
Received: March 5, 2024. Revised: April 6, 2024. 606

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.47

An Enhanced Model of Whale Optimization Algorithm and K-nearest Neighbors

for Malware Detection

Rami Sihwail1* Mariam Al Ghamri1 Dyala Ibrahim1

1Department of Cyber Security, College of Computer Science and Informatics,

Amman Arab University, Amman, Jordan

* Corresponding author’s Email: r.sihwail@aau.edu.jo

Abstract: The threat of malicious software has evolved into a major concern regarding the security of the system and

network infrastructure. Machine learning algorithms have been successfully utilized to classify malware files into malicious

or benign. However, the exponential growth in data volume and feature dimensionality poses challenges for machine

learning, resulting in reduced classification accuracy and heightened computational costs. Feature selection is an essential

process that can address these challenges by eliminating irrelevant, redundant, and less informative features that may

adversely affect classifier performance. In this study, we introduce an enhanced Whale Optimization Algorithm (EWOA)

aimed at improving classification accuracy, feature selection, and overall malware detection model efficiency. The

proposed EWOA introduces an enhanced search mechanism that integrates mutation and neighborhood search strategies,

aiming to refine its exploration strategy. This novel approach is more adept at steering clear of local optima. Additionally,

EWOA augments its population diversity by incorporating the Opposite-Based Learning technique (OBL) during its initial

phase. To assess the efficacy of the proposed method, performance evaluations were conducted using the CIC-MalMem-

2022 dataset. Various aspects including the number of features, efficiency, fitness value, accuracy, and statistical tests were

compared across different optimization algorithms: Gray Wolf Optimization Algorithm (GOA), Genetic Algorithm (GA),

Particle Swarm Optimization (PSO), Artificial Lion Optimization (ALO), Butterfly Optimization Algorithm (BOA), and

Slime Mould Algorithm (SMA). The experimental results affirm the superiority of EWOA over other optimization

algorithms in diverse areas, such as classification accuracy (99.987%), fitness value (0.00084511%), and average feature

count (on average, 3.97 features).

Keywords: CIC-MalMem-2022 dataset, Feature selection, KNN, Malware detection, Whale optimization algorithm

(WOA).

1. Introduction

Malicious software is a program intentionally

created to penetrate or cause damage to a computer

system without the user's consent, leading to serious

security issues [1]. Malware can be found on all

platforms, including operating systems, custom

builds, and mobile platforms. Malware, or malicious

code, aims to damage, disrupt, steal, or participate in

unlawful activities against information, hosts, or

systems. There are different types of malware, some

of which attach themselves to legitimate software or

are attached to files as macros. Some exploit

vulnerabilities in custom software or in the operating

system itself. Network devices are also susceptible to

attacks due to misconfigurations, such as a browser

vulnerability that forces users to visit a website.

Users' actions, such as opening emails from untrusted

sources, browsing websites with malicious code,

downloading programs from untrusted websites, and

clicking on advertisements, are the main drawbacks

that can be exploited to spread this malware. Typical

forms of malicious software encompass viruses,

worms, Trojans, bots, backdoors, spyware, and

adware. Emerging viruses and polymorphic viruses

employing obfuscation methods pose greater

challenges for detection. One of the prevalent

methods for malware detection software today is

Received: March 5, 2024. Revised: April 6, 2024. 607

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.47

using behavioral and signature-based detection

techniques [2].

Signatures, which are concise sequences of bytes

unique to individual programs [3]. Demonstrate a low

error rate and are adept at identifying particular

viruses within executable files, boot records, or

memory [4]. Nevertheless, the signature-based

approach proves ineffective when confronted with

altered or unfamiliar malicious executables.

Conversely, behavior-based detection holds promise

in safeguarding against emerging and unforeseen

threats. Nonetheless, this method of virus detection

typically entails considerable costs and time

investments [5].

Alternatively, memory-based techniques offer a

unique approach to malware detection that differs

from traditional static signature-based methods.

Unlike static signatures, which are based on

predefined patterns of known malware, memory-

based techniques focus on analyzing the behavior and

characteristics of a program as it executes. This

dynamic approach creates an adaptive and proactive

detection mechanism that identifies previously

unknown or evolving malware threats. Utilizing the

CIC-MalMem-2022 dataset extracted through

memory analysis, these methods demonstrate their

effectiveness in identifying polymorphic and

metamorphic malware. In addition, memory-based

techniques help to reduce false positives [6]. This

approach increases the accuracy of malware detection

systems by minimizing the risk of falsely identifying

legitimate programs as malicious.

The original program was initially developed as

an anti-malware system. Its purpose was to prevent

viruses and Trojans from making unauthorized

changes to files. John McAfee introduced his

VirusScan™ software in 1989, which was able to

detect and eliminate multiple viruses simultaneously

[3]. These detection systems are statistical anomaly

detectors that were developed by Los Access in 1989.

They can detect anomalies based on statistical

analysis. The problem with such programs is that they

can be called up remotely by adversaries, enabling

them to launch attacks without authentication. A

Trojan horse is a type of code that masquerades as a

useful program but is designed to either steal

information or corrupt data [7]. Sniffers are software

applications that are capable of intercepting and

logging network traffic. They intercept each packet to

decrypt and obtain the unprocessed data by revealing

the values of the various components within the

packet and examining its contents. Sniffer code can

serve as the first step in an intrusion attempt. Spam,

also known as junk email, is a software program that

sends identical messages via email to a large number

of specific recipients. Spam can cause system delays

due to the influx of numerous emails, and it can also

lead to bandwidth consumption. It is also

occasionally used as a replacement for adware [7].

Software companies develop detection systems to

analyze and categorize new programs. Valid software

is added to a white list, while malicious software is

added to a black list. To classify undecidable

software, also known as grey list, scanners are used

in a controlled environment [8]. If new malware is

discovered during the analysis of a program on the

gray list, the company issues online updates to

remove the newly identified malware. Users can

update their product databases remotely via an

internet connection.

Most malware scanners use signature-based

(static) and behavior-based (dynamic) methods to

identify programs. However, there are different

approaches to solve this problem. The primary

distinction between signature-based and behavior-

based techniques resides in the utilization of

classifications for malware detection rather than

depending on patterns [9].

The efficiency of signature-based and behavior-

based techniques was improved through the

utilization of machine learning (ML). However, both

techniques are affected by the high dimensionality

problem caused by the huge number of extracted

features [10].

Feature selection is an important technique in ML

because it is the most effective tool for solving the

problem of high dimensionality. Due to the existence

of irrelevant, redundant features, which are affected

negatively on the accuracy of the final classifier. So,

feature selection is important to select the optimal

subset of features in the feature space. To reduce

dimensionality, increase accuracy, and decrease

runtime [11]. Optimization is one of the feature

selection methods, which is used to select the optimal

features from the feature space. Therefore, it reduces

the dimensionality and increases the accuracy of

classification. The optimal feature subset logically

has the fewest features and the highest classification

accuracy [12].

The Whale Optimization Algorithm (WOA) was

improved in this study to increase the efficiency of

feature selection. WOA is a proposed swarm

intelligence approach specifically designed to tackle

continuous optimization tasks. Empirical evidence

has shown that WOA has superior or equivalent

performance compared to several established

algorithmic methods [13]. WOA was developed

based on the hunting behavior of humpback whales.

In an enhanced iteration of the WOA, a whale

endeavors to shift to a new location within the search

Received: March 5, 2024. Revised: April 6, 2024. 608

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.47

space by considering the optimal element in the group.

The efficiency and ability of feature selection through

nature-inspired optimizers to transform optimization

problems into global optimization, thereby

surpassing the constraint of local optima, has

propelled their progress. Nature-inspired

methodologies are employed for the purpose of

choosing and refining solutions [14]. The primary

constraints of this algorithm are its convergence

speed and tendency to quickly fall into local optima

[15, 16].

This paper proposes a novel malware detection

model by utilizing the K-Nearest Neighbors (KNN)

using and an enhanced version of WOA (EWOA) for

feature selection. We propose a robust and adaptive

model that is capable of identifying malware variants.

By reducing the number of unnecessary features,

malware detection systems can be made more

accurate and efficient. The analysis results are

demonstrated through rigorous experiments and

evaluation of the proposed method, showing that it

has the potential to improve cybersecurity in malware

detection.

With technological progress, the number of

malware is also constantly increasing. Malware has

evolved to have transformative characteristics,

leading to a significant increase in the diversity of

malware types [17]. Furthermore, even inexperienced

malware developers are now able to easily generate

novel forms of malware thanks to automated malware

development tools [18]. Traditional methods of

identifying malware by characteristics have proven

ineffective against the wide range of new malware

[17]. However, ML strategies for malware detection

have proven to be highly effective in detecting new

malware. ML strategies for malware detection have a

significant false positive rate in parallel [19]. Our

goal is to maximize the detection rate with ML

algorithms.

In addition, malicious programs employ diverse

methods to disseminate viruses, seize control of

computer systems and IoT devices, and pilfer

sensitive data like credit card numbers and other

personal information. Although there are many

approaches to detecting intruders, identifying

malicious code remains difficult. Current malware

detection systems lack the ability to detect new

threats and malware disguised as harmless programs.

Because they rely on fixed collections of known

malware cases, they are vulnerable to innovative and

previously unknown dangerous behaviors. One of the

main reasons for these challenges is the explosion in

the number of features included in malware samples

[4]. This proliferation of features brings with it

problems related to the high-dimensionality of

features, sparsity, and complexity of high-

dimensional data, which are known challenges in data

analysis. In addition, high-dimensional data

negatively affects the performance of ML classifiers,

causing a decrease in classification accuracy and an

increase in computational costs [20].

The feature selection phase within a malware

detection system tackles these hurdles by employing

diverse optimization algorithms. Nonetheless, such

optimization algorithms, like WOA, face challenges

regarding convergence speed and a predisposition to

rapidly converge towards local optima [21, 22].

Hence, EWOA was introduced to mitigate these

constraints. By incorporating the proposed search

strategies (SS), this extension seeks to improve the

algorithm's effectiveness in exploring both global

and local areas. Furthermore, this enhancement is

anticipated to streamline the suggested malware

detection model by reducing the quantity of chosen

features, thereby enhancing its classification

efficacy.

The main challenges associated with WOA,

which include the speed of convergence and the

restriction to local optima, arise from the following

factors [21, 22]:

• Exploration vs. Exploitation: The fundamental

challenge of striking a balance between

exploration and exploitation represents an

important aspect in optimization algorithms.

Frequently, prioritizing exploration within the

Whale Optimization Algorithm (WOA) may

result in a thorough exploration of the search

space, thereby postponing the convergence

towards a promising solution.

• Random Movements: WOA employs various

strategies inspired by the behavior of humpback

whales, such as encircling prey, bubble-net

feeding, and tail flicking. It is important to note

that the implementation of these strategies

involves some level of randomness that is likely

to result in slower convergence, especially if

random behavior is not guided correctly.

• High-Dimensional Spaces: In high-dimensional

spaces, the optimization search space becomes

more complex to navigate effectively. WOA's

random movements and strategies might not

perform optimally in such spaces, leading to

difficulties escaping local optima.

This challenge can be overcome by enhancing the

convergence speed of the WOA and addressing its

limitations related to local optimum. Through the

adoption of OBL techniques, the proposed EWOA

enhances the initial population of whales. Moreover,

the new search strategy enhances the search

technique. Consequently, reducing the complexity of

Received: March 5, 2024. Revised: April 6, 2024. 609

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.47

feature selection in malware detection can strengthen

the accuracy and efficiency of identifying malware

instances.

Finally, this study employs a range of evaluation

metrics to evaluate the efficacy and efficiency of an

enhanced EWOA. The CIC-MalMem-2022 dataset

was assessed using evaluation measures such as the

average number of features, efficiency, fitness value,

accuracy, and statistical tests. The proposed method's

results were compared with optimization algorithms

such as WOA, GOA, GA, PSO, ALO, BOA, and

SMA.

This paper is structured into distinct sections.

Section 2 provides an overview of related works.

Section 3 discusses the WOA. Section 4 outlines the

enhancements to the proposed EWOA. Section 5

introduces the experimental analysis and presents the

obtained results. Finally, Section 6 contains

conclusions and future work.

2. Related work

Talukder and colleagues (2023) proposed a novel

approach that integrates machine learning and deep

learning methodologies with the aim of bolstering the

efficacy of network intrusion detection systems. This

integration yields augmented detection rates and

heightened system reliability. Their method adeptly

preprocesses data through a fusion of SMOTE for

data balancing and XGBoost for feature selection.

Comparative evaluations against alternative

detection mechanisms illustrate the superior

performance of the proposed method, showcasing

remarkable outcomes across the KDDCUP'99 and

CIC-MalMem-2022 datasets. However, this method

relies heavily on specific datasets and can be

computationally complex. [23].

Smith et al. (2023) utilized the Malware-

exploratory and CIC-MalMem-2022 datasets for

their investigation. The research involved the

application of three clustering methods: K-Means,

DBSCAN, and Gaussian Mixture Model (GMM).

Seven classification techniques were employed

within the model to forecast occurrences of malware:

Decision Tree, Random Forest, Ada Boost, K-

Neighbors, Stochastic Gradient Descent, Extra Trees,

and Gaussian Naïve Bayes. The Malware

Exploratory dataset achieved an average accuracy

rate of 90%, whereas the CIC-MalMem-2022 dataset

exhibited an average accuracy rate of 99%.

Consistency in performance across all three

clustering techniques was observed for both datasets.

[17].

In their next research, Smith et al. (2023) used

two different datasets, namely Malware-exploratory

and CIC-MalMem-2022, to collect data for analysis

using a range of supervised and unsupervised

learning methods. This study builds on previous

research by incorporating feature selection methods,

including Pearson correlation coefficient and GA,

into the developed model. The proposed model is

then evaluated on a custom dataset called SMITH as

well as a dataset created using a Generative

Adversarial Network (GAN) trained on SMITH. The

results of this study show that the genetic algorithm

demonstrates a considerable level of proficiency in

identifying malicious software in the Malware-

Exploratory and CIC-MalMem-2022 datasets. On the

other hand, the use of the Pearson correlation

coefficient appears to be efficient when applied to the

SMITH dataset [24]. However, their technique face

challenges with generalizability and interpretability.

In addition, Shafin et al. (2023) proposed a novel

approach to malware identification that has two

important characteristics: Multiclass capability and

lightweight. This approach enables the detection of

modern malware while being compatible with

embedded devices. This study suggests a hybrid

model that merges the feature learning abilities of

convolutional neural networks (CNNs) with the

temporal modeling benefits of bidirectional long- and

short-term memory (LSTM). Extensive experiments

conducted on the CIC-MalMem-2022 dataset

demonstrate the superior performance of this strategy

[25].

Moreover, Jerbi et al. (2023) have proposed a

method for malware detection, which contains two

different procedures: the first procedure uses a

memetic algorithm to generate new instances of

malware, and the second procedure uses robust

detectors generated by an artificial immune system

based algorithm to identify these new instances of

attacks. The effectiveness of a novel malware

detection system has been demonstrated through

extensive experimentation with heavy-duty datasets

and evaluation criteria. However, the work still lack

of real-world validation and interpretability [4].

Furthermore, Alawad et al. (2023) suggested an

enhancing the White Shark Optimizer (WSO)

technique to address feature selection in the binary

domain of an Intrusion Detection System (IDS)

prediction model. They employed two transfer

functions and a customized K-means algorithm to

create an initial population with substantial diversity.

Three enhanced versions, BIWSO1, BIWSO2, and

BIWSO3, were suggested to enhance the binary

WSO procedure. The results indicate that the

BIWSO3 method is successful in improving

classification accuracy, precision, recall, and F1-

measures [18]. Though, the technique may encounter

Received: March 5, 2024. Revised: April 6, 2024. 610

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.47

issues with the implementation complexity and the

sensitivity of parameter selection.

Dener et al. (2022) presented a novel approach to

improve malware detection by leveraging memory

data. The method they proposed involves the

integration of deep learning and machine learning

techniques into a comprehensive framework tailored

for handling huge datasets. The researchers

conducted experiments on the CIC-MalMem2022

dataset and found that the logistic regression

technique showed the most success. The gradient

boosted tree algorithm in combination with the

logistic regression technique shows a remarkably

high accuracy, especially with a hit rate of 99.94%.

In the area of malware analysis using memory data,

the Naive Bayes technique achieved the lowest

accuracy of 98.41%. In addition, a significant portion

of the algorithms used showed a remarkable level of

performance. The results of this study show that the

data obtained through memory analysis is of great

value in identifying and detecting malware.

Nevertheless, the work is likely to encounter

challenges regarding generalization and overfitting

[26].

Luhr and Hallqvist (2022) conducted a

comparative analysis of a deep learner multi-layer

perceptron (MLP) and an ensemble learner from

traditional ML techniques. The comparison focused

on evaluating the accuracy and runtime performance

of these models. The dataset used in this study

consists of obfuscation-based feature extraction data

obtained from the volatile memory of computer

systems infected by malware. The results of the study

show that the MLP reduced classification times for

binary malware by 94.3% compared to ensemble

learning, with accuracy decreasing by only 0.02

percentage points. The 99.8% reduction in

classification times for multi-class classification is

associated with a 3.2 percentage point loss in

accuracy. The results suggest that the MLP is a good

choice for this particular task in practice, as it offers

a significant improvement in time efficiency [27].

However, this work may overlook broader evaluation

metrics and the generalizability of their findings.

Memory analysis plays a central role in the

identification of malignant processes and enables the

detection of various characteristics and behaviors

Carrier (2021). Despite the extensive research in this

area, there are still major challenges in malware

detection, e.g. in terms of detection rates and the

sophisticated obfuscation techniques used by

advanced malware. As advanced malware uses

obfuscation and other evasion techniques to evade

conventional detection methods, this study seeks to

extend VolMemLyzer, a state-of-the-art memory

feature extractor for learning systems, with an

increased focus on hidden and obfuscated malware.

The extension includes the integration of the tool into

a stacked ensemble of machine learning models,

creating a robust framework for efficient malware

detection. In addition, a specific malware memory

dataset, namely CIC-MalMem-2022, has been

carefully created to rigorously test and evaluate the

proposed framework [28]. Table 1 presents a

summary of the performance of previous studies.

As can be seen, the related studies mainly focused

on using deep learning and machine learning to detect

malware and suggested various techniques to

improve detection rates and system reliability.

Studies emphasize the importance of adapting to new

and emerging malware threats, especially in the

context of advanced technology and sophisticated

attacks. However, previous studies did not attempt to

reduce the number of selected features. Consequently,

the complexity of their proposed systems is high.

Therefore, we conducted a research study involving a

malware detection model using a KNN classifier.

The model involves enhancing the WOA, with a

particular focus on reducing the number of feature

selections to reduce complexity, increase accuracy,

and, therefore, increase the speed of malware

detection. The results of this study can greatly

contribute to the field of cybersecurity, providing

valuable insights and methodologies for more robust

and accurate malware detection systems.

Table 1. Show the summary of performance for relevant

previous studies.

Author Methodology
Result

(Accuracy)

[23] SMOTE, XGBoost 99.99%

[17] machine learning

algorithms

90%, 99%

[24] Pearson correlation

coefficient and GA.

90%, 99%

[25] (CNNs), (LSTM) -

[18] (BIWSO) BIWSO3

exhibits high

efficiency

[26] Logistic Regression

Gradient Boosted Tree

Naive Bayes

99.97%

99.94%

98.41%

[27] (MLP), Ensemble Learner reduced binary

classification

time by 94.3%

and multiclass

by 99.8%,

[28] KNN, SVM 0.95%

0.90%

Received: March 5, 2024. Revised: April 6, 2024. 611

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.47

3. Preliminaries

Metaheuristic algorithms have gained significant

attention in recent years for their ability to efficiently

solve complex optimization problems. Numerous

studies have utilized various metaheuristic

approaches and have achieved notable results in

solving a diverse range of optimization problems.

These metaheuristics are often developed through the

construction from scratch, modification of existing

algorithms, or hybridization of multiple approaches.

In this review, we highlight several recent studies that

introduce novel metaheuristic algorithms and

evaluate their performance against established

methods.

It is worth mentioning that there are several

related works that have significant improvements

using metaheuristic optimization algorithms,

including the Extended Stochastic Coati Optimizer

(ESCO), Swarm Bipolar Algorithm (SBA), Swarm

Space Hopping Algorithm (SSHA), Migration-

Crossover Algorithm (MCA), Total Interaction

Algorithm (TIA), Four Directed Search Algorithm

(FDSA), and Attack Leave Optimizer (ALO). These

algorithms have shown superior performance in

solving classic optimization functions, high-

dimensional functions, high-dimensional cases, and

faster convergence to optimal solutions [29-36].

In the next subsection, we will explain the Whale

Optimization Algorithm (WOA) in detail. This

section will cover basic principles and operational

mechanics in the context of optimization problems.

3.1 Whale optimization algorithm (WOA)

The Whale Optimization Algorithm (WOA) is a

metaheuristic optimization method that draws

inspiration from the foraging habits of whales. It is

widely utilized for global optimization challenges in

various domains. Unlike other hunting strategies,

WOA stands out by employing either random or the

best agent within the search space to pursue prey. The

algorithm replicates the bubble-net attachment

mechanisms of humpback whales, who use

distinctive spirals to encircle and capture groups of

krill or small fish near the water's surface. This

involves the formation of spiral bubbles around the

prey as the whales move up and down in the water as

shown in Fig.1.

The WOA mimics whale behavior by employing

three strategies that imitate the actions of humpback

whales during the phases of searching for prey

(exploration), encircling prey, and bubble-net

foraging (exploitation). The subsequent sections will

provide a theoretical framework and elucidate the

mathematical formulation.

Figure. 1 The graph showing the spiral bubble-net

attacking strategy [37]

Table 2. Notation list

Variables Meaning

H current iteration

𝑑∗ location of the best

solution

𝑑 location vector

𝑧⃗⃗⃗ and 𝑦⃗⃗⃗ coefficient vectors

K random vector

W vector

𝑑 𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ location selected

Table 2 displays a notation list. It explains the

meaning of the variables in mathematical equations.

3.1.1. Prey encirclement

The whale algorithm begins this phase by

selecting an initial optimal search agent. The

prevailing assumption is that the current solutions are

optimal and that they are located in close proximity

to the prey. Consequently, the other agents modify

their positions toward the most optimal search agent.

This is represented as follows:

𝑠 = 𝑦⃗. 𝑑∗(𝑡) − 𝑑(ℎ) (1)

Figure. 2 WOA shrinking encircling mechanism [38]

Received: March 5, 2024. Revised: April 6, 2024. 612

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.47

𝑑 = (ℎ + 1)𝑑∗(ℎ) − 𝑧. 𝑠 (2)

Where h represents the current iteration 𝑧⃗⃗⃗ and

𝑦⃗⃗⃗are coefficient vectors. The vector 𝑑∗represents the

location of the best solution that has been achieved

thus far, while 𝑑 represents the location vector. If a

more optimal solution is found, the variable 𝑑∗
should be updated by iterative processes. The

calculation for vectors 𝑧⃗⃗⃗ and 𝑦⃗⃗⃗ is as follows:

𝑧 = 2 𝑤⃗⃗⃗. 𝑘⃗⃗ − 𝑤 (3)

𝑦⃗ = 2. 𝑘⃗⃗ (4)

K is a random vector ranging from 0 to 1, and the

vector w is linearly decreased from 2 to 0 over the

iterations. This model replicates the prey's

surroundings and enables each agent to adjust its

position within the current optimal solution area. As

illustrated in Fig. 2. The search can extend deeper into

the n-dimensional space, facilitating navigation

around the hypercube for agents near the optimal

solution.

3.1.2. Exploitation phase

This phase is also known as the bubble-net attack,

and it employs the following two strategies:

Shrinking encircling mechanism: In this phase, the

value of 𝑤 ⃗⃗⃗⃗⃗ in Eq. (3) is reduced, reducing the

fluctuation range of 𝑧 ⃗⃗⃗by 𝑤⃗⃗⃗. This indicates that 𝑎 is

arbitrarily located in [−𝑤⃗⃗⃗⃗ ⃗⃗⃗, 𝑤⃗⃗⃗]. Where a decreases

from 2 to 0 during the optimization process.

Because of The randomization of 𝑧 ⃗⃗⃗ in[−1,1], the

search agent's new position, can be found anywhere

between the agent's previous location and the current

optimal location. In a 2-D space, Fig. 2 presents the

various locations based on the shrinking encircling

mechanism.

Figure. 3 WOA spiral updates its position [13]

Figure. 4 WOA exploration mechanism [38]

Spiral position updating: During this stage, the

computation involves determining the distance

separating the whale from its prey and establishing a

spiral equation based on their respective positions,

mirroring the feeding behavior exhibited by the

whale as illustrated in Fig. 3.

Humpback whales move the form of the spiral.

This may be represented as follows:

 𝑑⃗⃗⃗ ⃗(h + 1)𝐿′⃗⃗⃗ ⃗ . 𝑒𝑏𝑙 . cos(2Πι) + 𝑑∗(ℎ) (5)

𝐿′⃗⃗⃗ ⃗ = |X⃗⃗⃗∗(h) − d⃗⃗(ℎ)| (6)

The distance between the whale and its prey is

represented by Eq. (6) (the best solution so far),

where b is a constant for determining the logarithmic

spiral shape and ι is a random number

between [−1,1] . A spiraling pattern of shrinking

circles follows the whale as it moves toward its prey.

As a result, a 50% probability of switching between

modes is employed to update the whale's next

position, as shown below:

𝑑(ℎ + 1) =

{
 𝑑∗⃗⃗⃗⃗⃗(𝑡) − 𝑧. 𝐿⃗⃗ , 𝑖𝑓 𝑝 ≥ 0.5

𝑙′⃗⃗⃗ . 𝑒𝑏𝑙 . cos(2Πι) + d⃗⃗∗(𝑡), 𝑖𝑓 𝑝 ≥ 0.5
(7)

Where p in [0,1] is a random number.

3.1.3. Exploration phase

WOA simulates global optimization at this phase.

As shown in Fig. 4, whales seek prey at random based

on their relative positions to one another.

The vector (z) is randomly assigned a value

within the range of -1 to 1 in order to compel the

search agent to distance itself from the reference

Received: March 5, 2024. Revised: April 6, 2024. 613

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.47

whale. The vector (z) ⃗ must have a magnitude greater

than 1 or less than -1. Here, a randomly selected agent

enables the WOA to perform a worldwide search and

update the agent's position. The exploration process

is depicted as follows:

𝐿⃗⃗ = |𝑦⃗. 𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑑| (8)

𝑑(ℎ + 1) = 𝑑𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑧. 𝐿⃗⃗ (9)

Where 𝑑 𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is a location selected at random

for a whale from the current population. The

algorithm (1) illustrates the pseudo-code for the

phases of the WOA.

3.2 CIC- MalMem-2022 dataset

Obfuscated malware is a form of malicious

software that employs concealment methods to avoid

being detected and eliminated. The main goal of the

obfuscated malware dataset is to evaluate the

effectiveness of malware detection methods. The

Canadian Institute for Cybersecurity has launched

CIC-Malmem-2022, an academic dataset designed

for studies on malware classification, with a specific

focus on obfuscated malware. This dataset aims to

simulate real-world conditions effectively by

including common malware samples, encompassing

Spyware, Ransomware, and Trojan Horse malware.

Fig. 5 illustrates the categories of memory dumps.

To expand the dataset, an automated process was

implemented that included the execution of 2,916

malware samples representing three different

categories: Trojan horse, ransomware and spyware,

within a virtual machine (VM). As it is important to

Initialize the whales’ population 𝑋𝑖(𝑖=1,2,3,…,𝑛).

Compute the fitness of each whale.

Set 𝑋∗as the best whale.

Algorithm1: The WOA algorithm [13]

Initialize the whales’ population 𝑋𝑖(𝑖=1,2,3,…,𝑛).

Compute the fitness of each whale.

Set 𝑋∗as the best whale.

While (t < maximumnumberofiterations) do

For (eachsearchwhale) do

Update a, A, C,𝜄 and p.

If (p < 0.5) then

If (|𝐴|< 1) then

The whale position is updating by

the Eq. (1).

Else

If (|𝐴| ≥1) then

Select the random whale 𝑋𝑟𝑎𝑛𝑑

The whale position is updating by

the Eq. (9).

End If

End If

Else

If (𝑝 ≥ 0.5) 𝐭𝐡𝐞𝐧

Modify the whale position by the

Eq. (5).

End If

End If

End For

Check if any search agent goes beyond the

search Space and amend it. Compute the

fitness of each search agent. Update 𝑋∗ if there

is a better solution.

t = t +1

End While

disrupt benign processes when creating malicious

memory dumps, various applications within the

Windows VM were launched simultaneously with the

execution of malware samples. Each malware sample

execution provided 10 memory dumps recorded at

15-second intervals, resulting in a total of 29,298

malicious memory dumps to comprehensively

capture the potential behavior of malware [28].

Benign dumps were generated by observing

typical user behavior through the activation of

various applications on the computer. Oversampling

was then performed using the SMOTE (Synthetic

Minority Over-sampling Technique) algorithm to

equalize the data set. In contrast to conventional

oversampling methods, SMOTE generates synthetic

values that differ only minimally from the actual

values. This methodological choice helps to create a

more balanced and representative dataset for

subsequent analysis and classification efforts [28].

The dataset is evenly divided, comprising 50%

malicious memory dumps and 50% benign memory

dumps. Fig. 6 shows the overall number of malware

families in each malware category.

Figure. 5 Memory Dump Categories [28]

Received: March 5, 2024. Revised: April 6, 2024. 614

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.47

Figure. 6 Malware Breakdown

3.2.1. Preprocessing dataset

The dataset was pre-processed to maintain

consistency and improve the optimization algorithms'

performance, as detailed in the following subsections.

Normalization: Normalization is essential for

ensuring the numerical features within the CIC-

Malmem-2022 dataset are on the same scale. This

step prevents features with larger values from

dominating the analysis, which is critical in the

context of classifying data. Min-Max scaling was

applied to scale the values to a range between 0 and

1, promoting consistent and unbiased analysis. To

achieve this, Min-Max scaling was applied, utilizing

the following formula:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑉𝑎𝑙𝑢𝑒𝑠
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 −𝑀𝑖𝑛(𝐴)

𝑀𝑎𝑥(𝐴) − 𝑀𝑖𝑛(𝐴)
(10)

Where:

• Original Value: Depicts the initial numerical

values of the dataset.

• 𝑀𝑖𝑛(𝐴): Denotes the lowest value of feature A in

the dataset.

• 𝑀𝑎𝑥(𝐴): Denotes the highest value of feature A

in the dataset.

Rounding Digits: rounding the digits to a specific

attribute within the CIC-Malmem-2022 dataset to

enhance generalization and prevent overfitting.

Numbers have been rounded to four decimal places

to ensure that any numerical values are displayed

with a high degree of accuracy.

3.2.2. Model training and testing

The dataset has been divided into two separate

subsets: 80% of the data is assigned for training the

model, while the remaining 20% is set aside for

testing the model's performance. This partitioning

strategy aligns with common practices observed in

other studies [39, 40]. In the training phase, the KNN

classifier undergoes training using the designated

training data, with emphasis placed on the subset of

optimized features.

4. The proposed method

This section outlines the steps involved in using

EWOA to optimize feature selection, as shown in Fig.

7.

4.1 Enhanced whale optimization algorithm

(EWOA)

In this section, an enhanced version of WOA is

presented. Two enhancements have been added to the

EWOA. Firstly, the initialization phase in EWOA has

been replaced by OBL to improve the quality of

selecting the position of the whale (agent) in the

initialization phase. Secondly, a new search strategy,

namely Search Strategy (SS), has been proposed to

enhance the search mechanism of EWOA in both the

exploration and exploitation phases, as shown in Fig.

8.

EWOA is designed to address challenges and

limitations that were observed in the original WOA,

thus providing a more resilient and adaptable

optimization tool.

Figure. 7 EWOA for feature selection.

Received: March 5, 2024. Revised: April 6, 2024. 615

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.47

Figure. 8 The framework of the proposed OBL and SS

WOA is a robust and effective optimization

technique. However, as per the NFL theorem, no

algorithm can completely solve all optimization

problems [41]. Enhancements have been made to the

WOA algorithm to address its limitations and

enhance its feature selection optimization capabilities.

This enhancement aims to improve the algorithm's

abilities in global and local searches by incorporating

the suggested SS. The subsequent steps elucidate the

proposed EWOA algorithm.

Step 1: Initialize the population, represented as X,

with a size of N using a random function. Each whale

in the population represents a different feature subset.

Feature subsets are represented as binary vectors,

where each element corresponds to the presence or

absence of a feature.

Step 2: Utilize the OBL technique to create

solutions that are opposite in nature, then choose the

most suitable N solutions.

Step 3: Apply the Enhanced Whale Optimization

Algorithm (EWOA) to adjust the position of each

member in the population. Determine the optimal

prey location based on the highest fitness value.

Setting up EWOA Parameters [42]. The EWOA

algorithm requires setting parameters in which the

number of whales (20), maximum iterations (30), and

exploration/exploitation factors. Executing the

EWOA Algorithm: EWOA iteratively updates the

positions of whales (feature subsets) in the search

space. Whales mimic the behavior of humpback

whales, moving towards the optimal search agent to

improve the fitness of their feature subsets. Eq. (1)

and Eq. (2) govern the updating process, guiding the

exploration and exploitation of the search space.

Step 4: Implement a mutation strategy to enhance

prey detection. If the new location is more suitable

than the current location, classify the new location as

a potential prey location. Execute the NSS strategy to

improve its positioning. Ultimately, designate the

optimal location as the potential prey locations.

Step 5: Iterate until the termination condition is

satisfied.

The following subsections will explain in detail

the techniques used to enhance an EWOA algorithm.

• Opposite-Based Learning

The OBL technique, created by [35] OBL is a

method that encompasses a machine learning

approach. This technique aims to improve the

efficiency of metaheuristic optimization algorithms.

This strategy entails choosing a more efficient

solution from the existing individuals, usually

randomly initialized by the optimization algorithm,

along with its corresponding opposite solution. Each

solution is assigned fitness values, and the one with

the highest value is selected to progress to the next

iteration. Research has shown that OBL greatly

improves the likelihood of reaching the best global

solution for a specific objective function, thus

boosting the effectiveness of optimization algorithms

[43]. The OBL technique can be mathematically

formulated as follows.

 𝐿𝑒𝑡 𝑑 = (𝑑1, 𝑑2, . . . , 𝑑𝐷) represents a location

in the current population, while D denotes the

dimensionality of the problem space. and 𝑥 ∈
 [𝑎𝑖, 𝑏𝑖] , 𝑖 = 1, 2, . . . , 𝐷. the opposition point

 𝑑̌ = (𝑑̌1, 𝑑̌2, . . . , 𝑑̌𝐷) is thus defined as the

following equation:

𝑑̌𝑖 = 𝑎𝑖 + 𝑏𝑖 − 𝑑𝑖 (11)

Optimization algorithms involve exploration

(diversification) and exploitation (intensification)

phases. This section outlines the proposed Search

Received: March 5, 2024. Revised: April 6, 2024. 616

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.47

Strategy (SS) designed to enhance the global and

local search mechanisms in the EWOA algorithm.

These strategies partially reduce the risk of getting

trapped in local optima. The proposed SS consists of:

• Mutation

Mutation in the EWOA algorithm aims to

increase diversity in the sampled population.

Mutation operators are used to avoid the

chromosomes in a population from reaching a local

optimum by ensuring they do not become too similar

to each other. Various mutation categories exist,

based on the technique used. The enhanced algorithm

utilizes bit string mutation, randomly altering

features by flipping them at random positions. The

mathematical representation of bit string mutation for

the solution 𝑑 = (𝑑1, 𝑑2, . . . , 𝑑𝐿) is as follows:

𝑀 (𝑚) = |1 − 𝐷 (𝑚)| (12)

Where M represents the solution resulting from

executing bit string mutation, m = 1, 2, . . . , L it is a

matrix of randomly selected positions (features) to be

flipped in solution d. In solution d, specifically, the

third and sixth features are undergoing a flipped, as

shown in Fig. 9.

The mutation size was randomly selected

between 10% and 50% in the exploration phase and

between 1% and 9% in the exploitation phase through

various trial and error experiments. We introduced a

technique in the EWOA to determine the degree of

changes in features. During the exploration phase,

selected features from the current optimal position

are flipped to improve the efficiency of the global

search. In the exploitation phase, a small number of

features are altered to improve local search abilities.

The mutation size is defined as follows:

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒 =

{

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗
10 ∗ 𝑟𝑎𝑛𝑑 [1,5]

100
,

𝑖𝑓 |ℎ| ≤
𝐻

2

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗
𝑟𝑎𝑛𝑑 [1.9]

100
,

𝑖𝑓 |ℎ| >
𝐻

2

(13)

Figure. 9 An instance of bit string mutation involving the

inversion of the 3rd and 6th features

Where H represents the current iteration and H

Maximum iteration.

• Neighborhood search strategies (NSS)

Das et al. (2009) implemented neighbor search in

differential evolution (DE) to achieve a balance

between exploration and exploitation phases. The

primary objective of neighbor search is to explore a

limited area surrounding the current optimal solution,

rather than the entire population. This study presents

the Neighborhood Search Strategy (NSS) technique.

The implementation of NSS depends on

improvements made to the best solution produced by

the mutation strategy. NSS is utilized when the

existing optimal solution (prey location) is altered as

a result of mutation. The fitness value is recalculated

following the application of each mutation to the

current optimal position [44, 45].

The process includes assessing the suitability of

the recently mutated position. When the new

position's fitness exceeds that of the current position,

the current optimal solution is replaced by the

mutated solution, and the neighborhood search is

performed. NSS specifically examines two

neighboring strategies for toggling features. The

forward-switching technique involves altering the

right feature and evaluating the fitness values of both

solutions (the best solution and the current switched

solution). The backward-switching technique

involves using the same method to mutate the left

feature. Ultimately, this leads to two solutions, with

the optimal value being recognized as the most

favorable solution. The NSS is structured as a ring,

where the final feature is linked to the initial feature

to create neighboring connections on both ends. Fig.

10 displays the ring NSS strategy.

Figure. 10 An illustration of Neighborhood Search

Strategies (NSS)

Received: March 5, 2024. Revised: April 6, 2024. 617

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.47

If the new position generated by mutation

consistently maintains the best fitness value for

consecutive iterations, it is referred to as the NSS

strategy within the SS approach.

WOA was initially created for continuous

solution search spaces. Modifications are required to

be in line with binary feature selection. Each whale's

position is transformed into binary solutions using the

following method.

𝑥𝑖,𝑗 = {
1 𝑖𝑓

1

1 + 𝑒−𝑥𝑖𝑗
 ≥ 0.5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(14)

Consequently, only the features that match the

ones in the dataset are considered relevant features,

whereas the features that match the zeros are ignored.

 Selecting the optimized feature subset: After the

EWOA algorithm converges or reaches the maximum

number of iterations, the subset of features that

produces the highest classification accuracy is

selected as the optimized set.

EWOA is utilized dynamically to identify the

optimal feature subset that enhances classification

accuracy. Whales in EWOA exhibit dynamic

movement within the search space, starting from the

optimal search agent. Subsequently, they attempt to

adjust their positions towards the most efficient

search agent, as depicted in Eq. (1) and Eq. (2).

KNN classifies unknown examples based on the

majority class among its KNN in the feature space

[38]. Specifically, we use KNN to classify samples

into malware or benign categories using a selected

feature subset. The classification strategy guides the

feature selection method based on optimized

components and a chosen feature set.

5. Experimental results and discussion

This section will detail the experimental analysis

and outcomes of the proposed approach.

Comparative evaluations among EWOA, WOA,

GOA, GA, PSO, ALO, BOA, and SMA will be

conducted, considering metrics such as the average

number of features, efficiency, fitness value,

accuracy, and statistical tests. The assessment is

based on 30 iterations to ensure the reliability and

consistency of the obtained results.

According to the results, the proposed method is

accurate and efficient. In Table 3, the average number

of features is calculated using different optimization

algorithms, and the results indicate that EWOA is the

most efficient algorithm according to the lowest

number of selected features.

The average number of features is essential in

determining their effectiveness. The EWOA

algorithm has the lowest average number of features

at 3.9667 out of 55 total features, suggesting it

utilizes fewer features compared to the other

algorithms. As a result, EWOA is superior at

selecting a relevant subset of features, which may

enhance the model by reducing the problem of

dimensionality in the most efficient manner.

Conversely, GOA, GA, PSO, BOA, and SMA show

higher average numbers of features, ranging from

19.3667 to 24.9, indicating a broader inclusion of

features in their solutions. WOA and ALO present

intermediate values at 7.2333 and 12.7, respectively.

Table 4. Displays the average accuracy outcomes

across different optimization algorithms.

When evaluating the performance of various

algorithms based on average accuracy, the

optimization algorithms show high average accuracy

values. Notably, EWOA stands out with the highest

average accuracy of 0.99987, followed by PSO, GA,

GOA, and BOA, all of which indicate accuracy

values exceeding 0.9995. SMA and ALO also present

impressive accuracy, ranging from 0.9993 to 0.9996.

In addition, the WOA algorithm has an average

accuracy of 0.99904.

Table 3. The average number of feature outcomes.

Algorithm Average Number of

Features

EWOA 3.9667

GOA 24.0667

GA 22.2667

PSO 19.3667

ALO 12.7

WOA 7.2333

BOA 24.6

SMA 24.9

Table 4. The average results of accuracy.

Algorithm Average Accuracy

EWOA 0.99987

GOA 0.99956

GA 0.9996

PSO 0.99969

ALO 0.99927

WOA 0.99904

BOA 0.99956

SMA 0.99952

Received: March 5, 2024. Revised: April 6, 2024. 618

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.47

Table 5. Shows the average time results.

Algorithm Average Time (Seconds)

EWOA 43.1877

GOA 80.2727

GA 52.1437

PSO 71.7279

ALO 45.1597

WOA 27.0792

BOA 333.6596

SMA 141.0108

Table 6. The average fitness values results.

Algorithm Average fitness

EWOA 0.00084511

GOA 0.004815

GA 0.0044483

PSO 0.0038253

ALO 0.0030356

WOA 0.0022613

BOA 0.004912

SMA 0.005006

This investigation achieved a noteworthy

elevation in precision, demonstrating a remarkable

accuracy of 99.987% through the application of the

KNN classifier. This performance surpasses the

accuracy in the comparative study by [28]. Wherein

a classification accuracy of 0.95 was attained

utilizing the KNN classifier. The considerable

improvement in accuracy observed in our study

indicates the substantive progress realized in the

proposed model. Table 5. Shows the average

computational times of the optimization algorithms,

providing insight into their efficiency.

Both EWOA and WOA algorithms exhibit

significantly lower average execution times,

indicating a higher degree of computational

efficiency. Conversely, the BOA algorithm stands out

with a significantly longer computational time,

indicating a relatively slower optimization process.

The GOA, GA, ALO, PSO, and SMA algorithms

demonstrate moderately comparable computational

durations. In terms of preference, EWOA and WOA

showcase faster convergence, while BOA requires

considerably more computational resources. Table 6.

Shows average fitness values across optimization

algorithms that represent valuable insights into their

relative effectiveness in achieving optimal solutions.

Figure. 11 The average fitness values of EWOA across

different optimization algorithms.

Table 7. Shows the p-value results.
Algorithm p-value

GOA 2.7495e-11

GA 2.746e-11

PSO 2.7322e-11

ALO 2.7547e-11

WOA 3.1995e-11

BOA 2.7478e-11

SMA 2.7478e-11

It offers valuable information on how various

optimization algorithms compare in terms of

achieving optimal solutions when looking at average

fitness values. A lower average fitness value indicates

greater algorithm efficiency in minimizing the

objective function. The EWOA algorithm is the most

effective among the algorithms in this context,

boasting an impressive average fitness of 0.00084511.

This indicates that EWOA is a highly promising

solution for optimization tasks where the objective is

to find optimal solutions with minimal fitness values.

Similarly, the WOA and ALO algorithms show

impressive performance, showcasing low average

fitness values, respectively, at 0.0022613 and

0.0030356. These findings indicate the efficacy of

WOA and ALO in converging towards solutions with

minimal fitness values, reflecting their ability to

navigate the solution space effectively. The PSO

algorithm also demonstrated competitive

performance with an average fitness of 0.0038253.

Conversely, the SMA shows the highest average

fitness value at 0.005006, indicating a relatively less

efficient exploration of the solution. GA, GOA, and

BOA show intermediate fitness values of 0.0044483,

0.004815, and 0.004912, respectively. These

algorithms show acceptable efficiency. Fig. 11

Received: March 5, 2024. Revised: April 6, 2024. 619

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.47

shows the average fitness values of EWOA across

different optimization algorithms.

The graphical representation illustrates that the

optimal solution was attained at iteration 15, marking

the midpoint of the total 30 iterations. Subsequent

iterations displayed a plateau in the improvement of

solutions, indicating a stabilization in the

optimization process. This observation implies that

optimal solutions were efficiently achieved with a

minimal number of iterations. The convergence of

solution improvement after the 15th iteration

supports this, reinforcing the notion that the

algorithm reached an effective and optimal state early

in the iterative process. Table 7 displays the P-values

across different optimization algorithms, providing

insight into evaluating the significance of the

improvement.

The P-values from different optimization

algorithms: GOA, GA, PSO, ALO, WOA, BOA, and

SMA, indicate low values ranging from 2.7322e-11

to 3.1995e-11. In statistical terms, a lower P-value is

indicative of greater statistical significance. The

significance level, often set at 0.05, indicates the

threshold below which results are considered

statistically significant. As shown, all the P-values

fall significantly below this threshold, indicating that

the improvements achieved by EWOA to these

optimization algorithms are highly statistically

significant.

EWOA emerges as a robust and effective

optimization algorithm for malware detection,

exhibiting superiority in critical evaluation metrics

including feature selection, computational efficiency,

fitness value, and overall model accuracy. These

compelling results underscore the capacity of EWOA

to notably augment the effectiveness of malware

detection systems, offering a promising alternative to

established optimization algorithms.

Conclusion

This paper introduces a model that combines

malware analysis, feature selection, and machine

learning for malware detection. We propose a novel

malware detection system based on the Enhanced

Whale Optimization Algorithm (EWOA). We utilize

EWOA for feature reduction to effectively manage

the complexity associated with high-dimensional

data in machine learning.

By combining mutation strategies and

neighborhood search strategies, EWOA improves its

performance in avoiding local optima. In addition,

EWOA utilizes the Opposition-Based Learning

(OBL) technique to enhance the diversity of its

populations.

Our findings indicate that EWOA surpasses all

other optimization algorithms in features selection for

detecting malware. We achieved an optimal accuracy

using an enhanced WOA based on KNN, surpassing

the previously reported highest accuracy. Moreover,

EWOA reduced the number of features from 55 to an

average of 3.97 features in the CIC-Malmem-2022

dataset. It is noteworthy that, to the best of our

knowledge, this research marks the first instance of

reducing the number of features in the CIC-Malmem-

2022, thereby enhancing overall classification

performance.

Future applications of this model may include the

detection of polymorphic and metamorphic malware.

It is also of great interest to investigate the efficacy of

deep learning approaches such as recurrent neural

networks, long- and short-term memory, and others

in detecting malware. The proposed search strategies

can also be applied to other optimization algorithms

to enhance their efficiency, introducing new avenues

for refining, and advancing existing optimization

methodologies. Moreover, the adaptability of this

model to alternative datasets provides an exciting

opportunity to evaluate its efficacy in varied contexts,

thereby expanding its scope and utility.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, D.I. and M.A.; methodology,

M.A; software, R.S.; validation, M.A, D.I., and R.S.;

formal analysis, R.S.; investigation, M.A.; resources,

D.I; data curation, M.A.; writing—original draft

preparation, M.A; writing—review and editing, D.I.;

visualization, M.A; supervision, R.S.; funding

acquisition, R.S.; project administration, D.I. and

R.S.;

References

[1] F. T. Ngo, A. Agarwal, R. Govindu, and C.

MacDonald, "Malicious software threats", The

Palgrave Handbook of International

Cybercrime and Cyberdeviance, pp. 793-813,

2020.

[2] A. Firdaus, N. B. Anuar, and S. A Razak.

“Survey of malware detection techniques”,

Journal of Network and Computer Applications,

vol. 60, no. 19-31, 2017.

[3] Ö. A. Aslan and R. Samet, "A comprehensive

review on malware detection approaches", IEEE

Access, Vol. 8, pp. 6249-6271, 2020.

Received: March 5, 2024. Revised: April 6, 2024. 620

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.47

[4] M. Jerbi, Z. C. Dagdia, S. Bechikh, and L. B.

Said, "Immune-Based System to Enhance

Malware Detection", In: Proc. of IEEE 2023

Congress on Evolutionary Computation, 2023.

[5] J. Singh and J. Singh, "A survey on machine

learning-based malware detection in executable

files", Journal of Systems Architecture, Vol. 112,

pp. 101861, 2021.

[6] R. Sihwail, K. Omar, and K. A. Z. Arifin, "An

Effective Memory Analysis for Malware

Detection and Classification", Computers,

Materials & Continua, Vol. 67, No. 2, 2021.

[7] Y. Li, K. Xiong, T. Chin, and C. Hu, "A machine

learning framework for domain generation

algorithm-based malware detection", IEEE

Access, Vol. 7, pp. 32765-32782, 2019.

[8] C. Opris, "Machine learning techniques for the

analysis and detection of malicious software",

Ph.D. dissertation, Cybersecurity, Technical

University, Cluj-Napoca, 2021.

[9] F. A. Aboaoja, A. Zainal, F. A. Ghaleb, B. A. S.

Al-rimy, T. A. E. Eisa, and A. A. H. Elnour,

"Malware detection issues, challenges, and

future directions: A survey", Applied Sciences,

Vol. 12, No. 17, p. 8482, 2022.

[10] W. Jia, M. Sun, J. Lian, and S. Hou, "Feature

dimensionality reduction: a review," Complex &

Intelligent Systems, Vol. 8, No. 3, pp. 2663-2693,

2022.

[11] R. Zebari, A. Abdulazeez, D. Zeebaree, D.

Zebari, and J. Saeed, "A comprehensive review

of dimensionality reduction techniques for

feature selection and feature extraction",

Journal of Applied Science and Technology

Trends, Vol. 1, No. 2, pp. 56-70, 2020.

[12] J. Abawajy, A. Darem, and A. A. Alhashmi,

"Feature subset selection for malware detection

in smart IoT platforms", Sensors, Vol. 21, No. 4,

p. 1374, 2021.

[13] S. Mirjalili and A. Lewis, "The whale

optimization algorithm", Advances in

engineering software, Vol. 95, pp. 51-67, 2016.

[14] N. Rana, M. S. A. Latiff, S. i. M. Abdulhamid,

and H. Chiroma, "Whale optimization

algorithm: a systematic review of contemporary

applications, modifications and developments",

Neural Computing and Applications, Vol. 32, pp.

16245-16277, 2020.

[15] I. Aljarah, H. Faris, and S. Mirjalili, "Optimizing

connection weights in neural networks using the

whale optimization algorithm", Soft Computing,

Vol. 22, pp. 1-15, 2018.

[16] Y. Shen, C. Zhang, F. S. Gharehchopogh, and S.

Mirjalili, "An improved whale optimization

algorithm based on multi-population evolution

for global optimization and engineering design

problems", Expert Systems with Applications,

Vol. 215, pp. 119269, 2023.

[17] D. Smith, S. Khorsandroo, and K. Roy,

“Leveraging Feature Selection to Improve the

Accuracy for Malware Detection”, PREPRINT,

2023.

[18] N. A. Alawad, B. H. Abed-alguni, M. A. Al-

Betar, and A. Jaradat, "Binary improved white

shark algorithm for intrusion detection systems",

Neural Computing and Applications, pp. 1-25,

2023.

[19] R. Sihwail, K. Omar, K. A. Z. Ariffin, and M.

Tubishat, "Improved harris hawks optimization

using elite opposition-based learning and novel

search mechanism for feature selection", IEEE

Access, Vol. 8, pp. 121127-121145, 2020.

[20] A. Rouhi and H. Nezamabadi-Pour, "Feature

selection in high-dimensional data",

Optimization, Learning, and Control for

Interdependent Complex Networks, pp. 85-128,

2020.

[21] S. Chakraborty, A. K. Saha, R. Chakraborty, and

M. Saha, "An enhanced whale optimization

algorithm for large scale optimization problems",

Knowledge-Based Systems, Vol. 233, pp.

107543, 2021.

[22] S. Chakraborty, A. K. Saha, S. Sharma, S.

Mirjalili, and R. Chakraborty, "A novel

enhanced whale optimization algorithm for

global optimization", Computers & Industrial

Engineering, Vol. 153, pp. 107086, 2021.

[23] M. A. Talukder et al., "A dependable hybrid

machine learning model for network intrusion

detection", Journal of Information Security and

Applications, Vol. 72, pp. 103405, 2023.

[24] D. Smith, S. Khorsandroo, and K. Roy,

"Supervised and unsupervised learning

techniques utilizing malware datasets", In: Proc.

of 2023 IEEE 2nd International Conference on

AI in Cybersecurity (ICAIC), pp. 1-7, 2023.

[25] S. S. Shafin, G. Karmakar, and I. Mareels,

"Obfuscated Memory Malware Detection in

Resource-Constrained IoT Devices for Smart

City Applications", Sensors, Vol. 23, No. 11, pp.

5348, 2023.

[26] M. Dener, G. Ok, and A. Orman, "Malware

detection using memory analysis data in big data

environment", Applied Sciences, Vol. 12, No. 17,

pp. 8604, 2022.

[27] J. Luhr and H. Hallqvist, “Fast Classification of

Obfuscated Malware with an Artificial Neural

Network”, Dissertation, Computer Science,

KTH, School of Electrical Engineering and

Received: March 5, 2024. Revised: April 6, 2024. 621

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.47

Computer Science (EECS), Stockholm, Sweden,

2022.

[28] T. Carrier, "Detecting Obfuscated Malware

Using Memory Feature Engineering", Master

Thesis, Computer Science, New Brunswick,

New Jersey, United States, 2021.

[29] P. D. Kusuma and A. Dinimaharawati,

"Extended stochastic coati optimizer",

International Journal of Intelligent Engineering

and Systems, Vol. 16, No. 3, pp. 482-494, 2023.,

doi: 10.22266/ijies2023.0630.38.

[30] P. D. Kusuma and A. Dinimaharawati, "Swarm

Bipolar Algorithm: A Metaheuristic Based on

Polarization of Two Equal Size Sub Swarms",

International Journal of Intelligent Engineering

and Systems, Vol. 17, No. 2, 2024, doi:

10.22266/ijies2024.0430.31.

[31] P. D. Kusuma and M. Kallista, "Swarm Space

Hopping Algorithm: A Swarm-based Stochastic

Optimizer Enriched with Half Space Hopping

Search", International Journal of Intelligent

Engineering and Systems, Vol. 17, No. 2, 2024,

doi: 10.22266/ijies2024.0430.54.

[32] P. D. Kusuma and M. Kallista, "Migration-

Crossover Algorithm: A Swarm-based

Metaheuristic Enriched with Crossover

Technique and Unbalanced Neighbourhood

Search", International Journal of Intelligent

Engineering and Systems, Vol. 17, No. 1, 2024,

doi: 10.22266/ijies2024.0229.59.

[33] P. D. Kusuma and A. Novianty, "Total

Interaction Algorithm: A Metaheuristic in which

Each Agent Interacts with All Other Agents",

International Journal of Intelligent Engineering

& Systems, Vol. 16, No. 1, 2023, doi:

10.22266/ijies2023.0228.20.

[34] P. D. Kusuma and A. Dinimaharawati, "Four

Directed Search Algorithm: A New

Optimization Method and Its Hyper Strategy

Investigation", International Journal of

Intelligent Engineering and Systems, Vol. 16,

No. 5, 2023, doi: 10.22266/ijies2023.1031.51.

[35] P. D. Kusuma and F. C. Hasibuan, "Attack-

Leave Optimizer: A New Metaheuristic that

Focuses on The Guided Search and Performs

Random Search as Alternative", International

Journal of Intelligent Engineering and Systems,

Vol. 16, No. 3, 2023, doi:

10.22266/ijies2023.0630.19.

[36] P. D. Kusuma and A. L. Prasasti, "Walk-Spread

Algorithm: A Fast and Superior Stochastic

Optimization", International Journal of

Intelligent Engineering & Systems, Vol. 16, No.

5, 2023, doi: 10.22266/ijies2023.1031.24.

[37] M. H. Nadimi-Shahraki, H. Zamani, Z. Asghari

Varzaneh, and S. Mirjalili, "A Systematic

Review of the Whale Optimization Algorithm:

Theoretical Foundation, Improvements, and

Hybridizations", Archives of Computational

Methods in Engineering, pp. 1-47, 2023.

[38] M. Sharawi, H. M. Zawbaa, and E. Emary,

"Feature selection approach based on whale

optimization algorithm", In: Proc. of 2017 Ninth

international conference on advanced

computational intelligence (ICACI), pp. 163-

168, 2017.

[39] S. Gamage and J. Samarabandu, "Deep learning

methods in network intrusion detection: A

survey and an objective comparison", Journal of

Network and Computer Applications, Vol. 169,

pp. 102767, 2020.

[40] M. Gopinath and S. C. Sethuraman, "A

comprehensive survey on deep learning based

malware detection techniques", Computer

Science Review, Vol. 47, pp. 100529, 2023.

[41] D. H. Wolpert and W. G. Macready, "No free

lunch theorems for optimization", IEEE

Transactions on Evolutionary Computation, Vol.

1, No. 1, pp. 67-82, 1997.

[42] D. Cao, Y. Xu, Z. Yang, H. Dong, and X. Li,

"An enhanced whale optimization algorithm

with improved dynamic opposite learning and

adaptive inertia weight strategy", Complex &

Intelligent Systems, Vol. 9, No. 1, pp. 767-795,

2023.

[43] H. R. Tizhoosh, "Opposition-based learning: a

new scheme for machine intelligence", In: Proc.

of International conference on computational

intelligence for modelling, control and

automation and international conference on

intelligent agents, web technologies and internet

commerce (CIMCA-IAWTIC'06), Vol. 1, pp.

695-701, 2005.

[44] S. Das, A. Abraham, U. K. Chakraborty, and A.

Konar, "Differential evolution using a

neighborhood-based mutation operator", IEEE

Transactions on Evolutionary Computation, Vol.

13, No. 3, pp. 526-553, 2009.

[45] R. Sihwail, O. S. Solaiman, and K. A. Z. Ariffin,

"New robust hybrid Jarratt-Butterfly

optimization algorithm for nonlinear models",

Journal of King Saud University-Computer and

Information Sciences, Vol. 34, No. 10, pp. 8207-

8220, 2022.

