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Abstract: The threat of malicious software has evolved into a major concern regarding the security of the system and 

network infrastructure. Machine learning algorithms have been successfully utilized to classify malware files into malicious 

or benign. However, the exponential growth in data volume and feature dimensionality poses challenges for machine 

learning, resulting in reduced classification accuracy and heightened computational costs. Feature selection is an essential 

process that can address these challenges by eliminating irrelevant, redundant, and less informative features that may 

adversely affect classifier performance. In this study, we introduce an enhanced Whale Optimization Algorithm (EWOA) 

aimed at improving classification accuracy, feature selection, and overall malware detection model efficiency. The 

proposed EWOA introduces an enhanced search mechanism that integrates mutation and neighborhood search strategies, 

aiming to refine its exploration strategy. This novel approach is more adept at steering clear of local optima. Additionally, 

EWOA augments its population diversity by incorporating the Opposite-Based Learning technique (OBL) during its initial 

phase. To assess the efficacy of the proposed method, performance evaluations were conducted using the CIC-MalMem-

2022 dataset. Various aspects including the number of features, efficiency, fitness value, accuracy, and statistical tests were 

compared across different optimization algorithms: Gray Wolf Optimization Algorithm (GOA), Genetic Algorithm (GA), 

Particle Swarm Optimization (PSO), Artificial Lion Optimization (ALO), Butterfly Optimization Algorithm (BOA), and 

Slime Mould Algorithm (SMA). The experimental results affirm the superiority of EWOA over other optimization 

algorithms in diverse areas, such as classification accuracy (99.987%), fitness value (0.00084511%), and average feature 

count (on average, 3.97 features). 

Keywords: CIC-MalMem-2022 dataset, Feature selection, KNN, Malware detection, Whale optimization algorithm 

(WOA). 

 

 

1. Introduction 

Malicious software is a program intentionally 

created to penetrate or cause damage to a computer 

system without the user's consent, leading to serious 

security issues [1]. Malware can be found on all 

platforms, including operating systems, custom 

builds, and mobile platforms. Malware, or malicious 

code, aims to damage, disrupt, steal, or participate in 

unlawful activities against information, hosts, or 

systems. There are different types of malware, some 

of which attach themselves to legitimate software or 

are attached to files as macros. Some exploit 

vulnerabilities in custom software or in the operating 

system itself. Network devices are also susceptible to 

attacks due to misconfigurations, such as a browser 

vulnerability that forces users to visit a website. 

Users' actions, such as opening emails from untrusted 

sources, browsing websites with malicious code, 

downloading programs from untrusted websites, and 

clicking on advertisements, are the main drawbacks 

that can be exploited to spread this malware. Typical 

forms of malicious software encompass viruses, 

worms, Trojans, bots, backdoors, spyware, and 

adware. Emerging viruses and polymorphic viruses 

employing obfuscation methods pose greater 

challenges for detection. One of the prevalent 

methods for malware detection software today is 
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using behavioral and signature-based detection 

techniques [2]. 

Signatures, which are concise sequences of bytes 

unique to individual programs [3]. Demonstrate a low 

error rate and are adept at identifying particular 

viruses within executable files, boot records, or 

memory [4]. Nevertheless, the signature-based 

approach proves ineffective when confronted with 

altered or unfamiliar malicious executables. 

Conversely, behavior-based detection holds promise 

in safeguarding against emerging and unforeseen 

threats. Nonetheless, this method of virus detection 

typically entails considerable costs and time 

investments [5]. 

Alternatively, memory-based techniques offer a 

unique approach to malware detection that differs 

from traditional static signature-based methods. 

Unlike static signatures, which are based on 

predefined patterns of known malware, memory-

based techniques focus on analyzing the behavior and 

characteristics of a program as it executes. This 

dynamic approach creates an adaptive and proactive 

detection mechanism that identifies previously 

unknown or evolving malware threats. Utilizing the 

CIC-MalMem-2022 dataset extracted through 

memory analysis, these methods demonstrate their 

effectiveness in identifying polymorphic and 

metamorphic malware. In addition, memory-based 

techniques help to reduce false positives [6]. This 

approach increases the accuracy of malware detection 

systems by minimizing the risk of falsely identifying 

legitimate programs as malicious. 

The original program was initially developed as 

an anti-malware system. Its purpose was to prevent 

viruses and Trojans from making unauthorized 

changes to files. John McAfee introduced his 

VirusScan™ software in 1989, which was able to 

detect and eliminate multiple viruses simultaneously 

[3]. These detection systems are statistical anomaly 

detectors that were developed by Los Access in 1989. 

They can detect anomalies based on statistical 

analysis. The problem with such programs is that they 

can be called up remotely by adversaries, enabling 

them to launch attacks without authentication. A 

Trojan horse is a type of code that masquerades as a 

useful program but is designed to either steal 

information or corrupt data [7]. Sniffers are software 

applications that are capable of intercepting and 

logging network traffic. They intercept each packet to 

decrypt and obtain the unprocessed data by revealing 

the values of the various components within the 

packet and examining its contents. Sniffer code can 

serve as the first step in an intrusion attempt. Spam, 

also known as junk email, is a software program that 

sends identical messages via email to a large number 

of specific recipients. Spam can cause system delays 

due to the influx of numerous emails, and it can also 

lead to bandwidth consumption. It is also 

occasionally used as a replacement for adware [7]. 

Software companies develop detection systems to 

analyze and categorize new programs. Valid software 

is added to a white list, while malicious software is 

added to a black list. To classify undecidable 

software, also known as grey list, scanners are used 

in a controlled environment [8]. If new malware is 

discovered during the analysis of a program on the 

gray list, the company issues online updates to 

remove the newly identified malware. Users can 

update their product databases remotely via an 

internet connection. 

Most malware scanners use signature-based 

(static) and behavior-based (dynamic) methods to 

identify programs. However, there are different 

approaches to solve this problem. The primary 

distinction between signature-based and behavior-

based techniques resides in the utilization of 

classifications for malware detection rather than 

depending on patterns [9]. 

The efficiency of signature-based and behavior-

based techniques was improved through the 

utilization of machine learning (ML). However, both 

techniques are affected by the high dimensionality 

problem caused by the huge number of extracted 

features [10]. 

Feature selection is an important technique in ML 

because it is the most effective tool for solving the 

problem of high dimensionality. Due to the existence 

of irrelevant, redundant features, which are affected 

negatively on the accuracy of the final classifier. So, 

feature selection is important to select the optimal 

subset of features in the feature space. To reduce 

dimensionality, increase accuracy, and decrease 

runtime [11]. Optimization is one of the feature 

selection methods, which is used to select the optimal 

features from the feature space. Therefore, it reduces 

the dimensionality and increases the accuracy of 

classification. The optimal feature subset logically 

has the fewest features and the highest classification 

accuracy [12]. 

The Whale Optimization Algorithm (WOA) was 

improved in this study to increase the efficiency of 

feature selection. WOA is a proposed swarm 

intelligence approach specifically designed to tackle 

continuous optimization tasks. Empirical evidence 

has shown that WOA has superior or equivalent 

performance compared to several established 

algorithmic methods [13]. WOA was developed 

based on the hunting behavior of humpback whales. 

In an enhanced iteration of the WOA, a whale 

endeavors to shift to a new location within the search 
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space by considering the optimal element in the group. 

The efficiency and ability of feature selection through 

nature-inspired optimizers to transform optimization 

problems into global optimization, thereby 

surpassing the constraint of local optima, has 

propelled their progress. Nature-inspired 

methodologies are employed for the purpose of 

choosing and refining solutions [14]. The primary 

constraints of this algorithm are its convergence 

speed and tendency to quickly fall into local optima 

[15, 16]. 

This paper proposes a novel malware detection 

model by utilizing the K-Nearest Neighbors (KNN) 

using and an enhanced version of WOA (EWOA) for 

feature selection. We propose a robust and adaptive 

model that is capable of identifying malware variants. 

By reducing the number of unnecessary features, 

malware detection systems can be made more 

accurate and efficient. The analysis results are 

demonstrated through rigorous experiments and 

evaluation of the proposed method, showing that it 

has the potential to improve cybersecurity in malware 

detection. 

With technological progress, the number of 

malware is also constantly increasing. Malware has 

evolved to have transformative characteristics, 

leading to a significant increase in the diversity of 

malware types [17]. Furthermore, even inexperienced 

malware developers are now able to easily generate 

novel forms of malware thanks to automated malware 

development tools [18]. Traditional methods of 

identifying malware by characteristics have proven 

ineffective against the wide range of new malware 

[17]. However, ML strategies for malware detection 

have proven to be highly effective in detecting new 

malware. ML strategies for malware detection have a 

significant false positive rate in parallel [19]. Our 

goal is to maximize the detection rate with ML 

algorithms. 

In addition, malicious programs employ diverse 

methods to disseminate viruses, seize control of 

computer systems and IoT devices, and pilfer 

sensitive data like credit card numbers and other 

personal information. Although there are many 

approaches to detecting intruders, identifying 

malicious code remains difficult. Current malware 

detection systems lack the ability to detect new 

threats and malware disguised as harmless programs. 

Because they rely on fixed collections of known 

malware cases, they are vulnerable to innovative and 

previously unknown dangerous behaviors. One of the 

main reasons for these challenges is the explosion in 

the number of features included in malware samples 

[4]. This proliferation of features brings with it 

problems related to the high-dimensionality of 

features, sparsity, and complexity of high-

dimensional data, which are known challenges in data 

analysis. In addition, high-dimensional data 

negatively affects the performance of ML classifiers, 

causing a decrease in classification accuracy and an 

increase in computational costs [20]. 

The feature selection phase within a malware 

detection system tackles these hurdles by employing 

diverse optimization algorithms. Nonetheless, such 

optimization algorithms, like WOA, face challenges 

regarding convergence speed and a predisposition to 

rapidly converge towards local optima [21, 22]. 

Hence, EWOA was introduced to mitigate these 

constraints. By incorporating the proposed search 

strategies (SS), this extension seeks to improve the 

algorithm's effectiveness in exploring both global 

and local areas. Furthermore, this enhancement is 

anticipated to streamline the suggested malware 

detection model by reducing the quantity of chosen 

features, thereby enhancing its classification 

efficacy. 

The main challenges associated with WOA, 

which include the speed of convergence and the 

restriction to local optima, arise from the following 

factors [21, 22]: 

• Exploration vs. Exploitation: The fundamental 

challenge of striking a balance between 

exploration and exploitation represents an 

important aspect in optimization algorithms. 

Frequently, prioritizing exploration within the 

Whale Optimization Algorithm (WOA) may 

result in a thorough exploration of the search 

space, thereby postponing the convergence 

towards a promising solution. 

• Random Movements: WOA employs various 

strategies inspired by the behavior of humpback 

whales, such as encircling prey, bubble-net 

feeding, and tail flicking. It is important to note 

that the implementation of these strategies 

involves some level of randomness that is likely 

to result in slower convergence, especially if 

random behavior is not guided correctly. 

• High-Dimensional Spaces: In high-dimensional 

spaces, the optimization search space becomes 

more complex to navigate effectively. WOA's 

random movements and strategies might not 

perform optimally in such spaces, leading to 

difficulties escaping local optima. 

This challenge can be overcome by enhancing the 

convergence speed of the WOA and addressing its 

limitations related to local optimum. Through the 

adoption of OBL techniques, the proposed EWOA 

enhances the initial population of whales. Moreover, 

the new search strategy enhances the search 

technique. Consequently, reducing the complexity of 



Received:  March 5, 2024.     Revised: April 6, 2024.                                                                                                       609 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.47 

 

feature selection in malware detection can strengthen 

the accuracy and efficiency of identifying malware 

instances. 

Finally, this study employs a range of evaluation 

metrics to evaluate the efficacy and efficiency of an 

enhanced EWOA. The CIC-MalMem-2022 dataset 

was assessed using evaluation measures such as the 

average number of features, efficiency, fitness value, 

accuracy, and statistical tests. The proposed method's 

results were compared with optimization algorithms 

such as WOA, GOA, GA, PSO, ALO, BOA, and 

SMA.  

This paper is structured into distinct sections. 

Section 2 provides an overview of related works. 

Section 3 discusses the WOA. Section 4 outlines the 

enhancements to the proposed EWOA. Section 5 

introduces the experimental analysis and presents the 

obtained results. Finally, Section 6 contains 

conclusions and future work. 

2. Related work 

Talukder and colleagues (2023) proposed a novel 

approach that integrates machine learning and deep 

learning methodologies with the aim of bolstering the 

efficacy of network intrusion detection systems. This 

integration yields augmented detection rates and 

heightened system reliability. Their method adeptly 

preprocesses data through a fusion of SMOTE for 

data balancing and XGBoost for feature selection. 

Comparative evaluations against alternative 

detection mechanisms illustrate the superior 

performance of the proposed method, showcasing 

remarkable outcomes across the KDDCUP'99 and 

CIC-MalMem-2022 datasets. However, this method 

relies heavily on specific datasets and can be 

computationally complex. [23]. 

Smith et al. (2023) utilized the Malware-

exploratory and CIC-MalMem-2022 datasets for 

their investigation. The research involved the 

application of three clustering methods: K-Means, 

DBSCAN, and Gaussian Mixture Model (GMM). 

Seven classification techniques were employed 

within the model to forecast occurrences of malware: 

Decision Tree, Random Forest, Ada Boost, K-

Neighbors, Stochastic Gradient Descent, Extra Trees, 

and Gaussian Naïve Bayes. The Malware 

Exploratory dataset achieved an average accuracy 

rate of 90%, whereas the CIC-MalMem-2022 dataset 

exhibited an average accuracy rate of 99%. 

Consistency in performance across all three 

clustering techniques was observed for both datasets. 

[17]. 

In their next research, Smith et al. (2023) used 

two different datasets, namely Malware-exploratory 

and CIC-MalMem-2022, to collect data for analysis 

using a range of supervised and unsupervised 

learning methods. This study builds on previous 

research by incorporating feature selection methods, 

including Pearson correlation coefficient and GA, 

into the developed model. The proposed model is 

then evaluated on a custom dataset called SMITH as 

well as a dataset created using a Generative 

Adversarial Network (GAN) trained on SMITH. The 

results of this study show that the genetic algorithm 

demonstrates a considerable level of proficiency in 

identifying malicious software in the Malware-

Exploratory and CIC-MalMem-2022 datasets. On the 

other hand, the use of the Pearson correlation 

coefficient appears to be efficient when applied to the 

SMITH dataset [24]. However, their technique face 

challenges with generalizability and interpretability.   

In addition, Shafin et al. (2023) proposed a novel 

approach to malware identification that has two 

important characteristics: Multiclass capability and 

lightweight. This approach enables the detection of 

modern malware while being compatible with 

embedded devices. This study suggests a hybrid 

model that merges the feature learning abilities of 

convolutional neural networks (CNNs) with the 

temporal modeling benefits of bidirectional long- and 

short-term memory (LSTM). Extensive experiments 

conducted on the CIC-MalMem-2022 dataset 

demonstrate the superior performance of this strategy 

[25]. 

Moreover, Jerbi et al. (2023) have proposed a 

method for malware detection, which contains two 

different procedures: the first procedure uses a 

memetic algorithm to generate new instances of 

malware, and the second procedure uses robust 

detectors generated by an artificial immune system 

based algorithm to identify these new instances of 

attacks. The effectiveness of a novel malware 

detection system has been demonstrated through 

extensive experimentation with heavy-duty datasets 

and evaluation criteria. However, the work still lack 

of real-world validation and interpretability [4]. 

Furthermore, Alawad et al. (2023) suggested an 

enhancing the White Shark Optimizer (WSO) 

technique to address feature selection in the binary 

domain of an Intrusion Detection System (IDS) 

prediction model. They employed two transfer 

functions and a customized K-means algorithm to 

create an initial population with substantial diversity. 

Three enhanced versions, BIWSO1, BIWSO2, and 

BIWSO3, were suggested to enhance the binary 

WSO procedure. The results indicate that the 

BIWSO3 method is successful in improving 

classification accuracy, precision, recall, and F1-

measures [18]. Though, the technique may encounter 
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issues with the implementation complexity and the 

sensitivity of parameter selection. 

Dener et al. (2022) presented a novel approach to 

improve malware detection by leveraging memory 

data. The method they proposed involves the 

integration of deep learning and machine learning 

techniques into a comprehensive framework tailored 

for handling huge datasets. The researchers 

conducted experiments on the CIC-MalMem2022 

dataset and found that the logistic regression 

technique showed the most success. The gradient 

boosted tree algorithm in combination with the 

logistic regression technique shows a remarkably 

high accuracy, especially with a hit rate of 99.94%. 

In the area of malware analysis using memory data, 

the Naive Bayes technique achieved the lowest 

accuracy of 98.41%. In addition, a significant portion 

of the algorithms used showed a remarkable level of 

performance. The results of this study show that the 

data obtained through memory analysis is of great 

value in identifying and detecting malware. 

Nevertheless, the work is likely to encounter 

challenges regarding generalization and overfitting 

[26]. 

Luhr and Hallqvist (2022) conducted a 

comparative analysis of a deep learner multi-layer 

perceptron (MLP) and an ensemble learner from 

traditional ML techniques. The comparison focused 

on evaluating the accuracy and runtime performance 

of these models. The dataset used in this study 

consists of obfuscation-based feature extraction data 

obtained from the volatile memory of computer 

systems infected by malware. The results of the study 

show that the MLP reduced classification times for 

binary malware by 94.3% compared to ensemble 

learning, with accuracy decreasing by only 0.02 

percentage points. The 99.8% reduction in 

classification times for multi-class classification is 

associated with a 3.2 percentage point loss in 

accuracy. The results suggest that the MLP is a good 

choice for this particular task in practice, as it offers 

a significant improvement in time efficiency [27]. 

However, this work may overlook broader evaluation 

metrics and the generalizability of their findings. 

Memory analysis plays a central role in the 

identification of malignant processes and enables the 

detection of various characteristics and behaviors 

Carrier (2021). Despite the extensive research in this 

area, there are still major challenges in malware 

detection, e.g. in terms of detection rates and the 

sophisticated obfuscation techniques used by 

advanced malware. As advanced malware uses 

obfuscation and other evasion techniques to evade 

conventional detection methods, this study seeks to 

extend VolMemLyzer, a state-of-the-art memory 

feature extractor for learning systems, with an 

increased focus on hidden and obfuscated malware. 

The extension includes the integration of the tool into 

a stacked ensemble of machine learning models, 

creating a robust framework for efficient malware 

detection. In addition, a specific malware memory 

dataset, namely CIC-MalMem-2022, has been 

carefully created to rigorously test and evaluate the 

proposed framework [28]. Table 1 presents a 

summary of the performance of previous studies. 

As can be seen, the related studies mainly focused 

on using deep learning and machine learning to detect 

malware and suggested various techniques to 

improve detection rates and system reliability. 

Studies emphasize the importance of adapting to new 

and emerging malware threats, especially in the 

context of advanced technology and sophisticated 

attacks. However, previous studies did not attempt to 

reduce the number of selected features. Consequently, 

the complexity of their proposed systems is high. 

Therefore, we conducted a research study involving a 

malware detection model using a KNN classifier. 

The model involves enhancing the WOA, with a 

particular focus on reducing the number of feature 

selections to reduce complexity, increase accuracy, 

and, therefore, increase the speed of malware 

detection. The results of this study can greatly 

contribute to the field of cybersecurity, providing 

valuable insights and methodologies for more robust 

and accurate malware detection systems. 
 

 

Table 1. Show the summary of performance for relevant 

previous studies. 

Author Methodology 
Result 

(Accuracy) 

[23] SMOTE, XGBoost 99.99% 

[17] machine learning 

algorithms 

90%, 99% 

[24] Pearson correlation 

coefficient and GA. 

90%, 99% 

[25] (CNNs), (LSTM) - 

[18] (BIWSO) BIWSO3 

exhibits high 

efficiency 

[26] Logistic Regression 

Gradient Boosted Tree 

Naive Bayes 

 

99.97% 

99.94% 

98.41% 

[27] (MLP), Ensemble Learner reduced binary 

classification 

time by 94.3% 

and multiclass 

by 99.8%, 

[28] KNN, SVM 0.95% 

0.90% 
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3. Preliminaries 

Metaheuristic algorithms have gained significant 

attention in recent years for their ability to efficiently 

solve complex optimization problems. Numerous 

studies have utilized various metaheuristic 

approaches and have achieved notable results in 

solving a diverse range of optimization problems. 

These metaheuristics are often developed through the 

construction from scratch, modification of existing 

algorithms, or hybridization of multiple approaches. 

In this review, we highlight several recent studies that 

introduce novel metaheuristic algorithms and 

evaluate their performance against established 

methods. 

It is worth mentioning that there are several 

related works that have significant improvements 

using metaheuristic optimization algorithms, 

including the Extended Stochastic Coati Optimizer 

(ESCO), Swarm Bipolar Algorithm (SBA), Swarm 

Space Hopping Algorithm (SSHA), Migration-

Crossover Algorithm (MCA), Total Interaction 

Algorithm (TIA), Four Directed Search Algorithm 

(FDSA), and Attack Leave Optimizer (ALO). These 

algorithms have shown superior performance in 

solving classic optimization functions, high-

dimensional functions, high-dimensional cases, and 

faster convergence to optimal solutions [29-36].  

In the next subsection, we will explain the Whale 

Optimization Algorithm (WOA) in detail. This 

section will cover basic principles and operational 

mechanics in the context of optimization problems. 

3.1 Whale optimization algorithm (WOA) 

The Whale Optimization Algorithm (WOA) is a 

metaheuristic optimization method that draws 

inspiration from the foraging habits of whales. It is 

widely utilized for global optimization challenges in 

various domains. Unlike other hunting strategies, 

WOA stands out by employing either random or the 

best agent within the search space to pursue prey. The 

algorithm replicates the bubble-net attachment 

mechanisms of humpback whales, who use 

distinctive spirals to encircle and capture groups of 

krill or small fish near the water's surface. This 

involves the formation of spiral bubbles around the 

prey as the whales move up and down in the water as 

shown in Fig.1. 

The WOA mimics whale behavior by employing 

three strategies that imitate the actions of humpback 

whales during the phases of searching for prey 

(exploration), encircling prey, and bubble-net 

foraging (exploitation). The subsequent sections will 

provide a theoretical framework and elucidate the 

mathematical formulation. 

 
Figure. 1 The graph showing the spiral bubble-net 

attacking strategy [37] 

 
Table 2. Notation list 

Variables Meaning 

H current iteration 

𝑑∗ location of the best 

solution 

𝑑 location vector 

𝑧⃗⃗⃗ and 𝑦⃗⃗⃗ coefficient vectors 

K random vector 

W vector 

𝑑 𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ location selected 

 
Table 2 displays a notation list. It explains the 

meaning of the variables in mathematical equations. 

3.1.1. Prey encirclement 

The whale algorithm begins this phase by 

selecting an initial optimal search agent. The 

prevailing assumption is that the current solutions are 

optimal and that they are located in close proximity 

to the prey. Consequently, the other agents modify 

their positions toward the most optimal search agent. 

This is represented as follows: 

 

𝑠 = 𝑦⃗. 𝑑∗(𝑡) − 𝑑(ℎ) (1) 
 

 
Figure. 2 WOA shrinking encircling mechanism [38] 
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𝑑 = (ℎ + 1)𝑑∗(ℎ) − 𝑧. 𝑠 (2) 
 

Where h represents the current iteration 𝑧⃗⃗⃗  and 

𝑦⃗⃗⃗are coefficient vectors. The vector 𝑑∗represents the 

location of the best solution that has been achieved 

thus far, while 𝑑 represents the location vector. If a 

more optimal solution is found, the variable 𝑑∗ 
should be updated by iterative processes. The 

calculation for vectors 𝑧⃗⃗⃗ and 𝑦⃗⃗⃗ is as follows:  

 

𝑧 = 2 𝑤⃗⃗⃗. 𝑘⃗⃗ − 𝑤 (3) 
 

𝑦⃗ = 2. 𝑘⃗⃗ (4) 

 

K is a random vector ranging from 0 to 1, and the 

vector w is linearly decreased from 2 to 0 over the 

iterations. This model replicates the prey's 

surroundings and enables each agent to adjust its 

position within the current optimal solution area. As 

illustrated in Fig. 2. The search can extend deeper into 

the n-dimensional space, facilitating navigation 

around the hypercube for agents near the optimal 

solution. 

3.1.2. Exploitation phase 

This phase is also known as the bubble-net attack, 

and it employs the following two strategies: 

Shrinking encircling mechanism: In this phase, the 

value of  𝑤 ⃗⃗⃗⃗⃗  in Eq. (3) is reduced, reducing the 

fluctuation range of 𝑧 ⃗⃗⃗by 𝑤⃗⃗⃗.  This indicates that 𝑎 is 

arbitrarily located in [−𝑤⃗⃗⃗⃗ ⃗⃗⃗, 𝑤⃗⃗⃗ ]. Where a decreases 

from 2 to 0 during the optimization process. 

Because of The randomization of 𝑧 ⃗⃗⃗  in[−1,1], the 

search agent's new position, can be found anywhere 

between the agent's previous location and the current 

optimal location. In a 2-D space, Fig. 2 presents the 

various locations based on the shrinking encircling 

mechanism. 
 

 
Figure. 3 WOA spiral updates its position [13] 

 

 
Figure. 4 WOA exploration mechanism [38] 

 

 

Spiral position updating: During this stage, the 

computation involves determining the distance 

separating the whale from its prey and establishing a 

spiral equation based on their respective positions, 

mirroring the feeding behavior exhibited by the 

whale as illustrated in Fig. 3. 

Humpback whales move the form of the spiral. 

This may be represented as follows: 

 

 𝑑⃗⃗⃗ ⃗(h + 1)𝐿′⃗⃗⃗ ⃗ . 𝑒𝑏𝑙 . cos(2Πι) + 𝑑∗(ℎ) (5) 
 

𝐿′⃗⃗⃗ ⃗ = |X⃗⃗⃗∗(h) − d⃗⃗(ℎ)| (6) 

 

The distance between the whale and its prey is 

represented by Eq. (6) (the best solution so far), 

where b is a constant for determining the logarithmic 

spiral shape and ι is a random number 

between  [−1,1] . A spiraling pattern of shrinking 

circles follows the whale as it moves toward its prey. 

As a result, a 50% probability of switching between 

modes is employed to update the whale's next 

position, as shown below: 

 

𝑑(ℎ + 1) =

{ 
 𝑑∗⃗⃗⃗⃗⃗(𝑡) − 𝑧. 𝐿⃗⃗           , 𝑖𝑓 𝑝 ≥ 0.5                    

𝑙′⃗⃗⃗ . 𝑒𝑏𝑙 . cos(2Πι) + d⃗⃗∗(𝑡), 𝑖𝑓 𝑝 ≥ 0.5
(7)

 

 

Where p in [0,1] is a random number. 

3.1.3. Exploration phase 

WOA simulates global optimization at this phase. 

As shown in Fig. 4, whales seek prey at random based 

on their relative positions to one another. 

The vector (z) is randomly assigned a value 

within the range of -1 to 1 in order to compel the 

search agent to distance itself from the reference 
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whale. The vector (z) ⃗  must have a magnitude greater 

than 1 or less than -1. Here, a randomly selected agent 

enables the WOA to perform a worldwide search and 

update the agent's position. The exploration process 

is depicted as follows: 

 

𝐿⃗⃗ = |𝑦⃗. 𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑑| (8) 

 

𝑑(ℎ + 1) = 𝑑𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑧. 𝐿⃗⃗ (9) 
 

Where 𝑑 𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  is a location selected at random 

for a whale from the current population. The 

algorithm (1) illustrates the pseudo-code for the 

phases of the WOA. 

3.2 CIC- MalMem-2022 dataset 

Obfuscated malware is a form of malicious 

software that employs concealment methods to avoid 

being detected and eliminated. The main goal of the 

obfuscated malware dataset is to evaluate the 

effectiveness of malware detection methods. The 

Canadian Institute for Cybersecurity has launched 

CIC-Malmem-2022, an academic dataset designed 

for studies on malware classification, with a specific 

focus on obfuscated malware. This dataset aims to 

simulate real-world conditions effectively by 

including common malware samples, encompassing 

Spyware, Ransomware, and Trojan Horse malware. 

Fig. 5 illustrates the categories of memory dumps. 

To expand the dataset, an automated process was 

implemented that included the execution of 2,916 

malware samples representing three different 

categories: Trojan horse, ransomware and spyware, 

within a virtual machine (VM). As it is important to 

Initialize the whales’ population 𝑋𝑖(𝑖=1,2,3,…,𝑛).  

Compute the fitness of each whale.  

Set 𝑋∗as the best whale.  

 

Algorithm1: The WOA algorithm [13] 

Initialize the whales’ population 𝑋𝑖(𝑖=1,2,3,…,𝑛).  

Compute the fitness of each whale.  

Set 𝑋∗as the best whale.  

While (t < maximumnumberofiterations) do 

For (eachsearchwhale) do 

Update a, A, C,𝜄 and p. 

If (p < 0.5) then 

If (|𝐴|< 1) then 

The whale position is updating by 

the Eq. (1). 

Else  

If (|𝐴| ≥1) then 

Select the random whale 𝑋𝑟𝑎𝑛𝑑 

The whale position is updating by 

the Eq. (9).   

End If  

End If     

Else  

If (𝑝 ≥ 0.5) 𝐭𝐡𝐞𝐧 

Modify the whale position by the 

Eq. (5). 

End If 

End If  

End For 

Check if any search agent goes beyond the 

search   Space and amend it. Compute the 

fitness of each search agent. Update 𝑋∗ if there 

is a better solution.   

t = t +1 

End While

 

disrupt benign processes when creating malicious 

memory dumps, various applications within the 

Windows VM were launched simultaneously with the 

execution of malware samples. Each malware sample 

execution provided 10 memory dumps recorded at 

15-second intervals, resulting in a total of 29,298 

malicious memory dumps to comprehensively 

capture the potential behavior of malware [28]. 

Benign dumps were generated by observing 

typical user behavior through the activation of 

various applications on the computer. Oversampling 

was then performed using the SMOTE (Synthetic 

Minority Over-sampling Technique) algorithm to 

equalize the data set. In contrast to conventional 

oversampling methods, SMOTE generates synthetic 

values that differ only minimally from the actual 

values. This methodological choice helps to create a 

more balanced and representative dataset for 

subsequent analysis and classification efforts [28]. 

The dataset is evenly divided, comprising 50% 

malicious memory dumps and 50% benign memory 

dumps. Fig. 6 shows the overall number of malware 

families in each malware category.  

 

 
Figure. 5 Memory Dump Categories [28] 
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Figure. 6 Malware Breakdown 

 

3.2.1. Preprocessing dataset 

The dataset was pre-processed to maintain 

consistency and improve the optimization algorithms' 

performance, as detailed in the following subsections. 

Normalization: Normalization is essential for 

ensuring the numerical features within the CIC-

Malmem-2022 dataset are on the same scale. This 

step prevents features with larger values from 

dominating the analysis, which is critical in the 

context of classifying data. Min-Max scaling was 

applied to scale the values to a range between 0 and 

1, promoting consistent and unbiased analysis.  To 

achieve this, Min-Max scaling was applied, utilizing 

the following formula: 

   

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑉𝑎𝑙𝑢𝑒𝑠  
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 −𝑀𝑖𝑛(𝐴)

𝑀𝑎𝑥(𝐴) − 𝑀𝑖𝑛(𝐴)
(10) 

 

Where:   

• Original Value: Depicts the initial numerical 

values of the dataset. 

• 𝑀𝑖𝑛(𝐴): Denotes the lowest value of feature A in 

the dataset. 

• 𝑀𝑎𝑥(𝐴): Denotes the highest value of feature A 

in the dataset. 

Rounding Digits: rounding the digits to a specific 

attribute within the CIC-Malmem-2022 dataset to 

enhance generalization and prevent overfitting. 

Numbers have been rounded to four decimal places 

to ensure that any numerical values are displayed 

with a high degree of accuracy. 

3.2.2. Model training and testing 

The dataset has been divided into two separate 

subsets: 80% of the data is assigned for training the 

model, while the remaining 20% is set aside for 

testing the model's performance. This partitioning 

strategy aligns with common practices observed in 

other studies [39, 40]. In the training phase, the KNN 

classifier undergoes training using the designated 

training data, with emphasis placed on the subset of 

optimized features. 

4. The proposed method 

This section outlines the steps involved in using 

EWOA to optimize feature selection, as shown in Fig. 

7.  

4.1 Enhanced whale optimization algorithm 

(EWOA) 

In this section, an enhanced version of WOA is 

presented. Two enhancements have been added to the 

EWOA. Firstly, the initialization phase in EWOA has 

been replaced by OBL to improve the quality of 

selecting the position of the whale (agent) in the 

initialization phase. Secondly, a new search strategy, 

namely Search Strategy (SS), has been proposed to 

enhance the search mechanism of EWOA in both the 

exploration and exploitation phases, as shown in Fig. 

8. 

EWOA is designed to address challenges and 

limitations that were observed in the original WOA, 

thus providing a more resilient and adaptable 

optimization tool. 

 

 
Figure. 7 EWOA for feature selection. 
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Figure. 8 The framework of the proposed OBL and SS 

 

WOA is a robust and effective optimization 

technique. However, as per the NFL theorem, no 

algorithm can completely solve all optimization 

problems [41]. Enhancements have been made to the 

WOA algorithm to address its limitations and 

enhance its feature selection optimization capabilities. 

This enhancement aims to improve the algorithm's 

abilities in global and local searches by incorporating 

the suggested SS. The subsequent steps elucidate the 

proposed EWOA algorithm. 

Step 1: Initialize the population, represented as X, 

with a size of N using a random function. Each whale 

in the population represents a different feature subset. 

Feature subsets are represented as binary vectors, 

where each element corresponds to the presence or 

absence of a feature. 

Step 2: Utilize the OBL technique to create 

solutions that are opposite in nature, then choose the 

most suitable N solutions. 

Step 3: Apply the Enhanced Whale Optimization 

Algorithm (EWOA) to adjust the position of each 

member in the population. Determine the optimal 

prey location based on the highest fitness value. 

Setting up EWOA Parameters [42]. The EWOA 

algorithm requires setting parameters in which the 

number of whales (20), maximum iterations (30), and 

exploration/exploitation factors. Executing the 

EWOA Algorithm: EWOA iteratively updates the 

positions of whales (feature subsets) in the search 

space. Whales mimic the behavior of humpback 

whales, moving towards the optimal search agent to 

improve the fitness of their feature subsets. Eq. (1) 

and Eq. (2) govern the updating process, guiding the 

exploration and exploitation of the search space. 

Step 4: Implement a mutation strategy to enhance 

prey detection. If the new location is more suitable 

than the current location, classify the new location as 

a potential prey location. Execute the NSS strategy to 

improve its positioning. Ultimately, designate the 

optimal location as the potential prey locations. 

Step 5: Iterate until the termination condition is 

satisfied. 

The following subsections will explain in detail 

the techniques used to enhance an EWOA algorithm. 

• Opposite-Based Learning  

The OBL technique, created by [35] OBL is a 

method that encompasses a machine learning 

approach. This technique aims to improve the 

efficiency of metaheuristic optimization algorithms. 

This strategy entails choosing a more efficient 

solution from the existing individuals, usually 

randomly initialized by the optimization algorithm, 

along with its corresponding opposite solution. Each 

solution is assigned fitness values, and the one with 

the highest value is selected to progress to the next 

iteration. Research has shown that OBL greatly 

improves the likelihood of reaching the best global 

solution for a specific objective function, thus 

boosting the effectiveness of optimization algorithms 

[43]. The OBL technique can be mathematically 

formulated as follows. 

 𝐿𝑒𝑡 𝑑 = (𝑑1, 𝑑2, . . . , 𝑑𝐷) represents a location 

in the current population, while D denotes the 

dimensionality of the problem space. and  𝑥 ∈
 [𝑎𝑖, 𝑏𝑖] , 𝑖 =  1, 2, . . . , 𝐷.  the opposition point  

  𝑑̌ =  (𝑑̌1, 𝑑̌2, . . . , 𝑑̌𝐷) is thus defined as the 

following equation:  

 

𝑑̌𝑖 = 𝑎𝑖  +     𝑏𝑖  −  𝑑𝑖 (11) 
 

Optimization algorithms involve exploration 

(diversification) and exploitation (intensification) 

phases. This section outlines the proposed Search 
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Strategy (SS) designed to enhance the global and 

local search mechanisms in the EWOA algorithm. 

These strategies partially reduce the risk of getting 

trapped in local optima. The proposed SS consists of: 

• Mutation 

Mutation in the EWOA algorithm aims to 

increase diversity in the sampled population. 

Mutation operators are used to avoid the 

chromosomes in a population from reaching a local 

optimum by ensuring they do not become too similar 

to each other. Various mutation categories exist, 

based on the technique used. The enhanced algorithm 

utilizes bit string mutation, randomly altering 

features by flipping them at random positions. The 

mathematical representation of bit string mutation for 

the solution 𝑑 =  (𝑑1, 𝑑2, . . . , 𝑑𝐿) is as follows: 

 

𝑀 (𝑚) =  |1 −  𝐷 (𝑚)| (12) 
 

Where M represents the solution resulting from 

executing bit string mutation, m =  1, 2, . . . , L   it is a 

matrix of randomly selected positions (features) to be 

flipped in solution d. In solution d, specifically, the 

third and sixth features are undergoing a flipped, as 

shown in Fig. 9.  

The mutation size was randomly selected 

between 10% and 50% in the exploration phase and 

between 1% and 9% in the exploitation phase through 

various trial and error experiments. We introduced a 

technique in the EWOA to determine the degree of 

changes in features. During the exploration phase, 

selected features from the current optimal position 

are flipped to improve the efficiency of the global 

search. In the exploitation phase, a small number of 

features are altered to improve local search abilities. 

The mutation size is defined as follows: 

 
𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒 =

{
 
 
 
 

 
 
 
 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗
10 ∗  𝑟𝑎𝑛𝑑 [1,5]

100
,

𝑖𝑓 |ℎ| ≤
𝐻

2

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗
𝑟𝑎𝑛𝑑 [1.9]

100
,

𝑖𝑓 |ℎ| >
𝐻

2
         

   

 

(13)
 

 

 

 
Figure. 9 An instance of bit string mutation involving the 

inversion of the 3rd and 6th features 

Where H represents the current iteration and H 

Maximum  iteration. 

• Neighborhood search strategies (NSS) 

Das et al. (2009) implemented neighbor search in 

differential evolution (DE) to achieve a balance 

between exploration and exploitation phases. The 

primary objective of neighbor search is to explore a 

limited area surrounding the current optimal solution, 

rather than the entire population. This study presents 

the Neighborhood Search Strategy (NSS) technique. 

The implementation of NSS depends on 

improvements made to the best solution produced by 

the mutation strategy. NSS is utilized when the 

existing optimal solution (prey location) is altered as 

a result of mutation. The fitness value is recalculated 

following the application of each mutation to the 

current optimal position [44, 45]. 

The process includes assessing the suitability of 

the recently mutated position. When the new 

position's fitness exceeds that of the current position, 

the current optimal solution is replaced by the 

mutated solution, and the neighborhood search is 

performed. NSS specifically examines two 

neighboring strategies for toggling features. The 

forward-switching technique involves altering the 

right feature and evaluating the fitness values of both 

solutions (the best solution and the current switched 

solution). The backward-switching technique 

involves using the same method to mutate the left 

feature. Ultimately, this leads to two solutions, with 

the optimal value being recognized as the most 

favorable solution. The NSS is structured as a ring, 

where the final feature is linked to the initial feature 

to create neighboring connections on both ends. Fig. 

10 displays the ring NSS strategy. 

 

 
Figure. 10 An illustration of Neighborhood Search 

Strategies (NSS) 
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If the new position generated by mutation 

consistently maintains the best fitness value for 

consecutive iterations, it is referred to as the NSS 

strategy within the SS approach.  

WOA was initially created for continuous 

solution search spaces. Modifications are required to 

be in line with binary feature selection. Each whale's 

position is transformed into binary solutions using the 

following method. 

 

𝑥𝑖,𝑗 = {
1  𝑖𝑓 

1

1 + 𝑒−𝑥𝑖𝑗
 ≥ 0.5

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,           
(14) 

 

Consequently, only the features that match the 

ones in the dataset are considered relevant features, 

whereas the features that match the zeros are ignored. 

 Selecting the optimized feature subset: After the 

EWOA algorithm converges or reaches the maximum 

number of iterations, the subset of features that 

produces the highest classification accuracy is 

selected as the optimized set. 

EWOA is utilized dynamically to identify the 

optimal feature subset that enhances classification 

accuracy. Whales in EWOA exhibit dynamic 

movement within the search space, starting from the 

optimal search agent. Subsequently, they attempt to 

adjust their positions towards the most efficient 

search agent, as depicted in Eq. (1) and Eq. (2).  

KNN classifies unknown examples based on the 

majority class among its KNN in the feature space 

[38]. Specifically, we use KNN to classify samples 

into malware or benign categories using a selected 

feature subset. The classification strategy guides the 

feature selection method based on optimized 

components and a chosen feature set. 

5. Experimental results and discussion 

This section will detail the experimental analysis 

and outcomes of the proposed approach. 

Comparative evaluations among EWOA, WOA, 

GOA, GA, PSO, ALO, BOA, and SMA will be 

conducted, considering metrics such as the average 

number of features, efficiency, fitness value, 

accuracy, and statistical tests. The assessment is 

based on 30 iterations to ensure the reliability and 

consistency of the obtained results. 

According to the results, the proposed method is 

accurate and efficient. In Table 3, the average number 

of features is calculated using different optimization 

algorithms, and the results indicate that EWOA is the 

most efficient algorithm according to the lowest 

number of selected features. 

The average number of features is essential in 

determining their effectiveness. The EWOA 

algorithm has the lowest average number of features 

at 3.9667 out of 55 total features, suggesting it 

utilizes fewer features compared to the other 

algorithms. As a result, EWOA is superior at 

selecting a relevant subset of features, which may 

enhance the model by reducing the problem of 

dimensionality in the most efficient manner. 

Conversely, GOA, GA, PSO, BOA, and SMA show 

higher average numbers of features, ranging from 

19.3667 to 24.9, indicating a broader inclusion of 

features in their solutions. WOA and ALO present 

intermediate values at 7.2333 and 12.7, respectively. 

Table 4. Displays the average accuracy outcomes 

across different optimization algorithms. 

When evaluating the performance of various 

algorithms based on average accuracy, the 

optimization algorithms show high average accuracy 

values. Notably, EWOA stands out with the highest 

average accuracy of 0.99987, followed by PSO, GA, 

GOA, and BOA, all of which indicate accuracy 

values exceeding 0.9995. SMA and ALO also present 

impressive accuracy, ranging from 0.9993 to 0.9996. 

In addition, the WOA algorithm has an average 

accuracy of 0.99904. 

 

 
Table 3. The average number of feature outcomes. 

Algorithm Average Number of 

Features 

EWOA 3.9667 

GOA 24.0667 

GA 22.2667 

PSO 19.3667 

ALO 12.7 

WOA 7.2333 

BOA 24.6 

SMA 24.9 

 
Table 4. The average results of accuracy. 

Algorithm Average Accuracy 

EWOA 0.99987 

GOA 0.99956 

GA 0.9996 

PSO 0.99969 

ALO 0.99927 

WOA 0.99904 

BOA 0.99956 

SMA 0.99952 
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Table 5. Shows the average time results. 

Algorithm Average Time (Seconds) 

EWOA 43.1877 

GOA 80.2727 

GA 52.1437 

PSO 71.7279 

ALO 45.1597 

WOA 27.0792 

BOA 333.6596 

SMA 141.0108 

 
Table 6. The average fitness values results. 

Algorithm Average fitness 

EWOA 0.00084511 

GOA 0.004815 

GA 0.0044483 

PSO 0.0038253 

ALO 0.0030356 

WOA 0.0022613 

BOA 0.004912 

SMA 0.005006 

 

This investigation achieved a noteworthy 

elevation in precision, demonstrating a remarkable 

accuracy of 99.987% through the application of the 

KNN classifier. This performance surpasses the 

accuracy in the comparative study by [28]. Wherein 

a classification accuracy of 0.95 was attained 

utilizing the KNN classifier. The considerable 

improvement in accuracy observed in our study 

indicates the substantive progress realized in the 

proposed model. Table 5. Shows the average 

computational times of the optimization algorithms, 

providing insight into their efficiency. 

Both EWOA and WOA algorithms exhibit 

significantly lower average execution times, 

indicating a higher degree of computational 

efficiency. Conversely, the BOA algorithm stands out 

with a significantly longer computational time, 

indicating a relatively slower optimization process. 

The GOA, GA, ALO, PSO, and SMA algorithms 

demonstrate moderately comparable computational 

durations. In terms of preference, EWOA and WOA 

showcase faster convergence, while BOA requires 

considerably more computational resources. Table 6. 

Shows average fitness values across optimization 

algorithms that represent valuable insights into their 

relative effectiveness in achieving optimal solutions. 

 
Figure. 11 The average fitness values of EWOA across 

different optimization algorithms. 

 

Table 7. Shows the p-value results. 
Algorithm p-value 

GOA 2.7495e-11 

GA 2.746e-11 

PSO 2.7322e-11 

ALO 2.7547e-11 

WOA 3.1995e-11 

BOA 2.7478e-11 

SMA 2.7478e-11 

 

It offers valuable information on how various 

optimization algorithms compare in terms of 

achieving optimal solutions when looking at average 

fitness values. A lower average fitness value indicates 

greater algorithm efficiency in minimizing the 

objective function. The EWOA algorithm is the most 

effective among the algorithms in this context, 

boasting an impressive average fitness of 0.00084511. 

This indicates that EWOA is a highly promising 

solution for optimization tasks where the objective is 

to find optimal solutions with minimal fitness values.  

Similarly, the WOA and ALO algorithms show 

impressive performance, showcasing low average 

fitness values, respectively, at 0.0022613 and 

0.0030356. These findings indicate the efficacy of 

WOA and ALO in converging towards solutions with 

minimal fitness values, reflecting their ability to 

navigate the solution space effectively. The PSO 

algorithm also demonstrated competitive 

performance with an average fitness of 0.0038253. 

Conversely, the SMA shows the highest average 

fitness value at 0.005006, indicating a relatively less 

efficient exploration of the solution. GA, GOA, and 

BOA show intermediate fitness values of 0.0044483, 

0.004815, and 0.004912, respectively. These 

algorithms show acceptable efficiency. Fig. 11  
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shows  the average fitness values of EWOA across 

different optimization algorithms. 

The graphical representation illustrates that the 

optimal solution was attained at iteration 15, marking 

the midpoint of the total 30 iterations. Subsequent 

iterations displayed a plateau in the improvement of 

solutions, indicating a stabilization in the 

optimization process. This observation implies that 

optimal solutions were efficiently achieved with a 

minimal number of iterations. The convergence of 

solution improvement after the 15th iteration 

supports this, reinforcing the notion that the 

algorithm reached an effective and optimal state early 

in the iterative process. Table 7 displays the P-values 

across different optimization algorithms, providing 

insight into evaluating the significance of the 

improvement. 

The P-values from different optimization 

algorithms: GOA, GA, PSO, ALO, WOA, BOA, and 

SMA, indicate low values ranging from 2.7322e-11 

to 3.1995e-11. In statistical terms, a lower P-value is 

indicative of greater statistical significance. The 

significance level, often set at 0.05, indicates the 

threshold below which results are considered 

statistically significant. As shown, all the P-values 

fall significantly below this threshold, indicating that 

the improvements achieved by EWOA to these 

optimization algorithms are highly statistically 

significant. 

EWOA emerges as a robust and effective 

optimization algorithm for malware detection, 

exhibiting superiority in critical evaluation metrics 

including feature selection, computational efficiency, 

fitness value, and overall model accuracy. These 

compelling results underscore the capacity of EWOA 

to notably augment the effectiveness of malware 

detection systems, offering a promising alternative to 

established optimization algorithms.  

Conclusion 

This paper introduces a model that combines 

malware analysis, feature selection, and machine 

learning for malware detection. We propose a novel 

malware detection system based on the Enhanced 

Whale Optimization Algorithm (EWOA). We utilize 

EWOA for feature reduction to effectively manage 

the complexity associated with high-dimensional 

data in machine learning. 

By combining mutation strategies and 

neighborhood search strategies, EWOA improves its 

performance in avoiding local optima. In addition, 

EWOA utilizes the Opposition-Based Learning 

(OBL) technique to enhance the diversity of its 

populations. 

Our findings indicate that EWOA surpasses all 

other optimization algorithms in features selection for 

detecting malware. We achieved an optimal accuracy 

using an enhanced WOA based on KNN, surpassing 

the previously reported highest accuracy. Moreover, 

EWOA reduced the number of features from 55 to an 

average of 3.97 features in the CIC-Malmem-2022 

dataset. It is noteworthy that, to the best of our 

knowledge, this research marks the first instance of 

reducing the number of features in the CIC-Malmem-

2022, thereby enhancing overall classification 

performance. 

Future applications of this model may include the 

detection of polymorphic and metamorphic malware. 

It is also of great interest to investigate the efficacy of 

deep learning approaches such as recurrent neural 

networks, long- and short-term memory, and others 

in detecting malware. The proposed search strategies 

can also be applied to other optimization algorithms 

to enhance their efficiency, introducing new avenues 

for refining, and advancing existing optimization 

methodologies. Moreover, the adaptability of this 

model to alternative datasets provides an exciting 

opportunity to evaluate its efficacy in varied contexts, 

thereby expanding its scope and utility. 
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