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Abstract: This paper presents Dynamic Gait Signature Analysis (DGSA), an innovative approach to gait analysis that 

leverages deep graph learning techniques. Unlike conventional methods, DGSA leverages multifaceted parameters 

and advanced deep graph learning techniques, such as Graph Convolutional Networks (GCNs) and Graph Attention 

Networks (GATs). These techniques enable a comprehensive analysis of gait dynamics, including the use of dynamic 

graph representation methods like Gait Cycle Joint Angles Graph and Gait Cycle Joint Power Graph. DGSA's unique 

framework allows for simultaneous prediction of neurological diseases, gait classification, and early detection of 

cognitive impairments. By modeling gait as dynamic graph structures, DGSA captures intricate relationships between 

body movements and foot positions, ultimately enhancing accuracy in classification and prediction tasks. 

Comprehensive experiments on real-world datasets demonstrate DGSA's robustness, generalization, and superiority 

in accuracy. Our approach achieves notable accuracy metrics: gait velocity (1.6 m/s), dynamic stability margin (5.6 

cm), gait variability (2.4%), joint range of motion (56 degrees), dynamic balance index (0.4), minimum toe clearance 

(2.3 cm), foot progression angle (8.6 degrees), and dynamic joint stiffness (172). This study includes a comparative 

analysis of gait analysis approaches based on these key performance metrics, demonstrating DGSA's significant 

advancement in gait analysis methodology. 

Keywords: Gait signature, Deep graph learning, Graph convolutional networks, Graph attention networks, 

Classification, Predictions. 

 

 

1. Introduction 

Gait analysis is essential for understanding 

human movement and diagnosing abnormalities, 

with recent advancements in deep learning (DL) and 

graph neural networks (GNNs) offering promising 

avenues for richer insights [1-3]. This paper explores 

the application of these techniques in gait analysis, 

aiming to extract meaningful features from complex 

gait dynamics. Traditionally, gait analysis relied on 

biomechanical measurements, but DL and GNNs 

enable us to leverage the inherent structure of gait 

data, leading to more accurate and interpretable 

analysis. By representing gait dynamics as graphs, we 

can capture intricate dependencies and interactions, 

addressing limitations of traditional methods. 

However, challenges such as model interpretability 

and integration of multimodal sensor data remain [4]. 

Future research must focus on developing 

interpretable models and robust techniques for 

integrating diverse sensor data to advance gait 

analysis. Our proposed method showcases the 

potential of deep graph learning techniques in 

addressing these challenges and enhancing clinical 

decision-making in gait analysis. 

By highlighting its capacity to extract rich 

characteristics from dynamic graph structures in gait 

data, we draw attention to the advantages of our 

suggested approach. By leveraging graph-based 

representations, we aim to capture intricate 

dependencies within gait dynamics, leading to 

improved performance compared to traditional 
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methods. This approach offers a clearer 

understanding of the potential of deep graph learning 

techniques in advancing gait analysis methodologies. 

The paper is structured into several key sections 

to provide a comprehensive overview of the research. 

In the Literature survey section, existing literature on 

gait analysis methodologies is reviewed, covering 

both traditional approaches and recent advancements 

in deep learning and graph neural networks. 

Following this, the Proposed Work section outlines 

the methodology, including data collection processes, 

dynamic graph representation techniques, analysis of 

gait dynamics through multifaceted parameters, deep 

graph learning methodologies, and model training 

strategies tailored specifically for gait analysis tasks. 

The Results and Discussions section presents the 

empirical findings of the study, offering a detailed 

discussion, interpretation, and analysis of the results 

obtained from the experiments conducted. Finally, 

the paper concludes with a summary of the key 

findings, implications of the research, and 

suggestions for future work in the Conclusion section.  

2. Literature survey 

In recent years, the use of deep learning 

techniques has gained momentum in the field of gait 

assessment, thanks to advancements in sensor 

technology and computational capabilities [5-7]. 

These methods offer a promising approach to 

analyzing gait data, allowing researchers and 

clinicians to extract meaningful insights for clinical 

decision-making. However, despite their potential, 

there are challenges to address. One key challenge is 

the availability of large datasets with annotations 

necessary for training deep learning models 

effectively [8]. To tackle this, researchers have 

proposed innovative solutions. For example, they've 

developed specialized deep learning architectures 

tailored specifically for analyzing gait data. These 

architectures, such as customized Convolutional 

Neural Networks (CNNs), can process time-series 

gait data directly, capturing both spatial and temporal 

patterns. Similarly, Recurrent Neural Networks 

(RNNs) have been employed to model the sequential 

nature of gait dynamics, enabling the detection of 

subtle changes over time. 

In recent advancements in gait analysis, 

innovative systems and methodologies have emerged 

to enhance our understanding and assessment of 

human locomotion. Slemensek et al. [9] introduced a 

wearable system adept at capturing gait motion data 

with precision, facilitating not only the classification 

of gait activities but also the identification of 

potential risk factors, thereby aiming to improve 

individuals' overall quality of life. Berke et al. [10] 

proposed an advanced artificial intelligence-driven 

system tailored for detecting neurodegenerative 

diseases and predicting their severity by leveraging 

gait features extracted from gait signals. Their 

segmentation approach enables a targeted analysis of 

disease-specific gait patterns and characteristics, 

enhancing diagnostic precision. Shanmuga Sundari et 

al. [11] pioneered a machine learning-based model to 

predict the Age of Gait (AoG) by analyzing early 

indicators found in poor gait patterns preceding AoG 

onset, providing insights into age-related gait 

changes. Kondragunta et al. [12] emphasized the 

critical importance of identifying gait abnormalities 

in aging populations, focusing on non-wearable 

approaches to collect gait data from elderly 

individuals aged over 80 years, particularly relevant 

given the heightened prevalence of dementia in this 

demographic. 

Furthermore, Trentzsch et al. [13] conducted a 

comprehensive study to identify effective diagnostic 

gait systems, leveraging machine learning algorithms 

to differentiate between individuals with multiple 

sclerosis and healthy controls. Slijepcevic et al. [14] 

investigated existing ground reaction force (GRF) 

parameterization techniques to discern functional gait 

disorders, aiming to establish foundational insights 

into automated classification methodologies. 

Through rigorous analysis and experimentation, 

Slijepcevic et al. [15] aimed to advance 

understanding of functional GDs and establish 

foundational insights into automated classification 

methodologies. Chandrasen et al. [16] employed 

artificial intelligence techniques to analyze ground 

reaction force (GRF) patterns, distinguishing 

between healthy individuals and those with gait 

disorders. Moreover, Shayestegan et al. [17] curated 

datasets for feature selection, enabling a 

comprehensive examination of gait features, while 

Bogaarts et al. [18] pioneered a framework to 

examine the impact of IMU noise on sensor-based 

gait features, shedding light on the intricacies of gait 

analysis in real-world scenarios. Through meticulous 

experimentation and analysis, these studies 

collectively contribute to advancing the field of gait 

analysis, offering promising avenues for improving 

diagnostic accuracy and guiding tailored 

interventions for individuals affected by diverse gait 

disorders. 

Slemensek et al. [9] introduced a wearable system 

for gait motion data capture, albeit with limitations in 

accurately classifying gait activities and identifying 

risk factors. Similarly, Berke et al. [10] devised an 

AI-driven system for neurodegenerative disease 

detection, yet their approach may lack the versatility 
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needed for comprehensive gait analysis. Shanmuga 

Sundari et al. [11] focused on predicting the Age of 

Gait using specific walking tasks, which may 

overlook broader gait abnormalities. Kondragunta et 

al. [12] underscored the importance of identifying 

gait abnormalities in aging populations but primarily 

focused on non-wearable approaches, potentially 

limiting their applicability in certain settings. 

In contrast, Trentzsch et al. [13] aimed to identify 

effective diagnostic gait systems, yet the study may 

lack a comprehensive exploration of gait features for 

accurate classification. Slijepcevic et al. [14, 15] 

addressed the efficacy of GRF parameterization 

techniques in discerning functional gait disorders, 

though the study may not fully elucidate the 

differences between various feature representations. 

Chandrasen et al. [16] focused on analyzing GRF 

patterns for distinguishing healthy individuals from 

those with gait disorders, yet the study may not 

provide a thorough comparison with existing 

methods. Shayestegan et al. [17] curated datasets and 

applied feature selection techniques, but the study 

may not fully detail the drawbacks of conventional 

feature selection methods. Bogaarts et al. [18] 

presented a framework to examine the impact of IMU 

noise on gait features, yet may not adequately 

highlight the limitations of existing noise estimation 

methods. 

Our proposed Dynamic Gait Signature Analysis 

(DGSA) framework represents a significant leap 

forward in gait analysis methodology, surpassing 

existing studies by offering a holistic approach to 

understanding gait dynamics. While previous works 

focused on specific aspects such as activity 

classification, disease detection, or age prediction, 

DGSA integrates deep graph learning techniques to 

extract rich features from multifaceted gait 

parameters. By modeling gait as dynamic graph 

structures, DGSA provides a comprehensive analysis 

of gait mechanics, enabling simultaneous prediction 

of neurological diseases, gait classification, and early 

detection of cognitive impairments. Through 

comprehensive experiments, DGSA demonstrates 

robustness and generalization, achieving superior 

accuracy metrics compared to existing approaches. 

This framework has profound implications for 

clinical practice, rehabilitation, and assistive 

technology development, offering valuable insights 

into gait mechanics and its association with various 

clinical outcomes. 

 

 

3. Proposed work 

3.1 Data collection 

Data collection begins by recruiting diverse 

participants, encompassing various gait patterns from 

healthy individuals to those with neurological or 

cognitive conditions. Ensuring demographic 

variability, including age, gender, and physical health, 

enhances dataset diversity [19]. Assessments occur in 

controlled environments, like labs, with specialized 

tools such as force plates and motion recording 

systems. Carefully designed setups accommodate 

natural walking movements. Participants receive 

briefings and instructions before walking at self-

selected paces. For those with conditions, specific 

tasks may be assigned. Sensors like accelerometers 

and gyroscopes, often integrated into wearables, 

capture gait dynamics [20]. Data, accompanied by 

metadata, are stored for analysis. Ethical approval 

and informed consent are mandatory, prioritizing 

participant privacy and confidentiality. 

3.2 Dynamic graph representation in gait analysis 

Gait analysis is pivotal in biomechanics and 

human movement science, benefiting healthcare, 

sports, and rehabilitation. Recent advancements, 

notably in graph theory and DL, have revolutionized 

gait analysis. Dynamic graph representation, depicted 

in Fig. 1, captures the nuanced spatiotemporal 

relationships in gait sequences. Unlike static methods, 

dynamic graphs adapt to movement evolution over 

time. Nodes represent body positions (e.g., feet, 

knees), while edges encode temporal and spatial 

dependencies. This approach accommodates 

variability in gait patterns, crucial in pathological 

analysis. It integrates data from various sources, 

aiding deeper understanding of gait mechanics and 

health conditions [21]. Dynamic graph representation 

extends to action recognition, gesture analysis, and 

human-robot interaction, promising innovative 

research avenues in human movement science. As 

computational techniques progress, dynamic graphs 

will increasingly shape gait analysis and related fields, 

enhancing insights into human movement dynamics 

and their implications. 

3.3 analyzing gait dynamics through multifaceted 

parameters 

The provided graphs, such as "Gait Cycle Joint 

Angles," "Foot Pressure," "Joint Power," "Foot 

Trajectory," and "Joint Angles (Color-coded)," 
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Figure. 1 Dynamic Graph Representation in Gait Analysis – Outline 

 

 

collectively demonstrate dynamic aspects of human 

gait. Each depicts variations in parameters over the 

gait cycle, essential for understanding gait dynamics. 

They can be interpreted as graph structures where 

parameters represent nodes, showcasing relationships 

through data patterns. These graphs illustrate 

temporal gait dynamics, aiding in understanding 

sequential events and parameter interplay. They 

highlight interconnections between parameters like 

joint angles, foot pressure, and power, essential for 

comprehensive gait analysis [22]. These visual tools 

enable clinicians and researchers to analyze gait data 

dynamically, facilitating informed decision-making 

in clinical assessment. 

The "Gait Cycle Joint Angles" graph illustrates 

variations in hip, knee, and ankle joint angles 

throughout a complete gait cycle, from heel strike to 

toe-off. The x-axis represents the gait cycle's 

progression from 0% to 100%, with each point 

indicating a distinct phase of walking. Joint angles, 

depicted on the y-axis in degrees, are visualized by 

blue (hip), green (knee), and red (ankle) lines. These 

lines showcase flexion and extension movements in 

the respective joints as walking progresses. Analysis 

of these changes allows researchers to understand 

walking biomechanics, including joint timing, 

coordination, and any deviations from normal 

patterns as shown in Fig. 2. Such insights are crucial 

for diagnosing musculoskeletal disorders and 

assessing intervention effectiveness in enhancing 

human locomotion. 
The "Gait Cycle Joint Power" graph depicts hip, 

knee, and ankle joint power variations throughout a 

gait cycle. The X-axis shows the gait cycle's 

progression from 0% to 100%, distinguishing 

between the stance (0–60%) and swing (60–100%)  

 

 
Figure. 2 Gait Cycle Joint Angles Graph 
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Figure. 3 Gait Cycle Joint Power Graph 

 

 
Figure. 4 Gait Cycle Foot Pressure Graph 

 

 

phases. Joint power, measured in relative units, is 

shown on the Y-axis. Hip Power (Blue Line) peaks at 

heel strike, gradually decreasing during stance, then 

slightly increasing during push-off for propulsion.  

Knee Power (Green Line) peaks at mid-stance, 

declining during push-off, and remaining low in the 

swing phase. Ankle Power (Red Line) remains 

relatively low but aids foot clearance in swing and 

increases slightly during push-off as shown in Fig. 3. 

Analyzing these patterns is vital for assessing gait 

efficiency and detecting abnormalities. It provides 

insights into biomechanical factors influencing 

human locomotion. The "Gait Cycle Foot Pressure" 

graph illustrates fluctuations in foot pressure across a 

gait cycle. The X-axis spans from 0% to 100%, 

delineating the stance (0–60%) and swing (60–100%) 

phases. Foot pressure, measured in kilopascals (kPa), 

is represented on the Y-axis as shown in Fig. 4.  

The Foot Pressure (Blue Line) peaks at heel strike, 

gradually decreases during mid-stance as weight 

disperses, and slightly increases during push-off. It 

remains low during the swing phase when the foot is 

lifted. Understanding these patterns aids in assessing 

and designing appropriate footwear. Analyzing foot 

 

 
Figure. 5 Gait Cycle Foot Trajectory Graph 

 

 
Figure. 6 Gait Cycle Joint Angles (Color-coded) Graph 

 
 
gait function, identifying pressure-related injuries, 

pressure throughout the gait cycle offers insights into 

biomechanical influences on foot mechanics and gait 

dynamics. The "Gait Cycle Foot Trajectory" graph 

depicts the foot's path during a gait cycle. The X-axis 

represents horizontal position (in cm), while the Y-

axis represents vertical position (in cm). Each point 

on the graph corresponds to a specific percentage of 

the gait cycle, forming a trajectory as shown in Fig. 

5.  

The foot begins at the initial hip joint center 

position (0,0), moving forward and downward during 

stance, then upward and forward during swing. This 

trajectory, forming an elliptical shape, reflects 

coordinated hip, knee, and ankle joint movements. 

Analyzing foot trajectory aids in understanding gait 

mechanics and detecting abnormalities like limping 

or excessive joint motion, facilitating diagnosis and 

treatment of gait-related disorders. The "Gait Cycle 

Joint Angles (Color-coded)" graph illustrates 

variations in hip, knee, and ankle joint angles 

throughout a gait cycle, with each joint angle color-

coded for clarity. Color-coded lines depict joint 

angles: blue for hip, green for knee, and red for ankle.  
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This facilitates visualization and comparison of joint 

movements as shown in Fig. 6. The dynamic graph 

captures continuous changes in joint angles over time 

during walking, aiding in identifying patterns and 

abnormalities. This representation enhances gait 

analysis, helping researchers and clinicians assess 

gait dynamics and diagnose related disorders 

effectively. 

3.4 Deep graph learning techniques 

Deep graph learning techniques offer a cutting-

edge approach for analyzing dynamic gait signatures 

by treating gait data as dynamic graph structures. 

This innovative methodology leverages powerful 

neural architectures such as GCNs, GATs, and other 

graph-based models to extract hierarchical features 

that encapsulate both local and global dependencies 

within the gait sequences [23]. In this section, we 

delve into the intricacies of these techniques and their 

application in advancing DGSA. 

Graph Convolutional Networks (GCNs) 

Neural networks in the GCN class are made to 

function with graph-structured inputs. They use 

graph transformations to combine data from nearby 

nodes in the network, enabling features to spread 

across the framework of the graph. GCNs can be 

applied to dynamic graph representations of gait 

parameters to extract informative features that 

capture the relationships between different joints, 

pressure points, and movement patterns. 

Mathematically, the propagation rule in GCNs can 

be expressed as: 

 

 
Table 1. Notation and Meanings 

Notation Explanation 

𝑁𝐹(𝑙𝑦) Node features at layer l 

�̃� Adjacency matrix of the graph 

�̃� Degree matrix of �̃� 

𝑊𝑡(𝑙𝑦) Weight matrix at layer l 

σ Denotes the activation function 

ℎ𝑖
(𝑙𝑦)

 Node features of node i at layer l 

𝛼𝑖𝑗
(𝑙𝑦) Attention coefficients  

𝑁(𝑖) Neighbours of node i 

𝑊(𝑙𝑦) Layer l weight matrix 

𝐻𝐹 Hierarchical Feature 

⊕ Concatenation 

g Predictive model  

HF Hierarchical Features 

Si, Sj Segment 

N(i) Neighbours of node i 

𝛿1 and 𝛿2 Exponential decay rates 

𝑔𝑑𝑡 Gradient at time step t 

∅ Learning rate 

 

𝑁𝐹(𝑙𝑦+1) = 𝜎 (�̃�−1
2⁄ �̃��̃�−1

2⁄ 𝑁𝐹(𝑙𝑦)𝑊𝑡(𝑙𝑦)) (1) 

 

By iteratively applying graph convolutions, 

GCNs capture the hierarchical relationships between 

gait parameters, allowing for the extraction of 

features that encode both local and global 

dependencies within the gait sequences. 

Graph Attention Networks (GATs) 

By adding attention mechanisms, GATs improve 

upon GCNs by allowing the model to continuously 

balance the significance of nearby nodes while 

passing messages. GATs can enhance the 

discriminating abilities of a framework in the 

framework of gait analysis by selecting and focusing 

on pertinent gait metrics while collecting data from 

nearby nodes. Mathematically, the propagation rule 

in GATs can be expressed as: 

 

ℎ𝑖
(𝑙𝑦+1)

= 𝜎 (∑ 𝛼𝑖𝑗
(𝑙𝑦)

𝑗∈𝑁(𝑖)
𝑊(𝑙𝑦) ℎ𝑗

(𝑙𝑦)
) (2) 

 

GATs enable the model to adaptively attend to 

different parts of the graph, allowing for more fine-

grained feature extraction in dynamic gait signature 

analysis. 

Support for Dynamic Gait Signature Analysis 

These deep graph learning techniques provide a 

robust framework for analyzing dynamic gait 

signatures by capturing the intricate dependencies 

present within gait sequences. By treating gait data as 

dynamic graphs and leveraging graph neural 

architectures such as GCNs and GATs, researchers 

can extract hierarchical features that encapsulate both 

local and global relationships between gait 

parameters [24]. These features serve as 

discriminative representations of gait dynamics, 

enabling more accurate characterization and 

classification of gait patterns, identification of 

abnormalities, and prediction of clinical outcomes. 

Additionally, the adaptability of these techniques to 

handle varying graph structures makes them well-

suited for analyzing diverse gait datasets collected 

from different sensor modalities and experimental 

setups [25]. Overall, the application of deep graph 

learning techniques in dynamic gait signature 

analysis holds immense potential for advancing our 

understanding of human locomotion and improving 

clinical assessments and interventions. 

Hierarchical Feature Learning in Gait Dynamics 

Deep graph learning techniques offer a unique 

advantage in gait analysis through their capability to 

learn hierarchical features, capturing both local and 

global dependencies within the data. In the context of 

gait dynamics, this translates to the extraction of 
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features that extend beyond individual joint 

movements or pressure distributions, encompassing 

the coordinated interactions between different 

segments of the body during walking. This section 

explores the significance of hierarchical feature 

learning in gait analysis and its implications for 

understanding gait mechanics and predicting clinical 

outcomes. Hierarchical feature learning enables deep 

graph learning techniques to extract rich 

representations of gait dynamics by capturing multi-

level dependencies within the data. At the local level, 

these features encode fine-grained information about 

individual joint movements, pressure distributions, 

and other gait parameters [26]. Meanwhile, at the 

global level, they encapsulate the holistic interactions 

between different segments of the body, reflecting the 

coordinated movements and biomechanical 

dynamics during walking. Mathematically, 

hierarchical features can be represented as: 

 

𝐻𝐹 = 𝐿𝑜𝑐𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ⊕  𝐺𝑙𝑜𝑏𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (3) 

 

One of the key insights gained from hierarchical 

feature learning is the ability to uncover the 

coordinated interactions between different segments 

of the body during gait. By analyzing hierarchical 

features, researchers can discern how movements in 

one segment influence and are influenced by 

movements in other segments, shedding light on the 

complex interplay of biomechanical forces and 

kinematic patterns that underlie human locomotion. 

The coordinated interactions between segments can 

be mathematically modeled using: 

 

𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑓(𝑆𝑖, 𝑆𝑗) (4) 

 

Where f represents a function that captures the 

relationship between segments i and j. 

Enhanced Predictive Modeling 

Hierarchical features learned through deep graph 

learning techniques serve as powerful inputs for 

predictive modeling in gait analysis. By 

incorporating both local and global dependencies, 

these features enable more accurate predictions of 

clinical outcomes such as gait abnormalities, injury 

risk, and treatment efficacy. For example, 

hierarchical features can capture subtle variations in 

gait mechanics that may be indicative of 

musculoskeletal disorders or neurological conditions, 

facilitating early detection and intervention. 

Predictive modeling using hierarchical features can 

be represented as: 

 

𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑔(𝐻𝐹) (5) 

 

The ability to extract hierarchical features from 

gait data has significant clinical implications. 

Clinicians can leverage these features to gain a deeper 

understanding of patients' gait mechanics, assess 

functional limitations, and tailor personalized 

treatment plans. Moreover, hierarchical features can 

serve as biomarkers for monitoring disease 

progression, evaluating treatment effectiveness, and 

predicting long-term outcomes in patients with gait-

related disorders. 

3.5 Model training in deep graph learning for gait 

analysis 

Model training is a critical step in leveraging deep 

graph learning techniques for gait analysis. This 

process involves training the deep graph learning 

model using the extracted features from dynamic 

graph representations derived from gait data. 

Additionally, labeled data is utilized to train the 

model for specific tasks such as neurological disease 

prediction, gait classification, or cognitive 

impairment detection. To ensure effective training, 

appropriate loss functions and optimization 

algorithms are employed. Let's delve into each aspect 

in detail. Before model training can commence, 

features need to be extracted from the dynamic graph 

representations of gait data. These features 

encapsulate the essential characteristics of gait 

dynamics, including joint movements, pressure 

distributions, and inter-segment coordination. Deep 

graph learning techniques such as GCNs or GATs are 

employed to extract hierarchical features that capture 

both local and global dependencies within the gait 

sequences [27]. To train the deep graph learning 

model, labeled data is essential. This data contains 

gait samples annotated with relevant labels, such as 

the presence or absence of neurological diseases, 

specific gait patterns, or cognitive impairments. By 

leveraging labeled data, the model learns to associate 

certain features extracted from gait data with specific 

outcomes or classes of interest. This supervised 

learning approach enables the model to generalize its 

predictions to unseen gait samples accurately [28]. 

Suitable loss functions are used during model training 

to measure the difference between the model's 

anticipated outputs as well as the ground truth labels. 

Depending on the task's requirements, bilateral or 

categorized cross-entropy loss as well as cross-

entropy loss are often employed as loss functions for 

tasks involving classification. MSE or MAE loss 

functions can be used for regression tasks. 

Cross-Entropy Loss (for classification tasks):  
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𝐶𝐸 = −
1

𝑁
∑ ∑ 𝑦𝑖𝑐

𝐶

𝑐=1

𝑁

𝑖=1

log(𝑝𝑖𝑐) (6) 

 

Mean Squared Error (for regression tasks): 

 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦

𝑖
− 𝑦

�̂�
)

2
𝑁

𝑖=1

(7) 

 

Adam Optimization Algorithm: 

 

𝑚𝑡𝑡 = 𝛿1𝑚𝑡𝑡 − 1 + (1 − 𝛿1)𝑔𝑑𝑡  (8) 

 

𝑣𝑡 = 𝛿𝑣𝑡 − 1 + (1 − 𝛿2)𝑔𝑑𝑡
2 (9) 

 

𝑚�̂�𝑡 =
𝑚𝑡𝑡  

1 − 𝛿1
𝑡

(10) 

 

�̂�𝑡 =
𝑣𝑡  

1 − 𝛽2
𝑡

(11) 

 

𝜃𝑡+1 = 𝜃𝑡 −
∅

√�̂�𝑡 + 휀
𝑚�̂�𝑡 (12) 

 

A little constant, , keeps division by zero from 

happening. These formulas provide a mathematical 

foundation for understanding the key components of 

model training in deep graph learning for gait 

analysis. By incorporating these mathematical 

expressions into the training process, researchers can 

effectively train models to accurately predict clinical 

outcomes and classify gait patterns based on dynamic 

graph representations of gait data. The Adam 

optimizer is a good option when it comes to 

optimization techniques. By keeping distinct learning 

rates for every parameter as well as modifying the 

learning rates in response to the first as well as 

intermediate moments of the gradients, all of Adam 

combines the benefits of the AdaGrad as well as 

RMSProp algorithms. This adaptive learning rate 

enhancement approach aids in quickly negotiating 

the parameterized area of the model as well as 

arriving at the best possible outcome. 

4. Result and discussions 

The application of deep graph learning 

techniques for gait analysis has yielded promising 

results, offering insights into the intricate dynamics 

of human locomotion and its clinical implications. In 

this section, we present the key findings from our 

study and discuss their implications for 

understanding gait mechanics, predicting clinical 

outcomes, and advancing patient care. In our study, 

we meticulously tuned several parameters to 

optimize the performance of our deep graph learning 

model for gait analysis. The learning rate (α) was set 

to 0.001 to facilitate stable convergence during 

training, while the batch size was selected as 32 to 

balance computational efficiency with model 

generalization. We employed a graph convolutional 

network (GCN) architecture with three graph 

convolutional layers, each followed by a ReLU 

activation function to introduce non-linearity. The 

number of hidden units in each GCN layer was set to 

64 to capture complex patterns in the gait data, while 

dropout regularization with a rate of 0.5 was applied 

to prevent overfitting. Additionally, we utilized the 

Adam optimization algorithm with default 

parameters (δ1=0.90 and δ2=0.99) to adaptively 

adjust the learning rates for each parameter during 

training. Through meticulous parameter selection and 

fine-tuning, we achieved optimal model performance, 

resulting in high accuracy rates and F1 scores across 

various gait analysis tasks. 

The comparison among different techniques in 

our study was conducted under standardized 

conditions to ensure fairness and validity. Our data 

collection methodology involved the integration of 

advanced wearable sensors, motion capture systems, 

force plates, pressure sensors, and video recording 

technologies. Wearable sensors provided real-time 

measurements of body movements and joint angles, 

while motion capture systems tracked three-

dimensional movements. Additionally, force plates 

and pressure sensors assessed foot-ground 

interactions and plantar pressure distribution, 

respectively. Video recording complemented the 

quantitative data with visual context for qualitative 

analysis. The synchronized data from these sources 

formed rich datasets for Dynamic Gait Signature 

Analysis (DGSA), enabling a comprehensive 

evaluation of gait analysis techniques under 

consistent conditions. 

4.1 Model performance 

Our deep graph learning model exhibited 

remarkable performance across a spectrum of critical 

gait analysis tasks, underscoring its versatility and 

efficacy in clinical applications. Through meticulous 

training and validation processes, our model 

showcased robustness and reliability in predicting 

neurological diseases, classifying diverse gait 

patterns, and detecting cognitive impairments.  

Notably, when subjected to rigorous evaluation 

on independent test datasets, the model consistently 
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Figure. 7 Comparative Analysis of Gait Classification Across Multiple Models 

 

 

yielded high accuracy rates and F1 scores, affirming 

its prowess in effectively characterizing intricate gait 

dynamics and identifying subtle abnormalities with 

precision. This exceptional performance underscores 

the potential of deep graph learning techniques as a 

transformative tool in advancing our understanding 

of human locomotion and enhancing diagnostic and 

prognostic capabilities in clinical settings. By 

accurately discerning nuanced gait patterns and 

aberrations, our model offers invaluable insights for 

clinicians, researchers, and healthcare practitioners, 

empowering them with enhanced tools for early 

detection, personalized treatment strategies, and 

informed decision-making processes in gait-related 

disorders. Accuracy is a crucial measure as it tells us 

how well a model can correctly classify instances. 

With a high accuracy, we can trust the model's ability 

to identify different gait patterns or detect 

abnormalities accurately. Our proposed approach 

achieves an impressive accuracy score of 96.8%, 

which is higher than what we've seen in other 

approaches like the Ensemble Approach, Wireless 

Gait Sensor and Support Vector Machine (WGS & 

SVM), Supervised Methods, and GaitRec-Net. This 

means our approach performs better than these 

existing methods. 

F1 score is a balanced statistic that takes recall 

and precision into account. It works especially well 

with datasets that have an uneven distribution of 

positive and negative examples. Our proposed 

approach achieves the highest F1 score of 94.6%, 

showing a great balance between precision and recall 

compared to the other approaches as shown in Fig. 7. 

Sensitivity, or recall, tells us how well the model can 

correctly detect positive instances among all actual 

positive instances. Our proposed approach shows the 

highest sensitivity score of 95.4%, indicating its 

effectiveness in identifying individuals with gait 

abnormalities compared to the Ensemble Approach, 

WGS & SVM, Supervised Methods, and GaitRec-

Net. Specificity, on the other hand, measures how 

well the model can correctly identify negative 

instances. Our proposed approach achieves the 

highest specificity score of 97.3%, meaning it can 

accurately identify individuals without gait 

abnormalities. The accuracy of the framework is the 

ratio of accurate positive predictions to all positive 

predictions. With high precision, the framework 

reliably and confidently recognizes positive cases 

(such as gait abnormalities) and produces fewer false 

positive predictions. The proposed approach achieves 

the highest precision at 97.9%, indicating its ability 

to make accurate positive predictions as shown in Fig. 

7. Recall (%) is referred to as sensitivities or actually 

positive rate, recall expresses the percentage of real 

positive occurrences among all actual positive 

instances that the model properly recognized as 

genuine positive cases. A high recall indicates that 

the model captures a large proportion of positive 

instances, minimizing false negative predictions. The 

proposed approach achieves a recall of 94.5%, 

indicating its effectiveness in correctly identifying 

individuals with gait abnormalities.   

4.2. Comparative analysis of gait analysis 

approaches based on key performance metrics 

The table presents a comparative analysis of gait 

analysis approaches based on key performance 

metrics. Each row corresponds to a different 

approach, and the columns represent specific metrics 

used to evaluate gait characteristics. Gait Velocity 

(m/s) measures the speed at which individuals walk. 

Higher values indicate faster walking speeds, 

reflecting better mobility and functional performance.  
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Figure. 8 Comparative Analysis of Gait Analysis Approaches Based on Key Performance Metrics 

 

 

The proposed approach demonstrates the highest gait 

velocity at 1.6 m/s, indicating improved mobility 

compared to the Ensemble Approach, WGS & SVM, 

Supervised Methods, and GaitRec-Net as shown in 

Fig. 8. Dynamic stability margin quantifies the 

margin of stability during walking, representing the 

distance between the center of mass and the base of 

support. A larger margin indicates greater stability 

and balance control. The proposed approach achieves 

a dynamic stability margin of 5.6 cm, suggesting 

enhanced stability. Gait variability reflects the 

consistency and regularity of gait patterns. Lower 

variability values indicate more stable and 

coordinated gait. The proposed approach exhibits 

lower gait variability at 2.4%, indicating smoother 

and more consistent walking. 

Joint range of motion measures the angular 

displacement of joints during the gait cycle, reflecting 

flexibility and mobility. A wider range of motion 

indicates greater joint flexibility. The proposed 

approach demonstrates a joint range of motion of 56 

degrees, indicating improved joint mobility. The 

dynamic balance index evaluates balance during 

walking by comparing the time spent in single-leg 

support versus double-leg support phases. Lower 

values indicate better balance control. The proposed 

approach achieves a dynamic balance index of 0.4, 

suggesting superior balance compared to the 

Ensemble Approach, WGS & SVM, Supervised 

Methods, and GaitRec-Net. 

Minimum toe clearance measures the vertical 

distance between the toe as well as the ground during 

the swing phase, reflecting the risk of tripping or 

stumbling. The proposed approach achieves a 

minimum toe clearance of 2.3 cm, indicating reduced 

risk as shown in Fig. 5. Foot progression angle 

quantifies the angle between the direction of foot 

progression and the line of forward progression 

during walking. The proposed approach 

demonstrates a foot progression angle of 8.6 degrees, 

indicating improved biomechanical alignment. 

Dynamic joint stiffness assesses the resistance of 

joints to motion during walking. Lower stiffness 

values indicate better joint flexibility and reduced 

resistance. The proposed approach exhibits dynamic 

joint stiffness of 172, suggesting improved joint 

flexibility compared to the Ensemble Approach, 

WGS & SVM, Supervised Methods, and GaitRec-

Net. 

5. Conclusion 

Our study introduces Dynamic Gait Signature 

Analysis (DGSA), a novel approach to gait analysis 

that harnesses deep graph learning techniques. 

Through our experiments, DGSA has shown 

impressive performance across various gait analysis 

tasks, outperforming traditional methods by a 

significant margin. For instance, our approach 

achieves notable accuracy metrics such as gait 

velocity (1.6 m/s), dynamic stability margin (5.6 cm), 

gait variability (2.4%), joint range of motion (56 

degrees), dynamic balance index (0.4), minimum toe 

clearance (2.3 cm), foot progression angle (8.6 

degrees), and dynamic joint stiffness (172). These 

concrete figures highlight the effectiveness of DGSA 

in accurately characterizing gait dynamics and 

detecting abnormalities. Moreover, our comparative 

analysis demonstrates DGSA's superiority in 

accuracy and performance metrics compared to 

existing approaches, further emphasizing its 

scientific contribution to the field. Looking ahead, 

future research will focus on enhancing DGSA's 

capabilities for real-world applications, including 

refining deep graph learning techniques and 

developing user-friendly interfaces for clinical 

deployment. By addressing these points, we aim to 
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provide a clearer understanding of DGSA's 

significance and potential impact in gait analysis and 

healthcare. 

Conflicts of Interest  

The authors declare no conflict of interest. 

Author Contributions 

Conceptualization, P. Vimal kumar and M. 

Thiyagarajan; methodology, S. Edwin Raja; software, 

S. Edwin Raja; validation, P. Vimal kumar, P. Gopi 

Kannan, and G. Prabaharan; formal analysis, P. Gopi 

Kannan; investigation, P. Vimal kumar; resources, M. 

Thiyagarajan; data curation, S. Edwin Raja; 

writing—original draft preparation, S. Edwin Raja; 

writing—review and editing, P. Vimal kumar; 

visualization, P. Gopi Kannan; supervision, M. 

Thiyagarajan; project administration, G. Prabaharan. 

References 

[1] M. R. Keyvanpour, S. Vahidian, and M. 

Ramezani, “HMR-vid: A comparative analytical 

survey on human motion recognition in video 

data”, Multimedia Tools and Applications, Vol. 

79, No. 43–44, pp. 31819–31863, 2020. 

[2] I. Mazzetta, A. Zampogna, A. Suppa, A. 

Gumiero, M. Pessione, and F. Irrera, “Wearable 

Sensors System for an Improved Analysis of 

Freezing of Gait in Parkinson’s Disease Using 

Electromyography and Inertial Signals”, 

Sensors, Vol. 19, Art. No. 948, 2019. 

[3] L.C Benson,and R. Ferber, “The use of wearable 

devices for walking and running gait analysis 

outside of the lab: A systematic review”, Gait 

Posture, Art. No. 63, pp. 124–138, 2018. 

[4] N.C. Bejarano, E. Ambrosini, A. Pedrocchi, G. 

Ferrigno, and S. Ferrante, “A Novel Adaptive, 

Real-Time Algorithm to Detect Gait Events 

from Wearable Sensors”, IEEE Transactions on 

Neural Systems and Rehabilitation Engineering, 

Vol. 23, pp. 413–422, 2015. 

[5] K. Aminian, B. Najafi, C. Bula, P.F Leyvraz, 

and P. Robert, “Spatio-temporal parameters of 

gait measured by an ambulatory system using 

miniature gyroscopes”, Journal of 

Biomechanics, Vol. 35, pp. 689–699, 2002. 

[6] R. Takeda, S. Tadano, A. Natorigawa, M. Todoh, 

and S. Yoshinari, “Gait posture estimation using 

wearable acceleration and gyro sensors”, 

Journal of Biomechanics, Vol. 42, pp. 2486–

2494, 2009.  

[7] C. Werner, P. Heldmann, S. Hummel, and K. 

Hauer, “Concurrent Validity, Test-Retest 

Reliability, and Sensitivity to Change of a 

Single Body-Fixed Sensor for Gait Analysis 

During Rollator-Assisted Walking in Acute 

Geriatric Patients”, Sensors, Vol. 20, Art. No. 

4866, 2020. 

[8] D. Dhinakaran, P. Raghavan, and G. Elumalai, 

“AI-enhanced comprehensive liver tumor 

prediction using convolutional autoencoder and 

genomic signatures”, International Journal of 

Advanced Computer Science and Applications, 

Vol. 15, No.2, pp. 253-267, 2024. 

[9] J. Slemensek, I. Fister, J. Gersak, B. Bratina, 

V.M. van Midden, and R. Safaric, “Human Gait 

Activity Recognition Machine Learning 

Methods”, Sensors, Vol. 23, Art. No. 745, 2023. 

[10] C.B. Erdas, E. Sümer, and S. Kibaroğlu, “Neuro 

degenerative diseases detection and grading 

using gait dynamics”, Multimedia Tools Appl, 

Vol. 82, pp. 22925–22942, 2023. 

[11] M. S. Sundari and Vijaya Chandra Jadala, 

“Neurological disease prediction using impaired 

gait analysis for foot position in cerebellar ataxia 

by ensemble approach”, Automatika, Vol. 64, 

No. 3, pp. 540-549, 2023. 

[12] T. Nakano, B.T. Nukala, Steven Zupancic, and 

Amanda Rodriguez, “Gaits classification of 

normal vs. patients by wireless gait sensor and 

Support Vector Machine (SVM) classifier”, In: 

Proc. of 2016 IEEE/ACIS 15th International 

Conference on Computer and Information 

Science (ICIS), Okayama, Japan, pp. 1-6, 2016. 

[13] J. Kondragunta and G. Hirtz, “Gait Parameter 

Estimation of Elderly People using 3D Human 

Pose Estimation in Early Detection of 

Dementia”, In: Proc. of 2020 42nd Annual 

International Conference of the IEEE 

Engineering in Medicine & Biology Society 

(EMBC), Montreal, QC, Canada, pp. 5798-

5801, 2020.  

[14] K. Trentzsch, P. Schumann, G. Sliwinski, P. 

Bartscht, R. Haase, D. Schriefer, A. Zink, A. 

Heinke, and H. Malberg, “Using Machine 

Learning Algorithms for Identifying Gait 

Parameters Suitable to Evaluate Subtle Changes 



Received:  March 10, 2024.     Revised: March 28, 2024.                                                                                                 538 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.41 

 

in Gait in People with Multiple Sclerosis”, Brain 

Sciences, Vol. 11, Art. No. 1049, 2021.  

[15] D. Slijepcevic M. Zeppelzauer, A. Gorgas, C. 

Schwab, M. Schuller, A. Baca, C. Breiteneder, 

B. Horsak, “Automatic Classification of 

Functional Gait Disorders”, IEEE Journal of 

Biomedical and Health Informatics, Vol. 22, No. 

5, pp. 1653-1661, Sept. 2018. 

[16] C. Pandey, D. Sinha Roy, R. Chandra Poonia, A. 

Altameem, S. Ranjan Nayak, A. Verma, and A. 

K. J. Saudagar, “GaitRec-Net: A Deep Neural 

Network for Gait Disorder Detection Using 

Ground Reaction Force”, PPAR Research, Vol. 

2022, Article ID 9355015, pp. 10 pages, 2022. 

[17] M. Shayestegan, J. Kohout, L. Verespejova, M. 

Chovanec, and J. Mares, “Comparison of 

Feature Selection and Supervised Methods for 

Classifying Gait Disorders”, IEEE Access, Vol. 

12, pp. 17876-17894, 2024.  

[18] Gossens and M. Lindemann, “Simulating the 

impact of noise on gait features extracted from 

smartphone sensor-data for the remote 

assessment of movement disorders”, In: Proc. of 

2021 43rd Annual International Conference of 

the IEEE Engineering in Medicine & Biology 

Society (EMBC), Mexico, pp. 6905-6910, 2021. 

[19] U. Moorthy and U. D. Gandhi, “A novel optimal 

feature selection technique for medical data 

classification using ANOVA based whale 

optimization”, Journal of Ambient Intelligence 

and Humanized Computing, Vol. 12, No. 3, pp. 

3527–3538, 2021. 

[20] D. M. D. Raj and R. Mohanasundaram, “An 

efficient filter-based feature selection model to 

identify significant features from high-

dimensional microarray data”, Arabian Journal 

for Science and Engineering, Vol. 45, No. 4, pp. 

2619–2630, 2020. 

[21] P. Kavitha, D. Dhinakaran, G. Prabaharan, and 

M. D. Manigandan, “Brain Tumor Detection for 

Efficient Adaptation and Superior Diagnostic 

Precision by Utilizing MBConv-Finetuned-B0 

and Advanced Deep Learning”, International 

Journal of Intelligent Engineering and Systems, 

Vol. 17, No. 2, pp. 632-644, 2023, doi: 

10.22266/ijies2024.0430.51. 

[22] K. Jun, Y. Lee, S. Lee, D.-W. Lee, and M. S. 

Kim, “Pathological gait classification using 

Kinect v2 and gated recurrent neural networks”, 

IEEE Access, Vol. 8, pp. 139881–139891, 2020. 

[23] M. Shayestegan, J. Kohout, K. Trnkova, M. 

Chovanec, and J. Mares, “Motion tracking in 

diagnosis: Gait disorders classification with a 

dualhead attentional transformer-LSTM”, 

International Journal of Computational 

Intelligence Systems, Vol. 16, No. 1, pp. 98, 

2023. 

[24] V. Dentamaro, D. Impedovo, and G. Pirlo, “Gait 

analysis for early neurodegenerative diseases 

classification through the kinematic theory of 

rapid human movements”, IEEE Access, Vol. 8, 

pp. 193966–193980, 2020. 

[25] J. D. Farah, N. Baddour, and E. D. Lemaire, 

“Gait phase detection from thigh kinematics 

using machine learning techniques”, In: Proc. of 

2017 IEEE International Symposium on 

Medical Measurements and Applications 

(MeMeA), pp. 263–268, Rochester, MN, USA, 

2017. 

[26] S. Gul, M. I. Malik, G. M. Khan, and F. Shafait, 

“Multi-view gait recognition system using 

spatio-temporal features and deep learning”, 

Expert Systems with Applications, Vol. 179, Art. 

No. 115057, 2021. 

[27] D. Dhinakaran, L. Srinivasan, D. Selvaraj, S. M. 

Udhaya Sankar, “Leveraging Semi-Supervised 

Graph Learning for Enhanced Diabetic 

Retinopathy Detection”, SSRG International 

Journal of Electronics and Communication 

Engineering, Vol. 10, no. 8, pp. 9-21, 2023. 

[28] X. Wang and J. Zhang, “Gait feature extraction 

and gait classification using two-branch CNN”, 

Multimedia Tools and Applications, Vol. 79, No. 

3-4, pp. 2917–2930, 2020. 


