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Abstract: Mobile Adhoc Networks (MANETs) are vulnerable to various attacks such as Black Hole Attack (BHA), 

Gray Hole Attack (GHA), and Wormhole Attacks (WHA). While researchers have focused on detecting and mitigating 

individual attacks, protection against collaborative attacks is limited. Therefore, this article introduces a new Tunicate 

Swarm Optimization Q-learning-based Collaborative Attacker Detection Algorithm (TSOQCADA) to identify and 

prevent collaborative attackers like BHA, GHA, and WHA, thereby improving routing efficiency. This algorithm 

utilizes feedback about node properties such as energy, reputation, buffer space, transmission delay, and packet transfer 

rate from all nodes to determine efficient packet routing. In the TSOQ-learning algorithm, the TSO is adopted to set 

the Q-table values, resulting in faster convergence of Q-learning. First, a Q-table with prior knowledge is trained to 

enhance searchability. Additionally, a novel selective search mechanism is adopted to improve exploration efficiency 

and reduce unwanted explorations by considering the correlation between current and target locations. Furthermore, a 

nonlinear function is designed to achieve a tradeoff between search and use abilities in Q-learning, dynamically 

changing ε value in the ε-greedy method according to the number of iterations. Thus, the TSOQ-learning can efficiently 

obtain a routing path by isolating collaborative attackers with low reputation values. Simulation results show that the 

TSOQCADA achieves a Packet Delivery Ratio (PDR) of 94.8%, Packet Loss Rate (PLR) of 5.2%, energy consumption 

of 2.53J energy/packet, throughput of 355Kbps, and End-to-End (E2E) delay of 35ms for a network of 100 nodes with 

20 malicious nodes in MANET, outperforming the Efficient Trust-based Routing Scheme (ETRS), Hybrid Trust-based 

Reputation Mechanism (HTRM) and Deep Neural Learned Projective Pursuit Regression-based Watchdog Malicious 

Node Detection and Isolation (DNLPPR-WMNDI) algorithms. 

Keywords: MANET, Routing, Collaborative attacks, Reputation, Q-learning, Path selection, Tunicate swarm 

optimization. 

 

 

1. Introduction 

MANET runs as a point-to-point transmission 

utilizing self-managing and self-configuring nodes. It 

operates without infrastructure [1-2]. It is ideal for 

critical applications like combat and emergency 

response [3]. Routing protocols in MANETs involve 

four major conventions [4]: proactive, reactive, 

hybrid, and geographic. Proactive protocols update 

routing tables periodically [5]. Reactive protocols [6] 

establish routes on-demand. Hybrid protocols merge 

proactive and reactive elements [7]. Geographic 

protocol uses location information [8]. However, 

these protocols may face challenges from external or 

internal nodes that may disrupt packet routing [9]. 

1.1 Collaborative attackers in MANET 

Collaborative attackers in MANET are malicious 

nodes that work together to compromise network 

security, disrupt communication, compromise data 

integrity, or gain unauthorized access. Some common 

types of attacks are discussed below. 

BHA: A complete packet drop assault occurs 

when a BHA node sends a fake Route Request 

(RREQ) to bait data traffic (See Fig. 1). The BHA 

node accepts the RREQ packet and sends a fake  
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Figure. 1 Packet dropping in BHA scenario 

 

 
Figure. 2 Partial packet dropping in GHA scenario 

 

 
Figure. 3 WHA scenario 

 

Route Reply (RREP) packets, reducing network 

throughput [10]. 

GHA: Partial packet drop attack, an extension of 

BHA, involves data packet drops (see Fig. 2) during 

transmission, making GHA nodes hard to detect [11]. 

WHA: In WHAs, attackers intercept and tunnel 

packets to replay them (see Fig. 3), which can be 

harmful in reactive protocols. This allows the attacker 

to control the discovered routes and potentially 

launch network attacks [12]. 

1.2 Problem statement 

Scholars have proposed various protocols to 

detect MANET attacks, but most focus on single 

types like either BHA, WHA, or GHA. Detecting 

collaborative attacks is difficult. Researchers are 

exploring security mechanisms [13-14] like intrusion 

detection systems, reputation-based models, and 

secure routing protocols to address this. Cooperation 

among network nodes in sharing information can also 

help detect and mitigate these threats. Ongoing 

research is essential to keep up with evolving attacks 

and network security. 

1.3 Major contributions of the paper 

This manuscript presents a new CADA scheme 

for MANETs, using Q-learning and swarm 

intelligence. The goal is to identify and prevent 

collaborative attackers such as BHA, GHA, and 

WHA in the network, leading to more efficient 

routing. The key contributions of this study include: 

1. A new TSOQCADA is proposed to identify 

and prevent collaborative attackers. This is 

achieved by taking into account feedback on 

node properties such as energy, reputation, 

buffer space, transmission delay, and packet 

transfer rate from all nodes to determine 

efficient packet routing. 

2. The TSOQ-learning algorithm utilizes the 

TSO to set the Q-table values, resulting in 

faster convergence of Q-learning. Before the 

exploration stage, the algorithm learns from 

previous experience to enhance its efficiency. 

Additionally, a novel selective search 

mechanism is adopted to improve exploration 

efficiency and reduce unwanted explorations 

by considering the correlation between 

current and target locations. 

3. Furthermore, a nonlinear function is designed 

to achieve a tradeoff between search and use 

abilities in Q-learning, dynamically changing 

ε value in the ε-greedy method according to 

the maximum iteration. This allows the 

TSOQ-learning algorithm to efficiently 

obtain a routing path by isolating 

collaborative attackers with low reputation 

values. 

4. The TSOQCADA is evaluated through 

simulations, comparing its performance with 

conventional routing algorithms in the 

presence of collaborative attackers. The 

results demonstrate that the TSOQCADA 

outperforms other algorithms regarding 

different network QoS measures. 

1.4 Outline of the paper 

The rest of the article is structured as follows: 

Section 2 studies related works. Section 3 outlines the 

TSOQCADA in MANETs. Section 4 demonstrates 
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its performance effectiveness. Section 5 précises the 

study and offers ideas for further enhancements. 

2. Literature survey 

Various routing protocols have been developed to 

identify and counteract malicious nodes such as BHA, 

GHA, and WHA [15]. This section reviews recent 

studies related to these protocols in MANET. 

In [16], the Gray Wolf Optimization (GWO) was 

used to detect BHA and GHA based on the node’s 

trust in wireless adhoc networks. But the throughput 

was low due to the presence of malicious nodes in 

some cases. In [17], the ETRS was created to address 

malicious behavior in MANET. However, it was 

found that the E2E delay increased with node density.  

In [18], a new technique was proposed for 

MANETs to detect BHAs using K-Nearest Neighbor 

(KNN) for grouping and fuzzy inference for CH 

selection. The algorithm assesses the trust level of 

each node using beta distribution and Josang mental 

logic, selects CH based on reputation and remaining 

energy. However, the throughput was low due to 

some nodes with high trust values behaving 

maliciously, leading to packet loss.  

In [19], a 2-level feedback-based trust strategy 

was applied to identify and isolate cooperative 

blackmailing nodes. However, it had low PDR and 

high PLR when the number of nodes was increased. 

In [20], the HTRM was developed to find the best-

trusted path and detect misbehaving nodes based on 

trust values. However, the throughput and energy 

consumption values were not effective in detecting 

collaborative attacks. In [21], an AODV-based 

defense strategy was proposed to prevent BHAs in 

MANET. However, low throughput was caused by 

inaccurate detection of malicious nodes.  

In [22], a lightweight anomaly detection system 

was developed using a Support Vector Machine 

(SVM) to identify BHAs. But it was not suitable for 

detecting collaborative attacks involving more than 

one attacking node, as the simulation was limited to 

seven nodes and one attacker. This results in low 

PDR and high PLR in large-scale networks. 

In [23], the DNLPPR-WMNDI scheme was used, 

which selects adjacent nodes using DNLPPR and 

establishes routes for multicasting. The WMNDI 

identifies malicious nodes based on information 

exchange periods and isolates them from the network. 

However, the unstable routes have a negative impact 

on the throughput, PDR, and energy consumption. 

The literature suggests that existing algorithms are 

not effective at identifying collaborative attackers in 

MANETs. This leads to unstable routes and poor 

network performance in terms of PDR, PLR,  

 
Figure. 4 MANET with collaborative attackers’ scenario 

 

throughput, E2E, and energy consumption. So, a new 

reputation-based routing approach is proposed using 

Q-learning to detect and isolate collaborative 

attackers in MANETs. 

3. Proposed methodology 

This section explains the TSOQCADA in 

MANET. Table 1 presents the lists of notations used 

in this study. 

3.1 Network model 

Consider the MANET topology illustrated in Fig. 

4, which includes normal and collaborative attackers, 

namely BHA, GHA, and WHA nodes. MANET is 

represented as an undirected graph 𝐺 = (𝑁, 𝐸) , 

where 𝑁, 𝐸  denote the collection of nodes (mobile 

devices) and edges (wireless connections), 

respectively. When two nodes 𝑎 and 𝑏 have an edge 

𝑒(𝑡) = (𝑎, 𝑏) ∈ 𝐸, 𝑎 and 𝑏 can interact immediately 

with each other in interval 𝑡. 

All nodes use Global Positioning System (GPS) 

to define their position, broadcasting hello packets 

and receiving feedback to locate adjacent nodes, 

allowing them to interact with each other. A set of 

nodes that node 𝑎  can interact with at 𝑡  is called 

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑡(𝑎). 

Malicious nodes can disrupt the network by 

dropping packets, wasting energy, and degrading its 

lifetime, so it's crucial to identify and isolate 

suspected malicious nodes during transmission. 

3.2 Energy model 

The Friis free-space formula in Eq. (1) is used to 

compute the transmission power between nodes. 

 

𝑃𝑟(𝑑) ∝
𝜆2

4𝜋𝑑2 𝑃𝑡     (1) 

 

In Eq. (1), 𝑃𝑡  and 𝑃𝑟  denote the transmitted and 

received powers in Watts (W), correspondingly, 𝑑 is  
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Table 1. Lists of notations 

Notations Description 

𝐺  Undirected graph 

𝑁 Collection of nodes 

𝐸  Collection of edges 

𝑎, 𝑏  Two nodes 

𝑡 Time 

𝑒(𝑡) Edge between 𝑎 and 𝑏 at 𝑡 

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑡(𝑎)  Set of nodes that node 𝑎 can interact with at 𝑡 

𝑃𝑡 , 𝑃𝑟   Transmitted and received powers, correspondingly 

𝑑  Distance between the transmitter and receiver 

𝜆  Radio frequency range 

𝐶𝑎𝑏  Standardized energy utilization 

𝑃𝑚𝑎𝑥(𝑎)  Highest transmission power of 𝑎 

𝑃𝑡−𝑚𝑖𝑛(𝑎, 𝑏)  Lowest transmission power between 𝑎 and 𝑏 

𝑒𝑙𝑒𝑣𝑒𝑙(𝑎)  Energy level of 𝑎 

𝑒𝑟𝑒𝑚(𝑎)  Remaining energy of 𝑎 

𝑒𝑖𝑛𝑖(𝑎)  Initial energy of 𝑎 

𝑅𝑒𝑝𝑖𝑛𝑖   Initial value of reputation 

𝑅𝑒𝑝(𝑎)  Reputation of 𝑎 

𝑅𝑒𝑝𝑜𝑙𝑑(𝑎)  Old reputation value of 𝑎 

𝑅𝑒𝑝𝑛𝑒𝑤(𝑎)  Reputation that 𝑎 receives according to the outcomes of transmission 

𝛼  Weight between previous and modified reputations 

𝐷(𝑎, 𝑏)  Euclidean distance between 𝑎 and 𝑏 

𝑑𝑒𝑠𝑡  Destination 

𝐷(𝑑𝑒𝑠𝑡, 𝑏)  Euclidean distance between the 𝑑𝑒𝑠𝑡 and 𝑏 

𝑇𝑇𝐿  Packet’s Time-To-Live value 

𝑇𝑎𝑏   Duration taken to forward a packet between 𝑎 and 𝑏 

𝛽  Weight value 

𝐴𝑁𝑜𝑑𝑒𝑡(𝑎)  Remaining set of adjacent nodes for 𝑎 after isolation 

𝑅𝑒𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   Reputation threshold 

𝑠𝑡  Present state 

𝑢𝑡  Action executed in 𝑠𝑡 

𝑟𝑡+1  Reward obtained after 𝑠𝑡 is performed 

𝑠𝑡+1  Successive state 

𝛾  Discount factor 

𝜋(𝑠𝑡 , 𝑢𝑡)  Routing policy 

𝑅  Total discounted payoff 

𝑄𝑎(𝑑𝑒𝑠𝑡, 𝑏)  Q-value while 𝑎 transmits a packet to 𝑑𝑒𝑠𝑡 and transfers it to 𝑏 

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑏)  Set of nearby nodes of 𝑏 

𝜂  Training rate of Q-routing 

𝑞  Waiting period until a packet is forwarded from the queue of 𝑎 

𝑒𝑙𝑒𝑣𝑒𝑙(𝑏)  Energy level of 𝑏 

𝑅𝑒𝑝(𝑏)  Reputation of 𝑏 

𝑇𝐷(𝑏)  Transmission delay of 𝑏 

𝑃𝑇𝑅(𝑏)  Packet transfer rate of 𝑏 

𝐵𝑖𝑑𝑙𝑒(𝑏)  Idle buffer space for 𝑏 

𝐵𝑚𝑎𝑥(𝑏)  Maximum buffer space for 𝑏 

𝐴  Position vector 

�⃗�  Gravitational power 

�⃗�  Water flow advection in deep sea 

𝜏1, 𝜏2, 𝜏3  Random integers  
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�⃗⃗⃗�  Social forces among tunicates 

𝑆𝑚𝑖𝑛 , 𝑆𝑚𝑎𝑥   Minimum and maximum speeds to create group contact, respectively 

𝑃𝐷⃗⃗ ⃗⃗ ⃗⃗   Distance between the food source and tunicate 

𝑖  Iteration number 

𝐹𝑆⃗⃗ ⃗⃗⃗  Location of food source 

�⃗⃗�(𝑖)  Location of tunicate 

𝑟𝑎𝑛𝑑  Arbitrary value 

�⃗⃗�(𝑖′)  Modified position of tunicate with respect to the 𝐹𝑆⃗⃗ ⃗⃗⃗ 

𝑠𝑡(𝑥𝑡 , 𝑦𝑡)  Present location 

𝑠𝑔(𝑥𝑔, 𝑦𝑔)  Target location 

𝜌  Initial value of 𝜀 at the start of the iteration 

𝜑  Incremental range of 𝜀 

𝜔1, 𝜔2  Coefficient factors of the adaptive arc 

𝑖𝑚𝑎𝑥   Maximum iteration 

 

 

the distance between the transmitter and receiver, and 

𝜆 is the radio frequency range. As per Eq. (1), the 

energy required for a node to transfer information to 

the other node increases with the square of 𝑑 between 

them. Also, as the transmission energy available for 

each node varies, it must be standardized. In this 

scenario, the standardized energy utilization 𝐶𝑎𝑏  is 

represented by Eq. (2). 

 

𝐶𝑎𝑏 =
𝑃𝑡−𝑚𝑖𝑛(𝑎,𝑏)

𝑃𝑚𝑎𝑥(𝑎)
     (2) 

 

In Eq. (2), 𝑃𝑚𝑎𝑥(𝑎) is the highest transmission 

power of 𝑎 and 𝑃𝑡−𝑚𝑖𝑛(𝑎, 𝑏)  is the lowest 

transmission power between 𝑎  and 𝑏 . Nodes use 

energy for data transfer as represented in Eq. (2), 

reducing over intervals. Regulating the battery size, 

or energy level, is crucial due to potential variations 

in node size. The energy level of 𝑎 is determined by 

Eq. (3). 

 

𝑒𝑙𝑒𝑣𝑒𝑙(𝑎) =
𝑒𝑟𝑒𝑚(𝑎)

𝑒𝑖𝑛𝑖(𝑎)
     (3) 

 

In Eq. (3), 𝑒𝑟𝑒𝑚(𝑎) and 𝑒𝑖𝑛𝑖(𝑎) are the remaining 

and initial energy of node 𝑎, correspondingly. 

3.3 Reputation model for isolating collaborative 

attackers and selecting candidate forwarding 

set 

A reward-based reputation scheme is developed 

to penalize malicious nodes for avoiding packet 

forwarding and minimizing energy usage during 

transmission. Each node begins with an initial 

reputation value of 𝑅𝑒𝑝𝑖𝑛𝑖. When 𝑎 ∈ 𝑁 successfully 

transmits a packet, its reputation increases. Nodes 

with higher reputations have more packets forwarded, 

increasing the chances of successful delivery. The 

reputation of 𝑎  termed 𝑅𝑒𝑝(𝑎)  is modified 

iteratively by Eq. (4). 

 

𝑅𝑒𝑝(𝑎) = 𝛼𝑅𝑒𝑝𝑜𝑙𝑑(𝑎) + (1 − 𝛼)𝑅𝑒𝑝𝑛𝑒𝑤(𝑎)  (4) 

 

In Eq. (4), 𝑅𝑒𝑝𝑜𝑙𝑑(𝑎) is the old reputation value 

of 𝑎 , 𝑅𝑒𝑝𝑛𝑒𝑤(𝑎)  is the reputation that 𝑎  receives 

according to the outcomes of transmission, and 𝛼 ∈
[0,1]  represents the weight between previous and 

modified reputations. If 𝑎 succeeds in transferring to 

𝑏, then 𝑅𝑒𝑝𝑛𝑒𝑤 for 𝑎 is computed by Eq. (5). 

 

𝑅𝑒𝑝𝑛𝑒𝑤(𝑎) = 𝛽
𝐷(𝑎,𝑏)

𝐷(𝑑𝑒𝑠𝑡,𝑏)
+ (1 − 𝛽)

𝑇𝑇𝐿

𝑇𝑎𝑏
  (5) 

 

In Eq. (5), 𝐷(𝑎, 𝑏) denotes the Euclidean distance 

between 𝑎 and 𝑏, 𝐷(𝑑𝑒𝑠𝑡, 𝑏) refers to the Euclidean 

distance between the destination (𝑑𝑒𝑠𝑡) and 𝑏, 𝑇𝑇𝐿 

denotes the packet’s Time-To-Live value, and 𝑇𝑎𝑏 is 

the duration taken to forward a packet between 𝑎 and 

𝑏. In Eq. (5), the initial term is the vicinity to 𝑏 of 𝑎, 

which forwards the packet to the destination, and the 

2nd term states how quick 𝑎 forwards the packet; 𝛽 ∈
[0,1] is the weight of those 2 terms. When 𝑎 fails to 

transmit, 𝑅𝑒𝑝𝑛𝑒𝑤  is 0. So, the reputation of 𝑎  is 

decreased through the update, as defined in Eq. (4). 

Once the reputation of all nodes is determined, 

the candidate forwarding set for 𝑎  at 𝑡  is chosen, 

which is represented by 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑡(𝑎). Some nodes 

in this set, i.e., collaborative malevolent nodes (e.g., 

BHA, GHA, and WHA nodes), may not be suitable 

for data transmission. This study identifies and 

isolates undesirable adjacent nodes as collaborative 

attackers using the reputation model defined in Eqns. 

(4) and (5). The remaining set of adjacent nodes for 
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𝑎 after isolation is represented as 𝐴𝑁𝑜𝑑𝑒𝑡(𝑎), and 

this set is decided according to Algorithm 1. 

 

Algorithm 1: Candidate Forwarding Set Selection by 

Detecting and Isolating Collaborative Attackers 

based on Reputation Model 

Input: Network graph 𝐺 = (𝑁, 𝐸) 

Output: Candidate forwarding set 𝐴𝑁𝑜𝑑𝑒𝑡(𝑎) 

1. Discover node 𝑎’s adjacent set 

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑡(𝑎); 

2. 𝐴𝑁𝑜𝑑𝑒𝑡(𝑎) ← 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑡(𝑎); 

3. 𝒇𝒐𝒓(𝑎𝑙𝑙 𝑏 ∈ 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑡(𝑎)) 

4.    𝒊𝒇(𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑡(𝑏) \ {𝑎} == ∅) 

5.       𝐴𝑁𝑜𝑑𝑒𝑡(𝑎) = 𝐴𝑁𝑜𝑑𝑒𝑡(𝑎) − {𝑏}; 

6.    𝒆𝒏𝒅 𝒊𝒇 

7.    𝒊𝒇(𝑅𝑒𝑝(𝑏) < 𝑅𝑒𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

8.       𝐴𝑁𝑜𝑑𝑒𝑡(𝑎) = 𝐴𝑁𝑜𝑑𝑒𝑡(𝑎) − {𝑏}; 

9.    𝒆𝒏𝒅 𝒊𝒇 

10. 𝒆𝒏𝒅 𝒇𝒐𝒓 

 

In this algorithm, 𝑅𝑒𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the reputation 

threshold. When 𝐴𝑁𝑜𝑑𝑒𝑡(𝑎) is empty, node 𝑎 does 

not transmit packets at 𝑡. In the worst-case scenario, 

every node is densely occupied in the transmission 

range. In this case, 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝑡(𝑎) becomes a group 

excluding 𝑎 from 𝑁, which refers to the collection of 

each node. So, both time and space complexities of 

Algorithm 1 is 𝑂(𝑁), if 𝐴𝑁𝑜𝑑𝑒𝑡(𝑎) = 𝑁 − {𝑎}. 

3.4 Relay node selection based on tunicate swarm 

optimization Q-learning 

After obtaining the candidate relay set for node 𝑎, 

optimal relay nodes are selected based on the TSOQ-

learning algorithm to improve routing in MANETs. 

3.4.1 Q-learning 

Q-learning is an algorithm that uses trial and error 

in a Markov environment to determine optimal 

behavior and maximize rewards without an 

environmental model [24]. In Q-learning, all 𝑄(𝑠, 𝑢) 

have a respective Q-value. In the successive training 

procedure, the successive action is chosen based on 

𝑄(𝑠, 𝑢). The total rewards acquired from performing 

a specific policy and executing the present action are 

described by the Q-value. The best Q-value is the 

total rewards obtained by performing allied actions 

based on the best policy, as described by Eq. (6). 

 

𝑄(𝑠𝑡 , 𝑢𝑡) ← (1 − 𝛼)𝑄(𝑠𝑡 , 𝑢𝑡) + 𝛼 [𝑟𝑡+1 +

                                𝛾 max
𝑢𝑡+1

𝑄(𝑠𝑡+1, 𝑢𝑡+1)]  (6) 

 

In Eq. (6), 𝑠𝑡 ∈ 𝒮 is the present state, 𝑢𝑡 ∈ 𝒜 is 

the action executed in 𝑠𝑡 , 𝑟𝑡+1 ∈ ℝ  is the reward 

obtained after 𝑠𝑡 is performed, 𝑠𝑡+1 is the successive 

state, 𝛾 is a discount factor (0 ≤ 𝛾 ≤ 1), and 𝛼 is a 

training coefficient (0 ≤ 𝛼 ≤ 1) . The chance of 

selecting 𝑢𝑡 for 𝑠𝑡 is called a policy, and denoted by 

𝜋(𝑠𝑡 , 𝑢𝑡). The aim of Q-learning is to find the optimal 

policy for acquiring the highest reward in the long run. 

The long-run payoff is described by the total 

discounted payoffs 𝑅, as Eq. (7): 

 

𝑅 = ∑ 𝛾𝑘𝑟𝑘+1
∞
𝑘=0      (7) 

 

In Q-routing, the Q-value when 𝑎 sends a packet 

to 𝑑𝑒𝑠𝑡 and sends it to 𝑏 is denoted by 𝑄𝑎(𝑑𝑒𝑠𝑡, 𝑏). 

Once 𝑎 transmits a packet to 𝑏, it has the residual 

transfer period 𝑡 anticipated by 𝑏 as Eq. (8): 

 

𝑡 = min
𝑐∈𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑏)

𝑄𝑏(𝑑𝑒𝑠𝑡, 𝑐)   (8) 

 

In Eq. (8), 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑏) denotes the set of nearby 

nodes of 𝑏 . Let 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑏) = 𝐴𝑁𝑜𝑑𝑒𝑡(𝑏) . If 𝑎 

receives this value from 𝑏 , then 𝑎  modifies its Q-

table by Eq. (9): 

 

𝑄𝑎(𝑑𝑒𝑠𝑡, 𝑏) = (1 − 𝜂)𝑄𝑎(𝑑𝑒𝑠𝑡, 𝑏) + 𝜂(𝑞 +
𝑇𝑎𝑏 + 𝑡)      (9) 

 

In Eq. (9), 𝜂 ∈ [0,1]  is the training rate of Q-

routing and 𝑞  represents the waiting period until a 

packet is forwarded from the queue of 𝑎. The update 

equation utilized in this algorithm is adapted to fit the 

setting considered above by Q-routing as: 

 

𝑄𝑎(𝑑𝑒𝑠𝑡, 𝑏) ← (1 − 𝜂)𝑄𝑎(𝑑𝑒𝑠𝑡, 𝑏) +

                                   𝜂 (𝑒𝑙𝑒𝑣𝑒𝑙(𝑏) + 𝑅𝑒𝑝(𝑏) +

                                   𝑇𝐷(𝑏) + 𝑃𝑇𝑅(𝑏) +
𝐵𝑖𝑑𝑙𝑒(𝑏)

𝐵𝑚𝑎𝑥(𝑏)
)

                 (10) 

 

In Eq. (10), 𝑒𝑙𝑒𝑣𝑒𝑙(𝑏), 𝑅𝑒𝑝(𝑏), 𝑇𝐷(𝑏), 𝑃𝑇𝑅(𝑏) 

are the energy level, reputation, transmission delay 

and packet transfer rate of node 𝑏 , respectively. 

𝐵𝑖𝑑𝑙𝑒(𝑏)  and 𝐵𝑚𝑎𝑥(𝑏)  are the idle and maximum 

buffer spaces for node 𝑏, respectively. 

The learning process for each agent starts with an 

arbitrary state and uses an ε-greedy approach to 

choose actions. The agent explores each action, 

modifies 𝑄(𝑠, 𝑢) for each based on the highest Q-

value and feedback. The agent continues to discover 

actions until reaching the end state. 
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3.4.2 Tunicate swarm optimization 

Tunicates can find food in the sea through the use 

of jet propulsion and swarm intelligence. Jet 

propulsion entails avoiding conflicts, moving 

towards the optimal search agent (tunicate), and 

staying close to it. Swarm behavior modifies the 

locations of other tunicates [25]. These behaviors are 

mathematically modeled in below subsections. 

A. Circumventing Conflicts among Tunicates 

To evade the conflicts among tunicates, 𝐴 is used 

to calculate the new tunicate position by Eqs. (11), 

(12), and (13): 

 

𝐴 =
�⃗�

�⃗⃗⃗�
                (11) 

 

�⃗� = 𝜏2 + 𝜏3 − �⃗�               (12) 

 

�⃗� = 2 × 𝜏1                (13) 

 

In Eqs. (11)-(13), �⃗�  is the gravitational power 

and �⃗� is the water flow advection in deep sea. The 

parameters 𝜏1, 𝜏2, 𝜏3  are random integers ranging 

between 0 and 1. Also, �⃗⃗⃗� is the social forces among 

tunicates, which is determined by Eq. (14): 

 

�⃗⃗⃗� = [𝑆𝑚𝑖𝑛 + 𝜏1 × 𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛]             (14) 

 

In Eq. (14), 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥 reflect the minimum 

and maximum speeds to create group contact. 

B. Movement towards the Direction of the Best 

Adjacent 

Then, the tunicates are traveling towards the 

direction of optimal adjacent as Eq. (15): 

 

𝑃𝐷⃗⃗⃗⃗ ⃗⃗ = |𝐹𝑆⃗⃗ ⃗⃗ ⃗ − 𝑟𝑎𝑛𝑑 × �⃗⃗�(𝑖)|              (15) 

 

In Eq. (15), 𝑃𝐷⃗⃗⃗⃗ ⃗⃗  is the distance between the food 

source and tunicate, 𝑖 is the iteration number, 𝐹𝑆⃗⃗ ⃗⃗ ⃗ is 

the location of food source, i.e., optimal, and �⃗⃗�(𝑖) is 

the location of tunicate and 𝑟𝑎𝑛𝑑 is an arbitrary value 

between 0 and 1. 

C. Converge towards the Optimal Tunicate 

The tunicate can sustain its location towards the 

food source, as Eq. (16): 

 

�⃗⃗�(𝑖′) = {
𝐹𝑆⃗⃗ ⃗⃗ ⃗ + 𝐴 × 𝑃𝐷⃗⃗⃗⃗ ⃗⃗ , 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥

1

2

𝐹𝑆⃗⃗ ⃗⃗ ⃗ − 𝐴 × 𝑃𝐷⃗⃗⃗⃗ ⃗⃗ , 𝑖𝑓 𝑟𝑎𝑛𝑑 <
1

2

          (16) 

 

In Eq. (16), �⃗⃗�(𝑖′) denotes the modified position 

of tunicate with respect to the 𝐹𝑆⃗⃗ ⃗⃗ ⃗. 

D. Swarm Behavior 

To statistically model the collective nature of a 

tunicate swarm, the top 2 optimal solutions are kept 

and the locations of others are updated based on 𝐹𝑆⃗⃗ ⃗⃗ ⃗. 

The tunicate swarm behavior is described by Eq. (17). 

 

�⃗⃗�(𝑖 + 1) =
�⃗⃗�(𝑖)+�⃗⃗�(𝑖+1)

2+𝜏1
              (17) 

 

The final location would be entirely random 

within the boundaries of a cylinder or cone, based on 

the orientation of the tunicate. 

3.4.3 TSO-based Q-learning algorithm 

TSOQ-learning is a route optimization scheme 

that uses the TSO to set the initial Q-value for an 

enhanced ε-greedy Q-learning, rather than starting 

with Q-values of zero. Its primary objective is to 

address the slow convergence issue caused by 

initialization in standard ε-greedy Q-learning. 

During the initialization stage, TSOQ-learning 

generates 𝑛 tunicate populations in a 15×15 search 

(grid) space and utilizes the Q-value computation in 

Eq. (10) to determine the fitness value of all tunicates. 

Grid locations correspond to coordinates in the area. 

The Q-table of ε-greedy Q-learning maps the values 

of all grids. A reward of -1 indicates a problem, +1 

indicates free space, and 100 indicates the desired 

location. The grid with the highest Q-value is the 

optimal location. TSO is used to adjust the Q-value 

of all locations, and the process stops after a set 

number of iterations. Enhanced ε-greedy Q-learning 

is then applied for route optimization using the 

updated Q-table. 

Enhanced ε-greedy Q-learning uses a selective 

exploration scheme based on the target location to 

improve convergence and reduce unnecessary 

searches. In every search, the agent assesses the 

correlation between its present location 𝑠𝑡(𝑥𝑡 , 𝑦𝑡) 

and the target location 𝑠𝑔(𝑥𝑔, 𝑦𝑔) to determine the 

most promising directions to search, rather than 

randomly exploring all four directions. This targeted 

approach aims to optimize the agent's exploration 

strategy and ultimately enhance its learning process. 

The exploration rules of this scheme include: 

• If 𝑥𝑡 ≤ 𝑥𝑔  and 𝑦𝑡 < 𝑦𝑔 , then 𝑧 =

𝑟𝑎𝑛𝑑(1,2) ; if 𝑥𝑡 < 𝑥𝑔  and 𝑦𝑡 ≥ 𝑦𝑔 , then 𝑧 =

𝑟𝑎𝑛𝑑(2,3). 

• If 𝑥𝑡 > 𝑥𝑔  and 𝑦𝑡 ≤ 𝑦𝑔 , then 𝑧 =

𝑟𝑎𝑛𝑑(3,4) ; if 𝑥𝑡 ≥ 𝑥𝑔  and 𝑦𝑡 > 𝑦𝑔 , then 𝑧 =

𝑟𝑎𝑛𝑑(1,4). 
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Figure. 5 Principle of TSOQ-learning 

 

 

 
Figure. 6 Flow diagram of TSOQ-learning algorithm 

 

 
Table 2. Parameters used in TSO and Q-learning 

Parameters Value 

TSO No. of tunicates 80 

𝑆𝑚𝑖𝑛   1 

𝑆𝑚𝑎𝑥   4 

No. of generations 100 

No. of iterations 200 

Q-learning 𝛼  0.2 

𝛾  0.8 

No. of iterations 200 

 

 

After that, to flexibly switch between search and 

use procedures, the 𝜀 value in 𝜀-greedy Q-learning is 

modified adaptively. The value of 𝜀 is calculated by 

Eq. (18): 

 

𝜀 = 𝜌 + 𝜑 (1 + 𝑒𝜔1−𝜔2𝑡)⁄               (18) 

 

In Eq. (18), 𝜌 represents the initial value of 𝜀 at 

the start of the iteration, while 𝜑  represents the 

incremental range of 𝜀 . The addition of 𝜌 and 𝜑 is 

assigned to one. The parameters 𝜔1  and 𝜔2  are 

coefficient factors of the adaptive arc, and their 

values are calculated by the number of iterations. The 

parameter 𝑡 represents the present iteration number. 

The enhanced ε-greedy Q-learning algorithm 

optimizes routes using a Q-table. The Q-value 

computation updates the Q-table iteratively, and the 

optimal route is determined by finding the route with 

the maximum Q-value. 

This approach allows the TSO to learn from 

previous experiences, reducing computation time and 

accelerating convergence speed. Fig. 5 illustrates a 

principle of TSOQ-learning, and Fig. 6 shows a flow 

diagram of the TSOQ-learning algorithm. Algorithm 

2 presents its pseudocode for route optimization. As 

well, Table 2 shows the parameters used for TSO and 

Q-learning algorithms. 

 

Algorithm 2: Pseudocode for TSOQ-learning 

Input: Network graph 𝐺 = (𝑁, 𝐸) 

Output: Best routing policy 𝜋 

1. Initialize the tunicate population �⃗⃗�, variables 

𝐴, �⃗�, �⃗�, �⃗⃗⃗�, and maximum iteration 𝑖𝑚𝑎𝑥; 

2. 𝒘𝒉𝒊𝒍𝒆(𝑖 < 𝑖𝑚𝑎𝑥) 

3.    Compute the fitness of all tunicates using 

Eq. (10); 

4.    Find the optimal tunicate in the given 

search space; 

5.    Modify the location of all tunicates 

utilizing Eq. (17); 

6.    Change the new tunicate in a particular 

search space that crosses the margin; 

7.    Calculate the new tunicate fitness value; 

8.    Modify 𝐿  when the best solution exists 

than the past optimal one; 

9. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

10. Obtain the optimal solution (optimal Q-

values) which is obtained so far; 

11. Initialize the optimal Q-values in Q-table, 

start location, and target location; 

12. Choose a starting state 𝑄(𝑠1, 𝑢1); 

13. 𝒘𝒉𝒊𝒍𝒆(𝑖 < 𝑖𝑚𝑎𝑥) 

14.    𝒘𝒉𝒊𝒍𝒆(𝑠𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑎𝑟𝑔𝑒𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) 

15.       𝒊𝒇(𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 < 𝜀) 

16.          Select 𝑢𝑡 based on the max 𝑄(𝑠𝑡); 

17.          Take action 𝑢𝑡, and get reward 𝑟; 



Received:  February 21, 2024.     Revised: April 6, 2024.                                                                                                 571 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.44 

 

18.          Update Q-value by Eq. (10); 

19.          Update reputation by Eqs. (4) and (5); 

20.          Shift to new state; 

21.       𝒆𝒍𝒔𝒆 𝒊𝒇(𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≥ 𝜀) 

22.          Select 𝑢𝑡  randomly in two directions 

based on the correlation with the target; 

23.       𝒆𝒏𝒅 𝒊𝒇 

24.       Update 𝜀 by Eq. (18); 

25.    𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

26. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

 

Algorithm 2 has a time complexity of 𝑂(𝑁) and a 

space complexity of 𝑂(𝑁2)  in the worst-case 

scenario. Thus, the TSOQCADA can detect 

collaborative attackers and ensure the selection of 

optimal paths for efficient data transmission. 

4. Simulation results 

This section provides the efficacy of the 

TSOQCADA and compares it with the existing 

algorithms in MANETs. The simulations are carried 

out on a system with an Intel ® Core TM i5-4210 

CPU @ 2.80 GHz platform. Table 3 presents the 

simulation parameters in this study. The existing 

algorithms such as ETRS [17], HTRM [20], and 

DNLPPR-WMNDI [23] are also simulated using 

these parameters to compare their performance with 

the proposed algorithm. The evaluation metrics 

include PDR, PLR, energy consumption, throughput, 

and E2E delay. An experimental test is conducted to 

study how changes in node density affect the 

performance of routing algorithms. 

4.1 PDR 

It is the percentage of total packets transferred by 

the source node and delivered at the destination node, 

calculated by Eq. (19): 
 

 

Table 3. Simulation parameters 

Parameters Value 

Simulation tool NS2.34 

Simulation region 1000×1000 m2 

No. of nodes 100 

No. of malicious nodes 20 

Attack types BHA, GHA, and 

WHA 

Transmission range 100 m 

Packet generation rate 1 packet/s 

Buffer size 100 MB 

Packet size 1 MB 

Packet TTL 10 sec 

 
Figure. 7 PDR vs. No. of nodes 

 
 

 
Figure. 8 PLR vs. No. of nodes 

 

 

 
Figure. 9 Energy utilization vs. No. of nodes 

 
 
𝑃𝐷𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑛𝑜𝑑𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒
× 100

                 (19) 

 

Fig. 7 displays the PDR for the proposed and 

existing routing algorithms. The results indicate that 

the TSOQCADA can improve PDR values for 100 

nodes by 3.3%, 1.6%, and 1.2% compared to the  
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Figure. 10 Throughput vs. No. of nodes 

 

 

 
Figure. 11 E2E delay vs. No. of nodes 

 

 

 
Figure. 12 Computation time vs. different routing 

algorithms 

 

ETRS, HTRM, and DNLPPR-WMNDI algorithms, 

respectively. This enhancement is due to the isolation 

of collaborative malicious nodes, ensuring that only 

reliable nodes are used in the best route. 

4.2 PLR 

It is the percentage of data packets that don't reach 

the destination node, calculated by Eq. (20): 

𝑃𝐿𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑙𝑜𝑠𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒
× 100

                 (20) 

 

Fig. 8 depicts the PLR for the proposed and 

existing routing algorithms. The findings show that 

the TSOQCADA can decrease PLR values for 100 

nodes by 36.6%, 22.4%, and 17.5% when compared 

to the ETRS, HTRM, and DNLPPR-WMNDI 

algorithms, respectively. This is due to the mitigation 

of collaborative malicious nodes from the network, 

leading to a decrease in packet dropping. 

4.3 Energy consumption 

The energy utilized by each node is determined 

by Eq. (21): 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑒𝑑 = ∑ 𝑖𝑛𝑖(𝑖) − 𝑒(𝑖)𝑛
𝑖=1              (21) 

 

In Eq. (21), 𝑛 is the node number, 𝑖𝑛𝑖(𝑖) is the 

initial energy level of node 𝑖 and 𝑒(𝑖) is the energy 

level of node 𝑖 after packet transfer. Fig. 9 illustrates 

the energy utilization of various routing algorithms. 

The data confirms that the energy utilization per 

packet of the TSOQCADA for 100 nodes is reduced 

by up to 8%, 5.9%, and 4.2% compared to the ETRS, 

HTRM, and DNLPPR-WMNDI, respectively. 

Isolating collaborative attackers leads to a decrease in 

unwanted energy dissipation, as these nodes do not 

join in choosing the relay nodes and optimal paths. 

4.4 Throughput 

It is the quantity of packets efficaciously 

delivered at the target node from the origin node in a 

given interval, calculated using Eq. (22). Fig. 10 

presents the throughput of proposed and existing 

routing algorithms. The throughput of the 

TSOQCADA for 100 nodes is increased by 18.3%, 

11.6%, and 7.6% compared to the ETRS, HTRM, and 

DNLPPR-WMNDI, respectively. This is due to the 

isolation of collaborative attack nodes from the 

routing based on the node’s reputation. 

4.5 E2E delay 

The time taken for a packet to be sent from the 

origin node to the target node is calculated by Eq. 

(23). 

 

𝐸2𝐸 𝑑𝑒𝑙𝑎𝑦 =
∑ (𝑅𝑥−𝑆𝑥)𝑝

𝑥=1

𝑛
              (23) 
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In Eq. (23), 𝑝 is the successful packets that are 

delivered to the target nodes, 𝑅𝑥  is the receiving 

period of the packet 𝑥  and 𝑆𝑖  is the transmitting 

period of 𝑥 . In Fig. 11, the E2E delay for various 

routing algorithms are shown. The E2E delay of the 

TSOQCADA for 100 nodes is reduced by 12.5%, 

10.3%, and 7.9% compared to the ETRS, HTRM, and 

DNLPPR-WMNDI, respectively. This is because 

collaborative suspected nodes do not participate in 

reliable node and optimal path selection procedures, 

ensuring that data transfer only occurs between 

reputable nodes, leading to a decrease in E2E delay. 

4.6 Computation time 

It is the time required to execute various 

algorithms for detecting and mitigating collaborative 

attacks in the network. Fig. 12 shows the computation 

time for different routing algorithms with 100 nodes. 

The TSOQCADA has 66.67%, 60%, and 50% 

reductions in computation time compared to ETRS, 

HTRM, and DNLPPR-WMNDI, respectively. This 

indicates that TSOQCADA can detect collaborative 

attacks more quickly than the other algorithms. 

5. Conclusion 

This article presents the TSOQCADA algorithm 

for detecting and mitigating collaborative attacks in 

MANETs. It fine-tunes Q-table initialization and uses 

a nonlinear function to update ε value dynamically. 

This leads to optimal routing paths, reducing packet 

loss and energy consumption. Simulation outcomes 

demonstrate that the TSOQCADA outperforms 

existing routing algorithms in MANETs facing 

collaborative attackers, thereby enhancing routing 

performance and network security. Specifically, the 

TSOQCADA achieved a 94.8% PDR, 5.2% PLR, 

2.53J energy/packet, 355Kbps throughput, and 35ms 

E2E delay for 100 nodes with 20 malicious nodes in 

the network, outperforming other routing algorithms. 
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