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Abstract: Nowadays, the most predominant cancer disease is Breast Cancer that has a higher death rate and women 

gender is the most affected by this disease. But detecting Breast Cancer in early stage is challenging as the malignance 

growth at this stage occurs in the duct that are undetected as symptoms are less. This paper addresses the challenge of 

early detection of Breast Cancer cells by proposing the fusion scheme of morphological and texture features of the 

cells for analysis. Morphological features such as the shape and marginal characteristics of the mass are considered as 

per the Breast Imaging Reporting and Data System (BI-RADS) standard. Texture features of the mass were also 

extracted to understand the characteristics of pixel variation in the masses. These features are combined and its 

dimension is normalized using Exhaustive Feature Selection (EFS). The accuracy of the proposed feature on the 

INbreast dataset is 94.75% on an average. The accuracy for the Curated Breast Imaging Subset of Digital Database for 

Screening Mammography (CBIS-DDSM) Calc RoI dataset is 95% and for CBIS-DDSM Mass RoI dataset it is 94.5%. 

The result is further compared with contemporary methods and found that the fused feature is performing well. 
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1. Introduction 

Breast Cancer is considered as the world’s most 

predominant cancer disease with a higher death rate 

and it is known that women are the most affected 

gender by this disease. The Breast Cancer spreads all 

over the body and 1 among 8 women may be affected 

during their lifetime. World Health Organization 

(WHO) reports 2.3 million women were diagnosed in 

2022 and there may be 6,85,000 deaths globally by 

the end of 2023 [1] (https://www.who.int/news-

room/fact-sheets/detail/breast-cancer). Further, 7.8 

million women have been diagnosed with Breast 

Cancer. In general, the malignance growth at the 

early stage occurs in the duct or lobule which are 

undetected as symptoms are less and has a low 

chance of spreading. Thus, early detection as well as 

treatment is challenging.  

The most common and well-known screening 

techniques are Breast Self-Examination (BSE), 

Clinical Breast Examination (CBE) and Digital 

Mammography (DM) [2]. Digital Mammography is 

widely used as the primary screening tool for 

detecting Breast Cancer as it is least expensive and 

very sensitive to small lesions. In recent times, 

Computer-Aided Diagnosis (CAD) systems are used 

commonly to guide radiologists for Breast Cancer 

diagnosis. Earlier, CAD systems have relied on 

handmade visual information which had challenges 

in predicting Breast Cancer in those images. Recent 

growths of CAD systems have used the Artificial 

Intelligence techniques that automatically identifies 

breast tumors using Ultrasound images [3]. 

Computerized techniques involve various stages such 

as ultrasound images pre-processing followed by 

segmentation, feature extraction and classification. 

This paper addresses the challenge of early 

detection of Breast Cancer cells by proposing the 

fusion scheme of the low-level features for analysis 

of cancer area. The proposed framework use 

Mammogram images for detecting and analyzing 
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breast cancer. The proposed framework uses 

morphological and texture features of the masses for 

analysis. The masses are segmented and localized 

using well-known scheme. Morphological features 

such as the shape and marginal characteristics of the 

mass are considered. However, these characteristics 

alone may not be sufficient to improve the 

classification accuracy. Thus, texture features of the 

mass were also extracted to analyse the pixel 

variation characteristics in the masses. Non-

parametric test is performed on the pixel distribution 

and texture features are extracted through Goodness 

of Fit Distribution (GFD), Independence of 

Attributes (IoA) and Homogeneity (HG). These 

features are combined and its dimension is 

normalized using Exhaustive Feature Selection (EFS). 

The dimensionality reduction is done based on its 

contribution in discriminating the mass. The machine 

learning techniques are used for the classification and 

the performance of fused feature on Curated Breast 

Imaging Subset of Digital Database for Screening 

Mammography (CBIS-DDSM) and INbreast datasets 

is found to be encouraging.  

The rest of the paper is organized as follows. The 

literature is reviewed and presented in the next 

Section. The proposed approach is explained in 

Section 3, the experimental results are explained in 

Section 4 and the last Section concludes the paper. 

2. Materials and methods 

This section presents the reviews of the relevant 

and recent literatures on fusing various features. The 

authors in [4] have fused texture, morphological and 

histogram-based features for classifying tumors. 

However, the approach has taken more 

computational time it considered more features. The 

authors in [5] have extracted 41 morphological 

features and 96 texture features and classified the 

tumors using 7 classifiers. The performance resulted 

in poor accuracy. The authors in [6] have proposed a 

technique to segment breast masses based on the 

colour and intensity variation. The textural deviation 

and mathematical morphology have been obtained by 

extracting pixel features using colour histogram, 

however, the approach achieved in poor results. The 

authors in [7] have used segmentation methods to 

segment tumors in mammogram images. The 

segmentation methods have been grouped into 

classical segmentation, machine-learning based 

segmentation, supervised-unsupervised 

segmentation and deep-learning based segmentation. 

The classical segmentation includes edge-based, 

threshold-based and region-based. These 

segmentation schemes and the deep learning U-Net 

model together have been used for training the 

mammogram images. The approach worked on small 

dataset. Authors in [8] have presented hybrid 

thresholding and used machine learning techniques to 

classify benign or cancerous cells in mammogram 

images. The approach has used hybrid thresholding 

to derive the RoI. The wavelet transform has been 

used to reduce the noise from each block based on 

Bayes Shrink soft thresholding. A Multi-Fractal 

Dimension (M-FD) has been applied to extract 

multiple features from each de-noised block. Genetic 

algorithm has been used to optimize the number of 

features. The approach took more computational time. 

The authors in [9] have used an Evolutionary 

Programming Neural Ensemble (EPNE) approach for 

the prediction of Breast Cancer using Fine-Needle 

Aspiration Biopsy (FNAB) samples. The predictive 

model considers various features of the FNAB 

samples, such as the size and shape of the cells to 

classify them into different categories of Breast 

Cancer.  

The authors in [10] have proposed the DE-Ada* 

model for classifying the Breast Cancer. The authors 

have extracted a set of features to characterize 

mammograms and fused the features based on a 

weight mechanism. The approach resulted in poor 

precision and recall. The authors in [11] have 

presented a CAD method for detecting Breast Cancer. 

The authors used Hilbert Transform (HT) on rough 

data for reconstructing brightness-mode images. 

Marker-controlled watershed transformation is used 

for segmenting the tumor. Later, shape features and 

texture features have been extracted and classified 

using KNN and Ensemble Decision Tree model 

classifiers. The approach produced more false 

positive results. Authors in [12] have introduced 

radiomics-based machine learning classification 

algorithms.  The experimental process has been 

conducted on the Breast Ultra-Sound Images (BUSI) 

Dataset. The authors in [13] have developed a 

computerized method that uses a combination 

thresholding approach to identify and extract the 

Breast Tumor Section (BTS) from 2D MRI slices. 

Based on Shannon's Entropy, Watershed 

Segmentation, and the Slime Mould Algorithm, a tri-

level thresholding has been developed. The authors 

in [14] used the Extreme Learning Machine (ELM) 

to diagnose Breast Cancer. Irrelevant features have 

been removed using the gain ratio feature selection 

method. Using the Wisconsin Diagnostic Breast 

Cancer dataset, a cloud computing-based method for 

remote Breast Cancer diagnoses has been 

presented and tested. Breast thermal imaging is used 

to develop automated Breast Cancer diagnosis 

framework by authors in [15]. Initially, images 



Received:  March 14, 2024.     Revised: April 14, 2024.                                                                                                   684 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.53 

 

of various breast orientations have been used. Using 

image processing techniques, healthy image patches 

have been extracted and processed. Marine Predators 

technique has been used to extract features and the 

Decision Tree (DT) was utilized for classification. A 

layer connectivity-based architecture has been 

presented by authors in [16] for the segmentation of 

low contrast nodules from ultrasound images. The 

authors have blended high-level coarse segmentation 

with dense connectivity. The nodule has been refined 

using the dilated filter, and the architecture's accuracy 

has been increased by using the class imbalance loss 

function. The approach resulted in true negative 

results. The authors in [17] have presented a study 

that aims to analyse and predict Breast Cancer using 

a multi-model classification approach however, 

resulted in low accuracy. The authors in [18] have 

implemented four various types of feature selection 

methods, namely Bayesian Model Average (BMA) 

[19], Fast Backward Variable Selection (FastBw) 

[20], elastic net [21], and clinical expertise [22]. 

BMA approach use Best Subset Selection and 

regression analysis to choose the best model. 

However, BMA is applicable up to 30-40 features 

due to the overload on computation [23]. FastBw is 

applicable for more than 30-40 features. The FastBw 

method use multiple regression approach for the 

model containing all features and removes one 

feature at a time. This iteration process continues till 

it satisfies threshold or stopping rule [24]. Elastic net 

uses the linear combination of Lasso [25] and Ridge 

regression [26]. The approach finds the ridge 

regression coefficients initially and then proceeds 

with a lasso type of shrinkage [27]. The approach 

resulted in computation complexity issue. The 

authors in [28] proposed Two object detection 

models, YOLOv5 and Mask R-CNN. YOLOv5 is 

used to analyse the mass characteristics to distinguish 

between benign or malignant. However, YOLOV5’s 

had limitations for certain tweaks to the original 

model to achieve the desired effects. Borders and size 

of tumors are detected using Mask RCNN to identify 

malignancies. The proposed model is trained on the 

INbreast, CBIS-DDSM. It is observed from the above 

comparative results that along with strong classifiers 

set of relevant features are very needed to achieve the 

better classification of breast tumors.  

It is noticed that the most of the literatures above 

mentioned have limitation in classifying the breast 

tumors accurately due to True negative and False 

positive results. Many approaches are compatible 

with small size datasets. Some approaches ended up 

in computation complexity issues. Thus, the paper 

intends to overcome the challenge of early detection 

of Breast Cancer and it address the above issues by 

proposing the fusion scheme of the low-level features. 

The proposed framework use Mammogram images 

for analysing the morphological and texture features 

of the masses for classifying Breast tumors. The 

masses are segmented and localized using well-

known scheme. Morphological features such as the 

shape and marginal characteristics of the mass are 

considered. However, these characteristics alone may 

not be sufficient to improve the classification 

accuracy [17]. Thus, the texture features of the mass 

were also extracted to analyse the pixel variation 

characteristics of the masses. The variance is 

considered as important parameters for fusing the 

features. The inter and intra group variances are 

calculated between features. While the variance is 

beyond certain threshold, the feature value is 

considered for the analysis or otherwise not. As a 

result, a fused feature is constructed with lower 

dimension for improving the quality of diagnosis. 

The proposed approach is explained in detail in the 

below section. 

 

 
Figure. 1 Architecture view of the proposed approach 
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3. Proposed approach 

3.1 Architecture view of morphological and 

texture features fusion 

In this Section, the procedure for fusing the 

morphological and texture features is presented and 

explained. The proposed approach has used INbreast 

datasets (https://biokeanos.com/source/INBreast) 

[29] and CBIS-DDSM  

(https://complexity.cecs.ucf.edu/cbis-ddsm/)  [30] 

for its experimentation. Fig. 1 depicts the flow 

diagram for fusing the feature and classification of 

masses either as benign or malignant. Input image is 

preprocessed for making it suitable for feature 

extraction. In this work, we extract both 

morphological and texture features. Initially, these 

features are linearly combined and considered as 

single feature. The combined feature is logically 

reduced based on the properties of inter and intra 

group variance. 

3.2 Procedure to extract morphological features of 

the mass 

The proposed approach considers the below 

morphological features of the mass and are 

mathematically represented in Eqs. (1)-(16). These 

morphological features are considered as a measure 

for tumor classification. The more information on the 

implementation and experiments are available in [17]. 

 

Morphological Features 

The Area (A) of the mass is captured through the 

number of pixels and is represented in Eq. (1). The 

p and q are representing the rows and columns of 

the boundary of the RoI. Let Kmass and Kmargin 

represents the RoI and boundary of the RoI in the 

image respectively. 

 

𝐴𝑟𝑒𝑎(𝐴) = ∑ ∑ 𝑐[𝐾𝑚𝑎𝑠𝑠(𝑖, 𝑗)] = 1
𝑞
𝑗=1

𝑝
𝑖=1          (1) 

 

The Perimeter (P) of the mass represents the 

number of pixels in the boundary of mass and is 

represented in Eq. (2). The p and q represent the 

row and column of the boundary of the mass. 

 

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟(𝑃) = ∑ ∑ 𝑐[𝐾𝑚𝑎𝑟𝑔𝑖𝑛(𝑖, 𝑗)] = 1
𝑞
𝑗=1

𝑝
𝑖=1  

(2) 

 

The Distance (D) represents these distances 

between the centroid and a pixel in the boundary 

and is depicted in Eq. (3). The (a1, b1) and (a2, b2) 

represents the co-ordinates of centroid and  

boundary pixels respectively. 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐷) = √(𝑏2 − 𝑏1)
2 + (𝑎2 − 𝑎1)

2    (3) 

 

The Bending Energy (BE) defines the curvature 

features of mass/shape of the object and is 

mathematically represented in Eq. (4). Here, C(s) 

is the curvature function, s is length of arc and N 

represents number of pixels in boundary of the 

masses.  

 

𝐵𝑖𝑛𝑑𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦 (𝐵𝐸) =
1

𝑁
∑ 𝐶(𝑠)2𝑁−1
𝑠=0           (4) 

 

The Eccentricity (EC) represents the aspect ratio 

and captures the elliptical property of the masses 

as shown in Eq. (5). The major axis captures the 

longest diameter of ellipse and minor axis captures 

shortest diameter, respectively. 

 

𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 (𝐸𝐶) = √1 − (
𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠2

𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠2
)        (5) 

 

The Circular Mass (CM) is a measure of roundness 

of the tumor to discriminate circular and elliptical 

property of the mass. This is mathematically 

represented in Eq. (6) where CP is Convex 

Perimeter. 

 

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑀𝑎𝑠𝑠 (𝐶𝑀) =
4×𝜋×𝐴𝑟𝑒𝑎

(𝐶𝑃)2
                   (6) 

 

The circularity with respect to Elliptical Mass (EM) 

is computed as depicted in Eq. (7). Maximum 

Radius (MaxR) captures maximum distance and 

Minimum Radius (MinR) captures the minimum 

distance between centroid and boundary of mass. 

 

𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐𝑎𝑙 𝑀𝑎𝑠𝑠 (𝐸𝑀) = √(
𝑀𝑖𝑛𝑅

𝑀𝑎𝑥𝑅
)                    (7) 

 

The Elongatedness (EL) represents the ratio of 

mass area and the maximum mass thickness and is 

shown below in Eq. (8). Here, t is the maximum 

mass thickness without holes in mass. 

 

𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠 (𝐸𝐿) = [
𝐴𝑟𝑒𝑎

(2×𝑡)2
]                        (8) 

 

The Equivalent Diameter (ED) defines the circle 

diameter and is represented in Eq. (9).  

 

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝐸𝐷) = √4 × (
𝐴𝑟𝑒𝑎

𝜋⁄ )                         

                                                                           (9) 

https://biokeanos.com/source/INBreast
https://complexity.cecs.ucf.edu/cbis-ddsm/
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The Compactness (CP) defines the ratio of area of 

mass of a circle with its perimeters and is depicted 

in Eq. (10). 

 

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 (𝐶𝑃) = [
(4×𝜋×𝐴𝑟𝑒𝑎)

(𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟)2
]             (10) 

 

The Solidity (S) captures the density of mass and is 

measured as given below in Eq. (11). 

 

𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦 (𝑆) = [
𝐴𝑟𝑒𝑎

𝐶𝑜𝑣𝑒𝑥 𝐴𝑟𝑒𝑎
]                             (11) 

 

The Convexity (CX) presents the tumor boundaries 

using convex perimeters and is represented in Eq. 

(12).  

 

𝐶𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 (𝐶𝑋) = [
𝐶𝑜𝑛𝑣𝑒𝑥 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
]              (12) 

 

The Standard Deviation refers to the scattering of 

data with respect to mean (μ) and is represented in 

Eq. (13). 

 

(𝜎𝑚𝑎𝑠𝑠 𝜎𝑚𝑎𝑟𝑔𝑖𝑛⁄ ) = [√
1

𝑁
∑ |𝑥𝑖 − 𝜇|

2𝑁
1 ]            (13) 

 

The Shape Index (SI) defines the ratio of the 

perimeter of the mass and Maximum radius, and is 

represented in Eq. (14). 

 

𝑆ℎ𝑎𝑝𝑒 𝐼𝑛𝑑𝑒𝑥 (𝑆𝐼) = [
𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

2×𝑀𝑎𝑥𝑅
]                      (14) 

 

The Entropy (E) characterize the shape features in 

terms of the disorder, randomness of masses and is 

mathematically represented as given in below Eq. 

(15). Here, hi represents normalized histogram 

counts. 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐸) = ∑[ℎ𝑖 × 𝑙𝑜𝑔2(ℎ𝑖)]                   (15) 

 

The Skewness (SK) characterizes the data 

distribution of mass and is represented in Eq. (16). 

Here, E(q) represents the Expected value of 

quantity Q.  

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 (𝑆𝐾) = [
𝐸(𝑄−𝜇)3

𝜎3
]                            (16) 

 

 

Further, it is noticed that, texture features also play 

vital role in classifying the breast cells into benign 

and malignant. Hence, the proposed approach 

extracted the texture features to analyse and the 

process of extraction is given in the section 3.3. 

3.3 Procedure to extract texture features of the 

mass 

The texture is one of the important low-level 

features present in an image and proposed approach 

use it for classifying the RoI/ mass as benign or 

malignant. In this sub-section, the procedure for 

extracting the texture from RoI is presented along 

with theory of Goodness-of-Fit Distribution (GFD), 

Independence of Attributes (IoA) and Homogeneity 

(HG). Initially, all these features are combined 

linearly and represented as single feature. The pre-

processed RoI of mammogram image is given as 

input. The RoI of a mammogram is mathematically 

represented in Eq. (17). 

 

𝐼𝑅𝑜𝐼
𝐴×𝐵 = 𝑥(𝑖, 𝑗)               (17) 

 

Here, x(i, j) returns the intensity of a pixel at (i, j) and 

A X B is the size of the RoI. In general, the RoI may 

not always be in a perfect shape, such as square, 

rectangle, etc. However, during the segmentation 

process, we extract the RoI/mass and super impose it 

with a square such that processing the RoI is seamless. 

The procedure to bind the RoI/mass is depicted in Fig. 

2. It is known that the pixels contribute to the 

RoI/mass and the feature is extracted from the 

characteristics of these contributing pixels. As a 

result, it is imperative that we process only those 

pixels that are part of the mass. 

Mathematically, this can be represented as a 

predicate, which is a Boolean valued function as 

given in Eq. (18) and is called as a predicate on 𝐼𝑅𝑜𝐼
𝐴×𝐵  

 

𝑃: 𝐼𝑅𝑜𝐼
𝐴×𝐵 → {𝑇𝑅𝑈𝐸, 𝑓𝑎𝑙𝑠𝑒}              (18) 

 

A predicate is given in Eq. (19) to determine whether 

x (i, j) falls within the RoI or outside RoI. 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒: 𝐼𝑅𝑜𝐼
𝐴×𝐵(𝑖, 𝑗) → {1,0}             (19) 

 

The texture feature captures the variations in the 

intensity/colour, contrast, chrominance and 

luminance between two neighbouring pixels in 

vertical, diagonal, and horizontal directions. 

 

 
(a) Segmenting RoI (b) Bounding with square 

Figure. 2 RoI/Mass from mammogram 



Received:  March 14, 2024.     Revised: April 14, 2024.                                                                                                   687 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.53 

 

 
(a) (b) (c)  

Figure. 3 a X b blocks of pixels in various directions: (a) 

Pass in diagonal dir, (b) Pass in horizontal dir, and (c) 

Pass in vertical dir 
 

 

 

(a)  (b)  (c)  
Figure. 4 Distribution of average pixel values in 

different directions: (a) Horizontal direction, (b) 

Vertical direction, and (c) Diagonal direction 

 

 

The proposed approach has extracted the texture 

information using the theory of non-parametric 

testing on pixels in horizontal, vertical and diagonal 

directions. The predicate defined in Eq. (19) is 

extended in horizontal, vertical and diagonal 

directions and is given in Eqs. (20)-(22). 

 

𝐼𝑅𝑜𝐼
𝐴×𝐵[𝑥(𝑖, 𝑗 + 1)] = 𝑃: 𝐼𝑅𝑜𝐼

𝐴×𝐵(𝑖, 𝑗 + 1) = 1             (20) 

 

𝐼𝑅𝑜𝐼
𝐴×𝐵[𝑥(𝑖 + 1, 𝑗)] = 𝑃: 𝐼𝑅𝑜𝐼

𝐴×𝐵(𝑖 + 1, 𝑗) = 1             (21) 

 

𝐼𝑅𝑜𝐼
𝐴×𝐵[𝑥(𝑖 + 1, 𝑗 + 1)] = 𝑃: 𝐼𝑅𝑜𝐼

𝐴×𝐵(𝑖 + 1, 𝑗 + 1) = 1 

                             (22) 

 

The Eqs. (20)-(22) should satisfy Eq. (19) such that 

only those pixels that are part of the masses are 

considered. In Eqs. (20)-(22), x(i, j+1), x(i+1, j) and 

x(i+1, j+1) represents the neighbouring pixels in 

vertical, horizontal, and diagonal directions. The 

proposed approach extract parameters such as GFD, 

IoA and HG and consider these as texture features. 

These values are extracted from m X n blocks of RoI 

and will have an averaging effect with a value of a=8 

and b=8. Thus, in the vertical, horizontal and 

diagonal directions, the trace is 8 x 8 pixels as shown 

in Fig. 3 below. The 8 x 8 window in horizontal, 

vertical, and diagonal directions and the trace is one-

pixel window is depicted. Thus, all the pixels in these 

directions contribute in measuring the texture. As a 

result, Eqs. (20)-(22) can be rewritten and 

represented in Eqs. (23)-(25). 

 

𝐼𝑅𝑜𝐼
𝐴×𝐵 = 𝑥𝑎×𝑏(𝑖, 𝑗 + 1)|𝑃[𝐼𝑅𝑜𝐼

𝑎×𝑏(𝑖, 𝑗 + 1)] = 1      (23) 

 

𝐼𝑅𝑜𝐼
𝐴×𝐵 = 𝑥𝑎×𝑏(𝑖 + 1, 𝑗)|𝑃[𝐼𝑅𝑜𝐼

𝑎×𝑏(𝑖 + 1, 𝑗)] = 1      (24) 

 

𝐼𝑅𝑜𝐼
𝐴×𝐵 = 𝑥𝑎×𝑏(𝑖 + 1, 𝑗 + 1)|𝑃[𝐼𝑅𝑜𝐼

𝑎×𝑏(𝑖 + 1, 𝑗 + 1)] =

1                 (25) 

 

The grey values in each cell of blocks are replaced 

with a threshold function as shown below in Eq.  (26). 

 

𝐺𝑟𝑒𝑦𝐴𝑣𝑔 = ∑ [𝑥(𝑖, 𝑗) (𝑎 × 𝑏)⁄ ]𝑎,𝑏
𝑖,𝑗∈𝑎×𝑏              (26) 

 

𝑥𝑖∈𝑎,𝑗∈𝑏
𝑎×𝑏 (𝑖, 𝑗) =

{
 
 

 
 
𝑟5  𝑖𝑓 128 ≤ 𝐺𝑟𝑒𝑦𝐴𝑣𝑔 ≤ 255

𝑟4         64 ≤ 𝐺𝑟𝑒𝑦𝐴𝑣𝑔 ≤ 127

𝑟3           32 ≤ 𝐺𝑟𝑒𝑦𝐴𝑣𝑔 ≤ 63

𝑟2             0 ≤ 𝐺𝑟𝑒𝑦𝐴𝑣𝑔 ≤ 31

𝑟1                           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (27) 

 

In the above Eq. (27), r1=0, r2=32, r3=64, r4=128 

and r5=255 and the cell values of any block is a grey 

value. The purpose of averaging is to enable the non-

parametric test, since it considers different 

distributions for testing. In the proposed approach, 

we consider the value of GreyAvg as a distribution 

such that the test can estimate the presence of texture 

information. The procedure for measuring these 

parameters is presented in below sub-section 3.3.1. 

3.3.1 Measuring texture features 

As discussed earlier, the texture component of 

RoI/mass is extracted by applying a non-parametric 

test on the averaged pixel values. The non-parametric 

test provides information on the relationship between 

two or more samples. The test is conducted on 

averaged pixel values to estimate the presence of 

texture features through GFD, IoA, and HG. The 

average pixel values are distributed in various 

directions such as horizontal, vertical and diagonal 

as shown in Fig. 4. The GFD is calculated using 

𝐺𝐹𝐷𝐴𝑣𝑔  
𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  between the distributions. The GFD 

for each direction is represented in Eqs. (28)-(30). 

This is depicted in Fig. 4. 

 

𝐺𝐹𝐷𝐴𝑣𝑔
𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 = (

(∑ 𝐺𝐹𝐷𝑖
𝐻𝑜𝑟𝑖𝑛

𝑖 )

𝑛
)             (28) 
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𝐺𝐹𝐷𝐴𝑣𝑔
𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = (

(∑ 𝐺𝐹𝐷𝑖
𝑉𝑒𝑟𝑡𝑛

𝑖 )

𝑛
)             (29) 

 

𝐺𝐹𝐷𝐴𝑣𝑔
𝐷𝑖𝑎𝑔𝑛𝑜𝑙

= (
(∑ 𝐺𝐹𝐷𝑖

𝐷𝑖𝑎𝑔𝑛
𝑖 )

𝑛
)             (30) 

 

In Eqs. (28)-(30), 𝐺𝐹𝐷𝑖
𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is calculated for any 

ith 8x8 block in horizontal, vertical and diagonal 

directions. Similarly, the variance of  𝐺𝐹𝐷𝑣𝑎𝑟
𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

can be calculated using Eq. (31).  

 

𝐺𝐹𝐷𝑉𝑎𝑟
𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = (∑

(𝐺𝐹𝐷𝑖
𝐷𝑖𝑟𝑒𝑐−𝐺𝐹𝐷𝐴𝑣𝑔

𝐷𝑖𝑟𝑒𝑐)

𝑛−1
𝑛
𝑖=1 )         (31) 

 

In Eq. (31), 𝐺𝐹𝐷𝑖
𝐷𝑖𝑟𝑒𝑐

 
represents the GFD of any ith 

8x8 block in a direction (vertical, horizontal and 

diagonal) and 𝐺𝐹𝐷𝐴𝑣𝑔  
𝐷𝑖𝑟𝑒𝑐  is the average GFD 

calculated in a direction (vertical, horizontal and 

diagonal). The IoA for each direction is calculated 

using Eqs. (32)-(34). 

 

𝐼𝑜𝐴𝐴𝑣𝑔
𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 = ∑ (

(𝑂𝑖
𝐻𝑜𝑟𝑖−𝑒𝑖

𝐻𝑜𝑟𝑖)

𝑒𝑖
𝐻𝑜𝑟𝑖 )𝑛

𝑖=1                (32) 

 

𝐼𝑜𝐴𝐴𝑣𝑔
𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = ∑ (

(𝑂𝑖
𝑉𝑒𝑟𝑡−𝑒𝑖

𝑉𝑒𝑟𝑡)

𝑒𝑖
𝑉𝑒𝑟𝑡 )𝑛

𝑖=1              (33) 

 

𝐼𝑜𝐴𝐴𝑣𝑔
𝑑𝑖𝑎𝑔𝑛𝑜𝑙

= ∑ (
(𝑂𝑖

𝑑𝑖𝑎𝑔
−𝑒𝑖

𝑑𝑖𝑎𝑔
)

𝑒
𝑖
𝑑𝑖𝑎𝑔 )𝑛

𝑖              (34) 

 

In Eq. (32)-(34), 𝑜𝑖
𝐻𝑜𝑟𝑖  , 𝑜𝑖

𝑉𝑒𝑟𝑡  and 𝑜𝑖
𝑑𝑖𝑎𝑔

 is the 

observed frequency in horizontal, vertical and 

diagonal blocks. Similarly, 𝑒𝑖
𝐻𝑜𝑟𝑖  , 𝑒𝑖

𝑉𝑒𝑟𝑡  and 𝑒𝑖
𝑑𝑖𝑎𝑔

  

are the expected frequency in the horizontal, vertical 

and diagonal directions respectively. The variance of 

𝐼𝑜𝐴𝑖
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is calculated using Eq. (35) below. 

 

𝐼𝑜𝐴𝑉𝑎𝑟
𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = ∑

(𝐼𝑜𝐴𝑖
𝐷𝑖𝑟𝑒𝑐−𝐼𝑜𝐴𝐴𝑣𝑔

𝐷𝑖𝑟𝑒𝑐)

𝑛−1
𝑛
𝑖=1               (35) 

 

In Eq. (36), 𝐼𝑜𝐴𝑖
𝐷𝑖𝑟𝑒𝑐  is the Independence of 

Attributes of any ith 8x8 block in horizontal, vertical 

and diagonal directions. The 𝐼𝑜𝐴𝐴𝑣𝑔
𝐷𝑖𝑟𝑒𝑐 is the Average 

of Independence of Attributes for the respective 8x8 

block in horizontal, vertical and diagonal directions. 

The HG is measured using the nature of the 

distribution of the pixels in RoI, such as Binomial, 

Poisson, and Normal distributions. This means, based 

on the trend followed by the distribution of average 

pixel values in horizontal, vertical, and diagonal 

directions, the homogenous nature of the average 

pixel values can be measured. In terms of Binomial 

distribution, the HG is represented in Eq. (36) below. 

 

𝑃(𝐻𝐺𝑉𝑒𝑟𝑡,ℎ𝑜𝑟𝑖,𝑑𝑖𝑎𝑔∈𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠
𝐷𝑖𝑟𝑒𝑐 𝑇ℎ𝑟𝑒𝑠ℎ: 𝑛, 𝑝) =

𝑛𝐶
𝐻𝐺𝑇ℎ𝑟𝑒𝑠ℎ

𝐷𝑖𝑟𝑒𝑐 𝐻𝐺𝑇ℎ𝑟𝑒𝑠ℎ
𝐷𝑖𝑟𝑒𝑐 × 𝑝𝐻𝐺𝑇ℎ𝑟𝑒𝑠ℎ

𝐷𝑖𝑟𝑒𝑐
× (1 − 𝑃)𝐻𝐺𝑇ℎ𝑟𝑒𝑠ℎ

𝐷𝑖𝑟𝑒𝑐

                (36) 

 

In the above Eq. (36), 𝐻𝐺𝑇ℎ𝑟𝑒𝑠ℎ
𝐷𝑖𝑟𝑒𝑐  is the count of 

𝐻𝐺𝑖
𝐷𝑖𝑟𝑒𝑐such that 𝐻𝐺𝑖

𝐷𝑖𝑟𝑒𝑐  is greater than 𝐻𝐺𝑇ℎ𝑟𝑒𝑠ℎ
𝐷𝑖𝑟𝑒𝑐  

more than n/2 times. The n*p gives the mean 

Binomial distribution of 𝐻𝐺𝑇ℎ𝑟𝑒ℎ
𝐷𝑖𝑟𝑒𝑐   and the variance 

of Binomial distribution of 𝐻𝐺𝑖
𝐷𝑖𝑟𝑒𝑐 is n*p(1-p). The 

HG is characterized based on skewness. While 

p=0.5, the distribution 𝐻𝐺𝑖
𝐷𝑖𝑟𝑒𝑐  is symmetric 

around the mean and the presence of texture is low. 

While p<0.5 and p> 0.5, the distribution 𝐻𝐺𝑖
𝐷𝑖𝑟𝑒𝑐 is 

left and right skewed. As a result, the presence of the 

texture is estimated based on the value of p. 

Similarly, the texture content is also measured 

based on the Poisson distribution characteristics of 

the samples. This is represented in Eq. (37) below. 

 

𝐹 (𝐻𝐺𝑇ℎ𝑟𝑒𝑠
𝐷𝑖𝑟𝑒𝑐 : 𝜆) = Pr(𝐻𝐺𝑖

𝐷𝑖𝑟𝑒𝑐 = 𝐻𝐺𝑇ℎ𝑟𝑒𝑠
𝐷𝑖𝑟𝑒𝑐) =

(
𝜆𝐻𝐺𝑖

𝐷𝑖𝑟𝑒𝑐
× 𝑒−𝜆

𝐻𝐺𝑇ℎ𝑟𝑒𝑠ℎ
𝐷𝑖𝑟𝑒𝑐 )               (37) 

 

In the above Eq. (37), e is the Euler’s number 

(e=2.71828). The positive real number 𝝀 is equal to 

the expected value of 𝐻𝐺𝑖
𝐷𝑖𝑟𝑒𝑐 and also is variance. 

The variance measured through below Eq. (38) gives 

the texture content. 

 

𝜆 = 𝐸𝑢(𝐻𝐺𝑖
𝐷𝑖𝑟𝑒𝑐) = 𝑉𝑎𝑟(𝐻𝐺𝑖

𝐷𝑖𝑟𝑒𝑐)            (38) 

 

Similarly, if the distribution of  𝐻𝐺𝑇ℎ𝑟𝑒𝑠
𝐷𝑖𝑟𝑒𝑐  is normal, 

texture characteristics is estimated accordingly. 

After analyzing and estimating the importance of 

morphological and textural features, it is predicted 

that the fusion of both of these futures plays a vital 

role in achieving the accurate classification of 

Breast Cancer cells. The process of feature fusion 

is explained detail in below section. 

3.4 Procedure to fuse both morphological and 

texture features 

In this subsection, the morphological features 

presented in Section 3.1 and texture features 

presented in Section 3.2 are fused. It is found that the 

characteristics and discrimination capability of each 

type of features on mammogram mass are 

encouraging. For example, the morphological 
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features can be effective in discriminating a set of 

masses and similarly, the texture feature may be 

effective for the different categories of masses. Thus, 

these features can be fused as single features for 

improving the accuracy in classifying malignant from 

benign masses. The procedure for fusing the feature 

is explained below. 

Let 𝐹𝑚𝑜𝑟𝑝  be the morphological feature of the 

mass and is denoted in Eq. (39), where n denotes the 

size of the morphological feature, 

 

𝐹𝑚𝑜𝑟𝑝 = {𝑓𝑚𝑜𝑟𝑝1, 𝑓𝑚𝑜𝑟𝑝2, 𝑓𝑚𝑜𝑟𝑝𝑖 , … . . , 𝑓𝑚𝑜𝑟𝑝𝑛}   (39) 

 

Let 𝐹𝐺𝐹𝐷 is Goodness of Fit distribution (GFD) of the 

mass in all the directions and is denoted in Eq. (40), 

where m is the dimension of 𝐹𝐺𝐹𝐷. 

 

𝐹𝐺𝐹𝐷 = {𝑓𝐺𝐹𝐷1, 𝑓𝐺𝐹𝐷2, 𝑓𝐺𝐹𝐷𝑖, . . . . . , 𝑓𝐺𝐹𝐷𝑚}            (40) 

 

Let 𝐹𝐼𝑜𝐴  is Independence of Attributes (IoA) of the 

mass in all the directions and is shown in Eq. (41), 

where p is the dimension of 𝐹𝐼𝑜𝐴. 

 

𝐹𝐼𝑜𝐴 = {𝑓31, 𝑓32, 𝑓3𝑖, . . . . . , 𝑓3𝑛} =

{𝑓𝐼𝑜𝐴1, 𝑓𝐼𝑜𝐴2, 𝑓𝐼𝑜𝐴𝑖, . . . . . , 𝑓𝐼𝑜𝐴𝑝}              (41) 

 

Let 𝐹𝐻𝐺  is Homogeneity (HG) of the mass in all the 

directions and is represented in Eq. (42), where q is 

the dimension of 𝐹𝐻𝐺. 

 

𝐹𝐻𝐺 = {𝑓𝐻𝐺1, 𝑓𝐻𝐺2, 𝑓𝐻𝐺𝑖, . . . . . , 𝑓𝐻𝐺𝑞}             (42) 

 

As a initial step, these four features are considered as 

a single feature by linearly combining all of them, and 

mathematically it is represented in Eq. (43) 

 

𝐹 = {𝐹𝑚𝑜𝑟𝑝, 𝐹𝐺𝐹𝐷 , 𝐹𝐼𝑜𝐴, 𝐹𝐻𝐺}              (43) 

 

However, combining the features linearly increases 

dimension and thus there is a curse of dimensionality. 

Thus, it is imperative that a feature subset from each 

feature is required to further improve the 

classification accuracy. 

In this approach, variance is used as a measure for 

fusing the features effectively. The process requires 

the size of the feature should be same in each factor 

level. As a result, the dimension of 𝐹𝑚𝑜𝑟𝑝 is reduced 

to match the dimension of 𝐹𝐺𝐹𝐷 , 𝐹𝐼𝑜𝐴 𝑎𝑛𝑑 𝐹𝐻𝐺 using 

Exhaustive Feature Selection (EFS) techniques. The 

dimension of 𝐹𝑚𝑜𝑟𝑝 is n and EFS strategy produces 

2n-1 feature combinations. The proposed approach 

considers all the feature combinations having its size 

equal to m and among them which ever provides 

  
(a) (b) 

Figure 5. The F value on features 

(𝐹𝑚𝑜𝑟𝑝
′ , 𝐹𝐺𝐹𝐷 , 𝐹𝐼𝑜𝐴 𝑎𝑛𝑑 𝐹𝐻𝐺): (a) Low F value and (b) 

High F value 

 

 

higher performance is selected and is denoted as 

𝐹𝑚𝑜𝑟𝑝
′ . 

Each mass in a mammogram is considered as RoI 

and all the features say, 𝐹𝑚𝑜𝑟𝑝, 𝐹𝐺𝐹𝐷 , 𝐹𝐼𝑜𝐴 𝑎𝑛𝑑 𝐹𝐻𝐺 

are extracted. The 𝐹𝑚𝑜𝑟𝑝  is decomposed to 𝐹𝑚𝑜𝑟𝑝
′  

using EFS for making the dimension of all the 

features equal (i.e, n=m=p=q). The algorithm 

exploits the variance among the features and within 

the features (i.e variance between the group and 

variance among the group). 

It is observed that the distribution of features in 

Fig. 5(a) is similar and thus the F-value is low. Thus, 

all the features say 𝐹𝑚𝑜𝑟𝑝
′ , 𝐹𝐺𝐹𝐷 , 𝐹𝐼𝑜𝐴 𝑎𝑛𝑑 𝐹𝐻𝐺  are 

having similar properties in discriminating the 

masses. In contrast, the F-value of distribution shown 

in Fig. 5(b) is high, each distribution is different and 

thus more discriminating power. Thus, the F-value is 

calculated using Eqs. (39)-(43). If the F-value is less 

than a threshold, T, elements in Feature are removed 

till the F value is good. Within Group Variance 

(WGV) and Between Group Variance (BGV) are 

playing critical role in the algorithm and both of them 

are calculated as given below. 

Within Group Variance (WGV) for each feature is 

calculated as given in Eq. (44), where, 

𝑦
𝑖𝑗

𝐹𝑚𝑜𝑟𝑝
′

 𝑎𝑛𝑑  𝑦̅
𝑗

𝐹𝑚𝑜𝑟𝑝
′

 are the dimension reduced 

morphological features (𝐹𝑚𝑜𝑟𝑝
′ )  and mean of the 

𝐹𝑚𝑜𝑟𝑝
′  respectively. 

 

𝑊𝐺𝑉(𝐹𝑚𝑜𝑟𝑝
′ ) = ∑ ∑ (𝑦

𝑖𝑗

𝐹𝑚𝑜𝑟𝑝
′

− 𝑦̅
𝑗

𝐹𝑚𝑜𝑟𝑝
′

)𝑛
𝑖=1

2
𝐹𝑚𝑜𝑟𝑝
′

𝑗=1

                 (44) 

 

Similarly, Within Group Variance (WGV) for 

𝐹𝐺𝐹𝐷, 𝐹𝐼𝑜𝐴 𝑎𝑛𝑑 𝐹𝐻𝐺  are calculated as shown in Eq. 

(45)-(47). 

 

𝑊𝐺𝑉(𝐹𝐺𝐹𝐷) = ∑ ∑ (𝑦𝑖𝑗
𝐹𝐺𝐹𝐷 − 𝑦̅𝑗

𝐹𝐺𝐹𝐷)𝑛
𝑖=1

2𝐹𝐺𝐹𝐷
𝑗=1     (45) 
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In the above Eq. (45), 𝑦𝑖𝑗
𝐹𝐺𝐹𝐷  𝑎𝑛𝑑  𝑦̅𝑗

𝐹𝐺𝐹𝐷  are the 

values in 𝐹𝐺𝐹𝐷 and their mean respectively and n is 

the dimension of 𝐹𝐺𝐹𝐷. 

𝑊𝐺𝑉(𝐹𝐼𝑜𝐴) = ∑ ∑ (𝑦𝑖𝑗
𝐹𝐼𝑜𝐴 − 𝑦̅𝑗

𝐹𝐼𝑜𝐴    )𝑛
𝑖=1

2𝐹𝐼𝑜𝐴
𝑗=1      (46) 

 

In the above Eq. (46),  𝑦𝑖𝑗
𝐹𝐼𝑜𝐴  𝑎𝑛𝑑 𝑦̅𝑗

𝐹𝐼𝑜𝐴    are the 

values in 𝐹𝐼𝑜𝐴 and their mean respectively and n is the 

dimension of 𝐹𝐼𝑜𝐴. 

 

𝑊𝐺𝑉(𝐹𝐻𝐺) = ∑ ∑ (𝑦𝑖𝑗
𝐹𝐻𝐺 − 𝑦̅𝑗

𝐹𝐻𝐺  )𝑛
𝑖=1

2𝐹𝐻𝐺
𝑗=1           (47) 

 

In the above Eq. (47),  𝑦𝑖𝑗
𝐹𝐻𝐺   𝑎𝑛𝑑  𝑦̅𝑗

𝐹𝐻𝐺   are the 

values in 𝐹𝐻𝐺   and their mean respectively and n is 

the dimension of 𝐹𝐻𝐺. 

Similarly, Between Group Variance (BGV) is also 

calculated as shown in Eq. (48). 

 

𝐵𝐺𝑉(𝐹𝑚𝑜𝑟𝑝
′ , 𝐹𝐺𝐹𝐷, 𝐹𝐼𝑜𝐴, 𝐹𝐻𝐺) = ∑𝑛𝑥(𝑥̅ − 𝑥̅𝐺𝑀)

2

                 (48) 

 

In the above Eq. (48), 𝑥̅  is the sample mean (mean of 

𝐹𝑚𝑜𝑟𝑝
′ , 𝐹𝐺𝐹𝐷, 𝐹𝐼𝑜𝐴 𝑎𝑛𝑑 𝐹𝐻𝐺 ) respectively, 𝑥̅𝐺𝑀 is the 

group mean of all the features and n is the number of 

samples in all the features. The F-value is the ratio of 

BGV and WGV and is derived from Eqs. (45)-(47) and 

Eq. (48). 

4. Experimental results 

The performance of the proposed approach is 

evaluated on two mammographic datasets namely 

INbreast and CBIS-DDSM. The INbreast dataset has 

7632 mammographic images and they are considered 

after data augmentation followed by adaptive 

histogram normalizations. Out of which, 2520 

images are benign and 5112 images are malignant 

tumors. The Digital Database for Screening 

Mammography (DDSM) is a mammographic image 

dataset and it consists of 2620 scanned films with 

verified pathology information. It includes normal, 

malignant, and benign tissues. The CBIS-DDSM is a 

standardized and updated version of the DDSM 

dataset. The details, such as the number of malignant, 

benign, and benign without call-back masses are 

presented in Table 1. The CBIS-DDSM dataset is 

larger and INbreast has fewer samples. The training 

and testing splits of INbreast, CBIS-DDSM calc and 

CBIS-DDSM mass datasets are shown in Table 2. 

The proposed approach has used 6106, 1014, and 

1228 mammogram images as training set from 

INbreast, CBIS-DDSM Calc, and CBIS-DDSM mass 

datasets to train the SVM classifier. We have used  

Table 1. Details of CBIS-DDSM and INbreast 

Mammogram Datasets 

Dataset 
Data 

type 
Malignant Benign 

Benign 

without 

call-back 

CBIS-

DDSM  

Mass-

Training 

RoI and 

Cropped 

Images 

650 578 104 

Mass-

Testing 

RoI and 

Cropped 

Images 

147 195 37 

Calc-

Training 

RoI and 

Cropped 

Images 

544 528 474 

Calc-

Testing 

RoI and 

Cropped 

Images 

129 130 67 

INbreast 
Training 2045 1008 - 

Testing 511 252 - 

 

 
Table 2: Training and Testing sets from INbreast, CBIS-

DDSM calc and CBIS-DDSM mass datasets   

Dataset 
Split 

classes 
Benign Malignant Total 

INbreast  

Training 

set 2016 4090 6106 

Testing 

set 504 1022 1526 

CBIS-

DDSM 

Calc-

Training 

RoI and 

Cropped 

Images 

441 573 1014 

Calc-

Testing 

RoI and 

Cropped 

Images 

125 129 254 

Mass-

Training 

RoI and 

Cropped 

Images 

578 650 1228 

Mass-

Testing 

RoI and 

Cropped 

Images 

195 147 342 
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Table 3 Classification accuracy on INbreast using fused features 

Classified as Benign 
Classified as 

Malignant  Total 
Classification Accuracy (%) 

SVM ANN SVM ANN SVM  ANN  

454 492 50 12 504 90.06 97.61 

82 51 940 971 1022 91.97 95.00 

Overall 1526 91.01 98.56 

 
Table 4 Classification accuracy CBIS-DDSM using fused features  

Mass Classified as Benign Classified as 

Malignant  

Total  Accuracy (%) 

SVM ANN SVM ANN SVM ANN 

Calc RoI and 

Cropped Images 

116 119 9 6 125 92.80 95.20 

4 3 125 126 129 96.89 97.67 

Overall 254 94.84 96.43 

Mass- RoI and 

Cropped Images 

183 181 12 14 195 93.84 92.82 

 6 4 141 143 147 95.91 97.27 

Overall 342 94.87 95.04 

 
Table 5 Precision, Recall, F-measure, and Accuracy on fused feature 

 

 

1526, 254 and 342 mammogram images as test 

images from INbreast, CBIS-DDSM Calc, and CBIS-

DDSM mass datasets to evaluate the performance of 

proposed texture features. 

This section discusses the performance 

evaluation of fused feature. The experiments are 

performed using MATLAB2020b on a Desktop 

Computer Core i7 having 8GB of graphics card and 

16GB RAM. The fused features along with SVM, 

KNN and DT are used for classification. The 

proposed approach chosen training/testing ratio 

70:30, 60:40, 50:50 to validate the fused feature. The 

cross-validation value is selected at 10 for all 

experiments. The performance is evaluated using the 

following statistical measures such as True Positive 

(TP), True Negative (TN), False Positive (FP), False 

Negative (FN). This is depicted in Table 3 and 4. On 

the INbreast dataset, the SVM classifies 454 

mammograms as benign and ANN classifies 492 

mammograms as benign on 504 test case 

mammogram images. SVM classifies 940 

mammograms as malignant and ANN classifier 

classifies 971 mammograms as benign from 1022 test 

case mammogram images. The overall accuracy of 

the proposed feature on the INbreast dataset is 91% 

for SVM and 98.56% for ANN. For the CBIS-DDSM 

Calc RoI dataset, the SVM classifier classifies 116 

mammograms as benign and ANN classifies 119 

mammograms as benign on 125 mammogram images. 

SVM classifies 125 mammograms as malignant and 

ANN classifies 126 mammograms as malignant from 

129 test cases. The overall accuracy of the proposed 

feature for the CBIS-DDSM Calc RoI dataset is 94% 

for SVM and 96% for ANN. For the CBIS-DDSM 

Mass RoI dataset, the SVM classifies 183 

mammograms as benign and ANN classifies 181 

mammograms as benign from 195 mammogram 

images. SVM classifies 141 mammograms and ANN 

classifies 143 mammograms as malignant from 147 

test cases. The overall accuracy of the proposed 

feature for the CBIS-DDSM Mass RoI dataset is 94% 

using SVM and 95% using ANN classifier. 

In addition, Precision, Recall, F1-Score, and 

Accuracy are evaluated on fused feature and the 

results are presented in Table. 5. Table 6 presents the 

performance evaluation of the proposed fused feature 

with other comparative approaches on INbreast and 

CBIS-DDSM datasets.  The authors in [8] have 

adopted Hybrid thresholding and the machine 

 

Evaluation 

Metrics 

Performance Measure 

INbreast Dataset  CBIS-DDSM Dataset  

SVM (%) ANN (%) 
SVM (%) ANN (%) 

Calc RoI  Mass- RoI Calc RoI  Mass- RoI 

Recall 89.40 88.21 88.36 90.18 90.33 86.26 

Precision 92.72 95.76 92.31 93.10 94.31 90.03 

F-Score 91.08 91.81 90.29 91.57 92.27 90.95 

Accuracy 91.01 98.56 94.84 94.87 96.43 95.04 



Received:  March 14, 2024.     Revised: April 14, 2024.                                                                                                   692 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.53 

 

Table 6. Performance comparison of the fused feature. 

Comp.  

Approaches  

Features 

 

Datasets Classifiers Acc (%)                                                     

Proposed 

Approach 
Fused Feature 

INbreast  SVM 91.01 

ANN 98.56 

CBIS-DDSM SVM 94.85 

ANN 95.73 

Anas and Haq 

(2024) [28] 

Multi features   CBIS-DDSM and 

INbreast 

YOLOv5+Mask 

RCNN 

92.02 

Teng and Zhang 

(2022) [18] 

<30-40 Multi-

features  

INbreast,  Bayesian Model 

Average (BMA) 

80.2 

Teng and Zhang 

(2022) [18] 

>30-40 Multi-

features 

INbreast  Fast Backward 

Variable Selection 

(FastBw)  

79.9 

Teng and Zhang 

(2022) [18] 

>30-40 Multi-

features 

INbreast elastic net  79.9 

Zebari and Ibrahim  

(2021) [8] 

Multi Features-50 

features  

DDSM 

INbreast,  

ANN 81.52 

82.21 

Vaka and Soni, 

(2020) [31] 

Fusion approach DDSM 

 

Histo-sigmoid fuzzy 

clustering 

93.52 

Zhang and Wu, 

(2020) [10] 

Fusion approach INbreast 

DDSM 

Adaboost 86.20 

91.12 

Jiang and Xu, 

(2017) [32] 

Histogram statistical 

features and GLCM 

DDSM  Random Forest 

(RF) 

77.05 

Uthoff, and Sieren, 

(2018) [33]  

13 histogram, 

texture, 18 shape 

DDSM ANN 95.23 

Pashoutan and 

Shokouhi, (2017) 

[34] 

Intensity, shape, 

texture   

DDSM FGMM  93.51 

 

 

learning techniques to locate the RoI to classify 

benign or malignant Breast Cancer from 

mammogram images. The noise of each block has 

been reduced by applying the wavelet transform 

using BayesShrink soft thresholding, which captures 

high and low frequencies within various sub-bands. 

The methodology has been assessed on MIAS, 

DDSM, INbreast, and BCDR mammography 

imaging datasets. The authors in [31] employed 

Entropy, texture, and geometric features for detecting 

Breast Cancer tumors. The authors adopted Gaussian 

filter to eliminate the noise and machine learning 

techniques are used for classification. A multi-feature 

fusion based model called DE-Ada* has been 

presented by authors in [10] for the classification of 

breast masses. Various techniques have been 

employed to categorize the mammograms such as 

Scale-Invariant Feature Transform (SIFT), 

Histogram Of Oriented Gradient (HOG), Local 

Binary Pattern (LBP), Residual Network (ResNet), 

Densely linked convolutional Networks (DenseNet), 

and Visual Geometry Group (VGG). Mohanty and 

Rup (2019) proposed a hybrid Computer Aided 

Diagnosis (CAD) framework that identifies 

suspicious regions as RoI and classified them as 

either abnormal or normal. Various classifiers such as 

SVM, K-NN, Naïve Bayes, and C4.5 are adopted to 

classify the RoI as benign or malignant. The authors 

in [32] have extracted histogram statistical features 

and texture features using GLCM to classify Breast 

Cancer tumors. The authors in [33] extracted 

intensity, texture, and shape features from 

mammograms. The authors employed K-medoids 

clustering to remove intra-correlated features and 

thereby reducing feature set. The authors used 

information theory approach for feature selection. 

The authors in [34] have used wavelet transform, 

Gabor wavelet transform, Zernike moments and 

GLCM to segment the region of the tumor in 

mammography. P values are used to choose the 

relevant features and Multi-Layer Perceptron (MLP) 

is used to classify the malignant or benign breast 

masses. It is observed from Table 6 that the 

performance of the fused-feature is encouraging on 

both the datasets. The SVM classifier has achieved in 

91.01% and 94.55% of accuracy on INbreast and 

CBIS-DDSM datasets. Similarly, the classification 

accuracy using ANN is 98.56% and 95.731% on 

INbreast and CBIS-DDSM datasets respectively. The 

authors in [33] have shown close accuracy 95.3% on 

DDSM dataset using ANN classifier. The approach 

in [31] and [34] have achieved the classification 
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accuracy in the range of 93% on DDSM datasets. The 

authors in [34] have classified the DDSM dataset 

masses with 77.05% classification accuracy. The 

authors in [28] achieved 92.02% accuracy. Overall, 

the proposed fused feature has performed well. This 

is due to the fact that it combines both morphological 

and texture effectively and both of these features are 

good in discriminating malignant and benign masses. 

The properties of inter and intra group variance of 

both the features have reduced the dimension of the 

resultant feature and has retained the characteristics 

of the tumor. 

5. Conclusion 

In this paper we have fused both morphological 

and texture feature. The morphological feature has 

extracted shape and marginal properties of the masses. 

The texture feature has captured the variations in 

pixels of masses through Goodness of Fit 

Distribution (GFD), Independence of Attributes 

(IoA) and Homogeneity (HG). These features are 

initially combined together and the dimension of the 

feature is reduced logically. The inter and intra group 

variances between the features are estimated and both 

the feature is fused accordingly. The evaluation of the 

fused feature is performed on DDSM and INbreast 

Dataset, and Precision, Recall, F1-Score and 

Accuracy are measured. The SVM and ANN are used 

as classifiers. The overall accuracy of the proposed 

feature on the INbreast dataset is 91% for SVM and 

98.56% for ANN. The overall accuracy of the 

proposed feature for the CBIS-DDSM Calc RoI 

dataset is 94% for SVM and 96% for ANN. The 

overall accuracy of the proposed feature for the 

CBIS-DDSM Mass RoI dataset is 94% using SVM 

and 95% using ANN classifier. In addition, Precision, 

Recall, F1-Score are evaluated. The result is 

compared with contemporary methods and found that 

the fused feature is performing well. In future we will 

extract volume features of the mass and fused in with 

the proper one. 
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