently, this enhances the algorithm's 

exploration capability for global search management.  

In the AOA design, each addax considers the 

positions of other addaxes with better objective 

function values as suitable foraging areas, as defined 

by Eq. (4).  

 

𝐶𝐴𝑖 = {𝑋𝑘: 𝐹𝑘 < 𝐹𝑖  𝑎𝑛𝑑 𝑘 ≠ 𝑖}, 
where 𝑖 = 1,2, … ,𝑁 and 𝑘 ∈ {1,2,… ,𝑁} 

(4) 

In this context, 𝐶𝐴𝑖 represents the set of potential 

areas with appropriate vegetation for foraging for the 

ith addax. 𝑋𝑘 denotes the population member with a 

better objective function value compared to the ith 

addax, and 𝐹𝑘 represents its objective function value. 

In the design of AOA, it is assumed that each 

addax randomly chooses one of these designated 

areas in order to forage. Based on the modeling of the 

movement of addax towards suitable vegetation areas 

in the foraging process, a new position for each 

member of the AOA population has been calculated 

using Eq. (5). Subsequently, if this new position 

results in an enhancement in the objective function 

value, it supersedes the previous position of the 

corresponding member as outlined in Eq. (6). 

 

𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + 𝑟𝑖,𝑗  ∙ (𝑆𝐴𝑖,𝑗 − 𝐼𝑖,𝑗 ∙ 𝑥𝑖,𝑗),   (5) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 ≤ 𝐹𝑖 ,

𝑋𝑖, 𝑒𝑙𝑠𝑒 ,
 (6) 

 

In this context, 𝑆𝐴𝑖  denotes the chosen area for 

foraging by the ith addax, 𝑆𝐴𝑖,𝑗  represents its jth 

dimension in that area. 𝑋𝑖
𝑃1  signifies the newly 

computed position for the ith addax, derived from the 

foraging phase of the proposed AOA, where 𝑥𝑖,𝑗
𝑃1 

denotes its jth dimension. 𝐹𝑖
𝑃1  corresponds to the 

objective function value for the ith addax in this 

phase. Additionally, 𝑟𝑖,𝑗  represents random numbers 

drawn from the interval [0, 1] , and 𝐼𝑖,𝑗  denotes 

randomly selected numbers, taking values of 1 or 2. 

3.3.2 Phase 2: digging skill (exploitation phase)  

In the second phase of AOA, the adjustment of 

population members' positions in the problem-

solving space is determined by mathematically 

modeling the shifts in the addaxes' positions during 

the sand-digging process. Addaxes start digging in 

shady places during the day and rest in the 

depressions created. This digging process and 

depressions also protect addaxes from sandstorms. 

As it is known, during the drilling process, the 

position of addaxes will have small changes. The 

modeling of these minor positional adjustments 

during digging leads to corresponding slight changes 

in the positions of AOA population members within 

the problem-solving space, thereby enhancing the 

algorithm's exploitation power for effective local 

search management.  

In the AOA design, informed by the modeled 

changes in addax positions during digging, a new 

position is computed for each AOA population 
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member using Eq. (7). Subsequently, if this new 

position results in an improvement in the objective 

function value, it supersedes the previous position of 

the corresponding member in accordance with Eq. (8). 

 

𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + (1 − 2 𝑟𝑖,𝑗) ∙  

𝑢𝑏𝑗 − 𝑙𝑏𝑗

𝑡
   (7) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 ≤ 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒 
 (8) 

 

In this context, 𝑋𝑖
𝑃2 denotes the newly calculated 

position for the ith addax, derived from the digging 

phase of the proposed AOA, 𝑥𝑖,𝑗
𝑃2  represents its 𝑗th 

dimension, 𝐹𝑖
𝑃2 corresponds to its objective function 

value, 𝑟𝑖,𝑗  represents random numbers drawn from 

the interval [0, 1] , and 𝑡  stands for the iteration 

counter. 

3.4 Repetition process, pseudocode, and flowchart 

of AOA 

The first iteration of AOA is completted by 

adjusting the location of all addaxes within the 

problem solution space according to the foraging and 

digging stages. Subsequently, the algorithm 

progresses to the next iteration with the revised addax 

positions and updated objective function values, 

utilizing Eqs. (4) to (8) for further enhancements until 

the final iteration. Each iteration updates and saves 

the best solution obtained up to that point. Upon the 

algorithm's completion, the best solution recorded 

throughout the iterations is identified as the ultimate 

AOA solution for the given problem. Algorithm 1 

presents the pseudocode of AOA implementation.  

4. AOA for real-world engineering 

applications 

One of the key applications of metaheuristic 

algorithms lies in their ability to address optimization 

challenges in real-world engineering applications. In 

this section, we have chosen four engineering design 

problems with the objective of assessing the 

effectiveness of AOA in tackling practical 

applications. The results obtained from AOA are 

compared with the performance of twelve well-

known algorithms: Genetic Algorithm (GA) [21], 

Particle Swarm Optimization (PSO) [10], 

Gravitational Search Algorithm (GSA) [26], 

Teaching-Learning Based Optimization (TLBO) [28], 

Grey Wolf Optimizer (GWO) [17], Multi-Verse 

Optimizer (MVO) [48], Marine Predator Algorithm 

(MPA) [49], Reptile Search Algorithm (RSA) [14], 

Tunicate Swarm Algorithm (TSA) [15], African 

Vultures Optimization Algorithm (AVOA) [18], 

Whale Optimization Algorithm (WOA) [19], and 

White Shark Optimizer (WSO) [20]. 

 

 

Algorithm 1. Pseudocode of AOA. 

Start AOA. 

1. 
Input problem information: variables, objective 

function, and constraints. 

2. Set AOA population size (N) and iterations (T). 

3. 
Generate the initial population matrix at random using 

Eq. (2). 𝑥𝑖,𝑑 ← 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑) 

4. Evaluate the objective function. 

5. 

 

For 𝑡 = 1 to T 

6.  For 𝑖 = 1 to 𝑁 

7.  Phase 1: foraging (exploration phase) 

8.   
Determine the candidate foraging area set for the ith 

addax using Eq. (4). 𝐶𝐴𝑖 ← {𝑋𝑘𝑖
: 𝐹𝑘𝑖

< 𝐹𝑖  𝑎𝑛𝑑 𝑘𝑖 ≠ 𝑖} 

9.   
Select the target foraging area for the ith addax at 

random. 

10.   
Calculate new position of ith addax using Eq. (5). 

𝑥𝑖,𝑑
𝑃1 ← 𝑥𝑖,𝑑 + 𝑟 ∙ (𝑆𝐴𝑖,𝑑 − 𝐼 ∙ 𝑥𝑖,𝑑) 

11.   Update ith addax using Eq. (6). 𝑋𝑖 ← {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 < 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
 

12.  Phase 2: digging (exploitation phase) 

13.   
Calculate new position of ith addax using Eq. (7). 

𝑥𝑖,𝑑
𝑃2 ← 𝑥𝑖,𝑑 + (1 − 2𝑟) ∙

(𝑢𝑏𝑑−𝑙𝑏𝑑)

𝑡
 

14.   Update ith addax using Eq. (8). 𝑋𝑖 ← {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 < 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
 

15.  end 

16.   Save the best candidate solution so far. 

17.  end  

18. 
 Output the best quasi-optimal solution obtained with 

the AOA. 

End AOA. 
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4.1 Pressure vessel design problem 

Pressure vessel design is proposed as an 

optimization challenge in engineering where 

minimizing construction cost is its main goal. The 

mathematical model of this design is as follows [50]: 

Consider: 𝑋 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑇𝑠, 𝑇ℎ , 𝑅, 𝐿]. 
Minimize: 𝑓(𝑥) = 0.6224𝑥1𝑥3𝑥4 +

1.778𝑥2𝑥3
2 + 3.1661𝑥1

2𝑥4 + 19.84𝑥1
2𝑥3. 

Subject to: 

𝑔1(𝑥) =  −𝑥1 + 0.0193𝑥3  ≤  0, 
𝑔2(𝑥) = −𝑥2 + 0.00954𝑥3 ≤  0, 

𝑔3(𝑥) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1296000 ≤  0, 

𝑔4(𝑥) = 𝑥4 − 240 ≤  0. 
With 

 0 ≤ 𝑥1, 𝑥2 ≤ 100  and  10 ≤ 𝑥3, 𝑥4 ≤ 200. 
 

The results of applying the AOA and alternative 

algorithms to the pressure vessel design problem are 

illustrated in Table 1. 

Based on the simulation findings, AOA has 

successfully attained the optimal design, 

characterized by specific values for the design 

variables—namely, (0.7780271, 0.3845792, 

40.312284, 200)—and an associated objective 

function value of (5882.8955). Examination of the 

simulation results suggests that AOA surpasses its 

competitors in optimizing pressure vessel design, 

yielding superior outcomes. 

4.2 Speed reducer design problem 

Speed reducer design is proposed as an 

optimization challenge in engineering where 

minimizing the weight of the speed reducer is its 

main goal. The mathematical model of this design is 

as follows [51]: 

Consider: 𝑋 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 , 𝑥6 , 𝑥7] =
[𝑏,𝑚, 𝑝, 𝑙1, 𝑙2, 𝑑1, 𝑑2]. 

Minimize: 𝑓(𝑥) = 0.7854𝑥1𝑥2
2(3.3333𝑥3

2 +
14.9334𝑥3 − 43.0934) − 1.508𝑥1(𝑥6

2 + 𝑥7
2) +

7.4777(𝑥6
3 + 𝑥7

3) + 0.7854(𝑥4𝑥6
2 + 𝑥5𝑥7

2). 

Subject to: 

𝑔1(𝑥) =
27

𝑥1𝑥2
2𝑥3

− 1 ≤  0, 

 𝑔2(𝑥) =
397.5

𝑥1𝑥2
2𝑥3

− 1 ≤  0, 

𝑔3(𝑥) =
1.93𝑥4

3

𝑥2𝑥3𝑥6
4 − 1 ≤  0, 

 𝑔4(𝑥) =
1.93𝑥5

3

𝑥2𝑥3𝑥7
4 − 1 ≤  0, 

𝑔5(𝑥) =
√(

745𝑥4

𝑥2𝑥3
)
2
+ 16.9 × 106

110𝑥6
3 − 1 ≤  0, 

𝑔6(𝑥)  =  
√(

745𝑥5

𝑥2𝑥3
)
2
+ 157.5 × 106

85𝑥7
3 − 1 ≤  0, 

𝑔7(𝑥) =
𝑥2𝑥3

40
− 1 ≤  0, 

𝑔8(𝑥) =
5𝑥2

𝑥1
− 1 ≤  0, 

𝑔9(𝑥) =
𝑥1

12𝑥2
− 1 ≤  0, 

𝑔10(𝑥) =
1.5𝑥6 + 1.9

𝑥4
− 1 ≤  0, 

𝑔11(𝑥) =
1.1𝑥7 + 1.9

𝑥5
− 1 ≤  0. 

With  

2.6 ≤ 𝑥1 ≤ 3.6, 0.7 ≤ 𝑥2 ≤ 0.8, 17 ≤ 𝑥3 ≤ 28, 
7.3 ≤ 𝑥4 ≤ 8.3, 7.8 ≤ 𝑥5 ≤ 8.3, 
 2.9 ≤ 𝑥6 ≤ 3.9,   and   5 ≤ 𝑥7 ≤ 5.5 . 

 

Table 2 exhibits the outcomes of implementing 

the AOA and rival algorithms for the speed reducer 

design problem. Based on the simulation findings, 

AOA has successfully attained the optimal design, 

characterized by specific values for the design 

variables—namely, (3.5, 0.7, 17, 7.3, 7.8, 3.3502147, 

5.2866832)—and an associated objective function 

value of (2996.3482). Upon comparing the 

simulation results, it can be inferred that AOA excels 

in optimizing the speed reducer design compared to 

its competitors. This superiority is evident in the 

improved values achieved for both the objective 

function and design variables. 

4.3 Welded beam design problem 

The welded beam design is suggested as an 

engineering optimization issue, with the primary 

objective of decreasing the welded beam's fabrication 

cost. The mathematical model for this design is as 

follows [19]: 

Consider:  𝑋 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [ℎ, 𝑙, 𝑡, 𝑏]. 
Minimize:  

𝑓(𝑥) = 1.10471𝑥1
2𝑥2 + 0.04811𝑥3𝑥4 (14.0 + 𝑥2). 

Subject to: 

𝑔1(𝑥) =  𝜏(𝑥) − 13600 ≤  0, 
𝑔2(𝑥) =  𝜎(𝑥) − 30000 ≤  0, 
𝑔3(𝑥) =  𝑥1 − 𝑥4 ≤  0,   
𝑔4(𝑥) = 0.10471𝑥1

2 + 0.04811𝑥3𝑥4(14 + 𝑥2)
− 5.0 ≤  0, 

𝑔5(𝑥) =  0.125 − 𝑥1 ≤  0,   
𝑔6(𝑥) =  𝛿 (𝑥) −  0.25 ≤  0, 
𝑔7(𝑥) =  6000 − 𝑝𝑐  (𝑥) ≤  0. 
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Where 

𝜏(𝑥) = √(𝜏′)2 + (2𝜏𝜏′)
𝑥2

2𝑅
+ (𝜏")2 , 

𝜏′ =
6000

√2𝑥1𝑥2

, 

𝜏" =
𝑀𝑅

𝐽
,𝑀 = 6000(14 +

𝑥2

2
),   

𝑅 = √
𝑥2

2

4
+ (

𝑥1 + 𝑥3

2
)
2

, 

 𝐽 = 2 {𝑥1𝑥2√2 [
𝑥2

2

12
+ (

𝑥1 + 𝑥3

2
)
2

]} ,    

𝜎(𝑥) =
504000

𝑥4𝑥3
2  , 

𝛿 (𝑥) =
65856000

(30 ∙ 106)𝑥4𝑥3
3  , 

𝑝𝑐  (𝑥) =
4.013(30 ∙ 106)√

𝑥3
2𝑥4

6

36

196
(1

−
𝑥3

28
√

30 ∙ 106

4(12 ∙ 106)
) . 

With  

 0.1 ≤ 𝑥1, 𝑥4 ≤ 2   and   0.1 ≤ 𝑥2, 𝑥3 ≤ 10. 
 

The outcomes of addressing the welded beam 

design challenge using the AOA and alternative 

techniques are presented in Table 3. According to the 

simulation results, AOA has produced the optimal 

design, characterized by specific values for the design 

variables—namely, (0.2057296, 3.4704887, 

9.0366239, 0.2057296)—and an associated objective 

function value of (1.7246798). The results indicate 

that AOA surpasses competing algorithms in tackling 

the welded beam design challenge, yielding superior 

values for both design variables and the objective 

function. 

4.4 Tension/compression spring design problem 

The tension/compression spring is an 

optimization challenge in engineering with the main 

goal of minimizing construction costs. The 

mathematical model used for this design is outlined 

in [19]: 

Consider:  𝑋 = [𝑥1, 𝑥2, 𝑥3 ] = [𝑑, 𝐷, 𝑃]. 
Minimize:  𝑓(𝑥) = (𝑥3 + 2)𝑥2𝑥1

2. 
Subject to: 

𝑔1(𝑥) =  1 −
𝑥2

3𝑥3

71785𝑥1
4  ≤  0, 

𝑔2(𝑥) =
4𝑥2

2 − 𝑥1𝑥2

12566(𝑥2𝑥1
3)

+
1

5108𝑥1
2 − 1 ≤  0, 

𝑔3(𝑥) =  1 −
140.45𝑥1

𝑥2
2𝑥3

≤  0 

𝑔4(𝑥) =
𝑥1+𝑥2

1.5
− 1 ≤  0,       

With  

0.05 ≤ 𝑥1 ≤ 2, 0.25 ≤ 𝑥2 ≤ 1.3     
and    2 ≤  𝑥3 ≤ 15. 

 

Results shown in Table 4 illustrate how the AOA 

outperformed competitor algorithms when tackling 

the tension/compression spring design problem. 

Upon analyzing the simulation outcomes, it is clear 

that AOA is delivered the optimal design, with design 

variable values of (0.0516891, 0.3567177, 

11.288966) and objective function value of 

(0.0126019). These results indicate that AOA 

outshines its competitors by providing better values 

for design variables and demonstrating superior 

performance in optimizing tension/compression 

spring design. 

5. Conclusions and future Works 

This paper introduces a novel bio-inspired 

metaheuristic algorithm named the Addax 

Optimization Algorithm (AOA), which mimics the 

behavior of the addax in its natural environment. 

Drawing on the natural foraging and sand-digging 

strategies of the addax, the AOA algorithm was 

developed. The approach of AOA was delineated and 

further formalized into two key phases: (i) 

exploration based on the modeling of addax position 

change during foraging and (ii) exploitation based on 

the addax position change modeling during digging. 

To assess its effectiveness in real-world engineering 

applications, AOA was applied to address four 

engineering design challenges. The optimization 

outcomes revealed that AOA excels in exploration, 

exploitation, and maintaining a balance between 

them throughout the search process, leading to 

effective solutions for optimization problems. The 

performance of AOA was then benchmarked against 

twelve well-known metaheuristic algorithms to 

gauge its efficacy. The findings from the simulation 

revealed that AOA outperformed the other 

algorithms in the competition by delivering superior 

results across all four studied engineering design and 

securing the overall top position as the best optimizer. 

The obtained results showed that AOA, while 

providing better results compared to competitor 

algorithms, has effective performance for handling 

optimization tasks in real-world engineering 

applications. 
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Table 1. Optimization results of pressure vessel design 

Algorithm 
Optimum cost Optimum variables 

 Ts Th R L 
AOA 5882.8955 0.7780271 0.3845792 40.312284 200 
WSO 5882.9778 0.7858894 0.3884649 40.719594 202.01889 
AVOA 5882.9669 0.7858899 0.3884658 40.719684 202.01732 
RSA 7408.5687 1.1584247 0.6097612 58.998619 57.111334 
MPA 5882.9622 0.7858872 0.3884644 40.719541 202.01933 
TSA 5953.9718 0.798104 0.4111007 41.352501 193.93073 
WOA 6170.1676 0.8857063 0.4381857 45.145186 152.54675 
MVO 6087.5684 0.8859536 0.4375393 45.829139 143.13338 
GWO 5900.966 0.7932495 0.3935973 41.093706 196.90515 
TLBO 9902.6437 1.49906 0.5234439 52.808242 95.565562 
GSA 10421.604 1.0612011 0.9725151 44.186921 187.04202 
PSO 9295.3223 1.4879777 0.6285249 64.254793 40.025537 
GA 9829.8871 1.342597 0.7295122 58.633793 67.896633 

 

Table 2. Optimization results of speed reducer design 

Algorithm 
Optimum cost Optimum variables 

 b M p l1 l2 d1 d2 
AOA 2996.3482 3.5 0.7 17 7.3 7.8 3.3502147 5.2866832 
WSO 2996.3783 3.5353539 0.7 17 7.3737433 7.8787892 3.3840554 5.3400841 
AVOA 2996.3782 3.5353535 0.7 17 7.373738 7.8 3.3840552 5.340084 
RSA 3119.3107 3.5960727 0.7 17 8.1226301 8.1824999 3.387919 5.4696083 
MPA 2996.3782 3.5353535 0.7 17 7.3737375 7.8 3.3840552 5.340084 
TSA 3008.0756 3.5438507 0.7 17 7.3900271 8.1876773 3.3843004 5.3424133 
WOA 3023.7141 3.5929776 0.7 17 7.3745971 8.0166892 3.3915647 5.3401318 
MVO 3005.3188 3.5368369 0.7 17 7.3743303 8.1099271 3.3968232 5.3402335 
GWO 2999.8997 3.5353698 0.7 17.17284 7.5673929 7.903132 3.3878193 5.3403164 
TLBO 4479.4184 3.5723089 0.709704 23.313923 7.9016629 8.1061982 3.5903956 5.3747847 
GSA 3110.0138 3.5504465 0.7088844 17.4149 7.7183329 7.9626496 3.4226368 5.4054777 
PSO 3198.2916 3.540745 0.7071182 17.893511 7.4393297 8.0244587 3.5456123 5.3778941 
GA 3224.9986 3.5867475 0.7107371 17.707845 7.6669631 7.9157848 3.6155179 5.3793806 

 

Table 3. Optimization results of welded beam design 

Algorithm 
Optimum cost Optimum variables 

 h l t b 
AOA 1.7246798 0.2057296 3.4704887 9.0366239 0.2057296 
WSO 1.7251719 0.2075889 3.5102894 9.1278723 0.2078091 
AVOA 1.7258677 0.2070851 3.5212134 9.127802 0.2078123 
RSA 1.8939614 0.1981651 3.6348241 9.7123911 0.2157764 
MPA 1.7251719 0.2075889 3.5102895 9.1278723 0.2078091 
TSA 1.7339452 0.2061272 3.5370761 9.1432889 0.2084467 
WOA 1.7957382 0.2012686 3.4464077 9.7117063 0.2065802 
MVO 1.7303824 0.2055038 3.5511236 9.1477802 0.207753 
GWO 1.7265182 0.2070084 3.5242211 9.1288908 0.2078362 
TLBO 2.5751418 0.2774583 4.1882004 7.6537322 0.3522537 
GSA 1.9754131 0.258731 3.1343445 8.0354119 0.277623 
PSO 3.2306824 0.312711 3.5950047 8.0138356 0.4502653 
GA 2.4072838 0.2155475 5.8810755 8.2895482 0.2727565 

 

Table 4. Optimization results of tension/compression spring design 

Algorithm 
Optimum cost Optimum variables 

 d D P 
AOA 0.0126019 0.0516891 0.3567177 11.288966 
WSO 0.0126794 0.0517918 0.3505866 12.088642 
AVOA 0.01267001 0.0517415 0.3491414 12.094713 
RSA 0.0130152 0.0507401 0.322288 14.378692 
MPA 0.0126667 0.0520683 0.3569197 11.613394 
TSA 0.0127212 0.0515446 0.3441149 12.513285 
WOA 0.0126901 0.052371 0.3648092 11.3348 
MVO 0.0129838 0.0529374 0.3830476 11.677867 
GWO 0.0127019 0.051053 0.3332558 13.263881 
TLBO 0.0158164 0.0623273 0.7021824 6.4851944 
GSA 0.0129328 0.0543215 0.4125033 9.3291759 
PSO 0.0157373 0.0625764 0.7071115 5.972288 
GA 0.0164115 0.0654431 0.7852704 3.8973553 
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The introduction of AOA opens up several directs 

for future research endeavors. This study particularly 

highlights the potential for developing binary and 

multi-objective versions of AOA.  Also, using AOA 

to address optimization issues in various sciences and 

real-world applications are among the other research 

proposals of this paper for further work in the future. 
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