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Abstract: Software has become an essential and important part of every domain system. Developing quality software 

is critical to maintaining a stable and secure system. Most of the existing software defect prediction tasks focus on the 

various kinds of defects leftover in the software system, but they do not focus on the most common and frequent 

software defects that developers most commonly do and which have a significant effect on the quality of software 

development. These unnoticeable defects have a considerable impact on the functionality and also on development 

time, effort, and cost of the software. This paper propose a frequent software defects prediction (FSDP) mechanism 

based on defects Correlation learning method (CLM) utilizing various defects metrics. The aim of this work is to assist 

developers in accurately identifying software defects and support project managers in ensuring software quality by 

minimizing the presence of defect-prone code during development. The evaluation of FSDP was performed using 

NASA datasets in comparison with the conventional Naive Bayes, Support Vector Machine, and Random Forest 

classifiers and also compare with the state-of-the-arts methods to measure accuracy, precision, recall and F-Score to 

understand the impact of the prediction accuracy. The proposed FSDP achieves 98.88% accuracy and 98.86% precision 

in compare to state-of-the-arts classifiers methods indicates the effectiveness of the proposed approach in defect 

prediction. 
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1. Introduction 

The challenges of software development are 

considerable, and addressing defects early in the 

development cycle is crucial to mitigate potential 

consequences. The cost of fixing defects increases 

exponentially as the development process progresses. 

Early detection and correction are cost-effective 

compared to addressing issues later in the 

development or even post-deployment stages. 

Identifying defects in the early stages helps in 

preventing downstream issues that might require 

extensive rework and resources. So, addressing 

issues at the inception of development prevents the 

accumulation of defects, resulting in a more robust 

and reliable system [1]. 

Defect prediction methods based on regression 

techniques [2] aim to identify and quantify the 

relationship between various software metrics and 

the likelihood of defects. The primary goal is to build 

a predictive model that can estimate the number or 

density of defects in software based on the values of 

independent variables or attributes. It is useful for 

providing quantitative estimates of defect proneness 

[3]. Classification mechanisms [4-6] are commonly 

employed in these methods to categorize instances as 

either defective or non-defective based on various 

attributes. 

The past studies methods [7, 8, 10] typically rely 

on historical data, including information about 

previously identified defects and corresponding 

software metrics, to train and validate the models. 

The goal is to build models capable of generalizing 

well to new, unseen data and effectively identify  
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Table 1. Notation and Description 

Abbreviation Description 

CLM Correlation Learning Method 

CO-FSD Correlation-FSD 

DPM Detection Profile Method 

DT Decision Trees 

FSD Frequent Software Defect 

FSDP FSD Prediction 

LOC Lines of Code 

LR Logistic Regression 

LDA Linear Discriminant Analysis 

ML Machine Learning 

MLP Multilayer Perceptron 

NB Naive Bayes 

OO Object Orientation 

RF Random Forest  

SD Software Defect 

SDP Software Defect Prediction 

SDLC Software development life cycle 

SHL-MLP Single hidden layer-MLP 

SVM Support Vector Machine 

 

 

potential software defects during development or 

maintenance phases. It helps identify which software 

components are more likely to contain defects, 

allowing for targeted quality assurance efforts.  

The effectiveness of the model depends on the 

quality and relevance of the selected attributes and 

the underlying assumption that the relationship 

between metrics and defects is captured accurately by 

the chosen regression method [11-13]. But, defect 

prediction in software development is a challenging 

task, and despite advancements in classifiers, there 

are still several issues and research areas that remain 

under exploration. In this work we focus on the 

problem of frequent software defects occurrences due 

to interdependency in the analysis and coding the 

various system blocks which are based on conditional 

statements, loops, or case statements, which may 

affect the performance of software applications. 

Identifying and rectifying these common issues can 

significantly improve the overall quality of software. 

But, the presence of unnoticeable FSDs can indeed 

have a significant impact on the functionality, 

development time, effort and cost implications and 

also the quality assurance challenges.  

Early detection and resolution of defects can help 

minimize their impact on both the functionality and 

the overall development process [14]. Hence, in this 

paper we propose a mechanism for Frequent 

Software Defect Prediction (FSDP) in software 

development using a Correlation Learning Method 

(CLM) with a focus on defects metrics. The primary 

goal of the designed learning method is to improve 

the prediction performance of classifiers by 

recognizing and exploiting the close correlation 

among Attribute-Set Dependencies (FSD). FSDs are 

identified as the most interpretative defects, often 

occurring if prior defects exist in the software. A most 

common example FSD is observed software defect is, 

when a variable being declared but not initialized for 

a conditional check or a variable being initialized for 

a loop without proper increment for termination 

which effects the software quality development and 

can lead to performance instability. Here we 

contribute the following to achieve the benefit the 

attribute software development:  

• Correlation Learning Method (CLM) to predict 

defects in software development, specifically 

targeting defects metrics dependencies, and 

highlights the potential benefits for project teams. 

• The CLM is applied to NASA datasets to address 

the defect prediction problem by finding 

associations between defects using defect 

correlation. This approach aims to improve the 

overall quality of software development by 

identifying and addressing potential defects early 

in the development process. 

• The outcome is expected to help software project 

teams in reducing costs and efforts by enhancing 

defect prediction accuracy. This, in turn, 

contributes to better software quality and stability. 

A process for FSDP is performed using the 

WEKA tool and NASA datasets. The FSDP 

mechanism is trained and then empirically evaluated 

its performance on each dataset and measures the 

accuracy, precision, recall and F-score. The notation 

utilized in this paper is described in Table 1. 

The following paper is organized in four sections.  

Section 2, discuss the related works related software 

defects metrics and predictions. Section 3, present the 

proposed FSDP methodology and function process. 

Section 4, discusses the evaluation measures and its 

results comparisons. Finally, Section 5, summarize 

the paper conclusion. 

2. Related works 

Software Defect Prediction (SDP) is crucial for 

enhancing the efficiency of the software development 

process, saving time, and minimizing the resources 

required for defect correction. By identifying 

potential defects early in the development process, 

SDP aims to reduce the time and resources spent on 

fixing issues later in the software development life 

cycle [15-17]. It aligns with the broader goal of 

improving the quality of software products and 

reducing the burden on both users and the companies 

dependent on the software. 
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Most of the SPD works activities that involve 

using statistical methods, Capture-Recapture (CR) 

models, and Detection Profile Method (DPM) for 

coding methods, auditing data, and ensuring the 

quality process in software development through the 

estimation of the number of defects remaining in the 

software system [18-20]. The estimated number of 

defects can be used as a key metric for managing 

software processes and evaluating the quality of the 

software system before its delivery. 

The importance of early detection of defective 

software components in the software development 

life cycle (SDLC) implies that metrics and indicators 

can applied to assess and enhance the quality of the 

software being developed. 

2.1 Software defects metrics 

Software parameters and metrics are essential to 

measure and assess various aspects of software 

development to ensure its quality and effectiveness 

[11]. Metrics are indicators that describe specific 

attributes of the software Process Efficiency, Effort 

Assessment, Defect Reduction and Project 

Performance Evaluation [21, 22]. 

Lines of Code (LOC) are one of the traditional 

and widely used metrics in software engineering to 

measure various aspects of a software project [13]. 

However, it’s important to note that while LOC can 

provide some insights, it has its limitations and 

should be used cautiously as a sole indicator for 

evaluating software quality or predicting defects. 

With increasing LOC the probability of defects might 

also increase and it can oversimplify the relationship 

between code length and defects. While LOC can be 

a useful metric in certain contexts, it’s important to 

consider other metrics and qualitative aspects when 

assessing software quality and predicting defects. 

The most widely used indicator in SDP software 

is the “cyclic complexity indicator” proposed by 

“McCabe” [23] and utilized to characterize the 

complication of software products. McCabe’s 

metrics are calculated by considering the number of 

nodes, arcs, and related components following the 

code management scheme. Several studies in the SDP 

utilizes McCabe’s metrics [5, 7, 11, 13] have shown 

an apparent correlation between LOC indicators 

which suggests that there is an apparent relationship 

between the complexity of the code (as measured by 

McCabe’s metrics) and the identification of deficits 

in the software, and deficit identification for 

predicting the shortcomings, flaws, or issues in the 

software. 

Halstead [24] also provides a collection of 

software indicators to quantify various aspects of 

source code measures. The metrics are based on 

counting the number of operands and operators in a 

program. It metrics are associated with program level 

vocabulary, program length, volume, difficulty, 

effort and time with the development cycle and can 

be used to assess code complexity and estimate 

development effort and  time required in conjunction 

with other software metrics for a more 

comprehensive analysis [25]. 

Šikic et al. [11] presents a set of features designed 

to capture the evolution of software modules over 

time. These features take into account all changes 

made in the module’s source code and are calculated 

by aggregating change metrics extracted from each 

modification. The chronological order of the changes 

is considered in this process, providing a more 

detailed and nuanced view of the module’s 

development compared to existing metrics. This 

approach recognizes that the history of changes made 

to a software module can be valuable in 

understanding its development process. By 

aggregating change metrics over time, the proposed 

features aim to offer insights into the evolution of the 

module. These features have proven to be relevant for 

defect-proneness, indicating that they may be useful 

for identifying potential issues or vulnerabilities in 

the software. Even these metrics have been effective 

in improving model performance, particularly on data 

that is affected by class imbalance. It can be 

problematic because it may lead models to prioritize 

the majority class, resulting in suboptimal 

performance for the minority class, which in this case 

might represent defect instances. 

Rhmann et al. [13] describes the software change 

metrics (SCM) for defect prediction in software and 

the use of machine learning and hybrid algorithms, 

specifically MLT (Machine Learning Techniques) 

and HBSA (Hybrid Binary Swarm Algorithm), has 

been explored for predicting faulty classes. A GFS-

loogitboost hybrid algorithm is proposed for the best 

performance in terms of precision and recall indicates 

a successful for the application context. Even though, 

different techniques used for defect prediction are 

statistically similar in terms of their performance 

suggests a certain level of consistency among the 

methods but it also need to suggest the importance of 

generalizing results by suggesting the need for 

experiments on different types of large datasets. 

Huda et al. [21] proposed a framework for finding 

significant metrics using a hybrid wrapper and filter 

approach appears to be innovative and promising. By 

integrating the training of metric selection and fault 

prediction into a single process, it aims to reduce 

complexity, making the approach more efficient. The 

use of a hybrid heuristic, combining intrinsic 
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characteristics from both filters and wrappers, is an 

interesting strategy. It allows for a more 

computationally efficient metric selection process. 

The incorporation of ANNIGMA and SVM wrappers, 

along with maximum relevance filters, in two 

different hybrid models, adds diversity to the 

approach. The ability to identify a more compact set 

of significant metrics while achieving higher 

performance in fault prediction is a notable 

achievement. This study is limited to procedural 

metrics which need to extend to object-oriented (OO) 

metrics for the broader applicability in SDP. 

Automated software defect prediction is a crucial 

aspect of software development, and the complexity 

of modern software systems poses challenges in 

building effective prediction models. The issue of 

dealing with a large number of correlated metrics and 

selecting a subset that improves model performance 

is indeed a significant challenge. By addressing the 

challenge of feature selection in software defect 

prediction models, researchers and practitioners can 

enhance the efficiency and accuracy of predicting 

defects in complex software systems. 

2.2 Software defect predictions 

Addressing software defects (SD) is crucial 

because they can lead to malfunctions, security 

vulnerabilities, or other issues that negatively impact 

user experience. The creations of SDs are due to the 

coding mistakes, incorrect conditions, or flawed 

design. The impact of these defects is substantial, 

affecting the reliability and quality of the software 

[1]. Reliable software is expected to perform 

consistently and correctly under various conditions. 

A testing team can analyze software test results to 

detect bugs, but testing the entire software module 

can be costly and time-consuming. Therefore, it is 

necessary to identify faulty modules at an early stage 

so that software testers can detect modules that 

require intensive testing [16].  

The importance of Software Defect Prediction 

(SDP) is to identify and addressing defects in 

software before its release. It aims to save time and 

resources by anticipating and addressing defects 

early in the development process. The utilization of 

Machine Learning (ML) algorithms in SDP is 

highlighted as a means to predict and identify 

potentially defective modules within the software. 

The effectiveness of SDP relies on the choice and 

implementation of ML algorithms. These ML 

classification algorithms play a crucial role in 

predicting and identifying defective modules. 

• Naive Bayes (NB): It is a popular classification 

algorithm that is commonly used in SDP. It is 

particularly well-suited for this task because it is 

simple, efficient, and performs well even with 

relatively small datasets [6]. It’s important to note 

that while NB is effective for many classification 

tasks, it may not capture complex dependencies 

between features. In SDP, where the relationships 

between different metrics may be intricate, other 

ML algorithms might also be considered based on 

the characteristics of the dataset. 

• Support Vector Machine (SVM): In the context of 

SDP the SVM can be applied to classify whether 

a software module or component is likely to be 

defective based on various features or metrics. It 

works well with a set of relevant features which 

include code complexity, code churn, developer 

experience, and various code metrics [17]. The 

selection of these features is crucial, and domain 

knowledge is often used to identify relevant 

metrics that may correlate with defect proneness 

and need to choose appropriate features with fine-

tune   for optimal performance. 

• Random Forest (RF): It is a popular ML algorithm 

in SDP which aims to identify potential defects or 

bugs in software early in the development process, 

helping developers and testers focus their efforts 

on high-risk areas [10, 25]. It is less prone to 

overfitting compared to individual decision trees, 

making it more robust on new and unseen data. 

But, the imbalanced datasets of SDs making it 

challenging to interpret the rationale behind SD 

predictions. So, it its success depends on defect 

metrics and the relevance of the chosen features. 

Several researches works utilizing ML has 

proposed for SDP [3, 4, 6, 8, 14], and also 

demonstrated success in terms of accuracy, reliability, 

and performance improvements, there appears to be 

a lack of clear evidence for predicting the FSD in 

software developments. 

Siswantoro et al. [4] propose a comprehensive 

evaluation study for SDP using various traditional 

ML models on NASA metrics datasets such as k-NN, 

DT, LR, LDA, SHL-MLP and SVM. 

Hyperparameter tuning was performed using random 

search for each model, improving their performance. 

Feature dimensionality reduction was carried out 

using PCA for reducing the number of features while 

retaining the most critical information. The analysis 

revealed that all classifiers were impacted by data 

imbalance and overfitting initially, but with 

hyperparameter tuning shows an effective in 

mitigating these issues. k-NN emerged as the top-

performing classifier among the methods evaluated. 

Khalid et al. [14] focuses on utilizing machine 

learning (ML) techniques, specifically feature 

selection and K-means clustering, for software defect 
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prediction. The study involves examining various 

ML techniques and optimizing them on a freely 

available dataset to enhance accuracy compared to 

previous research. Additionally, the research 

employs the Particle Swarm Optimization (PSO) 

method and an ensemble approach to analyze results 

and improve accuracy performance on the CM1 

dataset. The results indicate enhanced performance 

across all ML and optimized ML models, but there 

are still cases with error rates. The need for improving 

data correlation learning among features is 

highlighted as a potential avenue for further 

improvement. The improving data correlation 

learning suggests that future work could focus on 

refining the understanding and utilization of data 

features to further enhance accuracy. 

Choudhary et al. [19] deployed machine learning 

methods for software change matrices-based 

software failure prediction. They compare their 

designed methods to existing classifier methods 

based on the labelling matrix for prediction defects. 

They use RF, J48 and k-NN for fault prediction. In 

this work, an SDP model is designed based on 

previous software change matrices by using an 

algorithm based on hybrid search ML methods. 

Malhotra [26] uses SDP-based ML algorithms for 

designing an OO software metric. It did some testing 

on the Android app that they got from the online 

repository. The methodology was evaluated by 

comparing with MLP, LR and SVM. The analysis 

results show that MLP and LR show better 

enhancement in comparison, whereas SVM performs 

the lowest.  

Jiang et al. [27] highlighted the advantages and 

disadvantages of the prediction evaluation 

technology and state the cost of the project should 

determine the best type of designed model. They used 

13 datasets from the NASA MDP and six different 

classification algorithms to determine the optimal 

algorithm performance in RF, NB, LR, Bagging, J48, 

and IBK. This study strongly suggests using cost-

effective curves to provide an accurate assessment of 

the types of programs, and randomization in the RF 

is the best. 

To the best of our knowledge, the current 

literature has limited research and methods to 

determine key indicators for all automated 

monitoring and control, achieving high-quality 

products in all releases. The choice of high-quality 

metrics is essential to developing highly accurate 

SDP mechanisms.  So, to address this gap in the 

literature, in consideration we contribute to fill by 

providing a more comprehensive understanding of 

the prevalence of SDs in the context of ML-based 

SDP in the next section. 

3. Proposed FSDP methodology 

The core objective of the FSDP classifier is to 

find the defect that most frequently occurs during 

development utilizing past historical data sets. To 

understand the FSD we utilized NASA datasets. For 

each data set, we initially perform the training 

process through the Correlation Learning Method 

(CLM). The CLM identifies the knowledge and 

constructs the rule patterns to classify the defects 

associated. The constructed rule patterns will be 

utilized by the FSD classifiers using rule-based 

association mining. In the following section, we 

discuss the mechanism of CLM and the process of 

FSD classification. 

3.1 Correlation learning method (CLM) 

Most existing defect learning approaches [3, 4, 8, 

9] utilize the defect association through association 

rule mining by employing support-confidence 

methods. However, it was observed that many rules 

that are constructed with low support and confidence 

thresholds result in low deficit rules for defect 

prediction. The CLM supplements the defect 

association rule mining with added interestingness 

measures dependent on “statistical importance” and 

“correlation analysis”. 

An association rule based on the support-

confidence method mostly estimates only the 

conditional probability of defects to a given set of 

defects. It is unable to measure the actual strength of 

the correlation and its implications between them. So, 

to enhance we supplement the correlation rules along 

with the support-confidence method to learn the best 

defect association rules for the classifier prediction. 

The CLM implements Lift correlation measures 

to learn the strong relation of the FSD defects among 

the datasets.  To identify a correlation among the 

defects, let’s assume F1 and F2 are the two defects 

from an FSD set. The relation of F1 with F2 will be 

considered independent if

among the 

probability of occurrence among F1 with F2, it is 

identified as dependent and has an event of 

correlation.  

So, to measure the correlation value among the 

F1 and F2 it computes the Lift using Eq. (1). 
 

                      (1) 

 

If the value of Lift is >1 then the correlation is 

considered as positive for the prediction, else if <1 

then it is considered as negatively correlated, and if 

( 1 2) ( 1) ( 2)prob F F prob F prob F= 

( 1 2)
( 1, 2)

( 1) ( 2)

prob F F
Lift F F

prob F prob F
=


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Lift =1, then both are completely independent of each 

other without any correlation. So, we only considered 

the defects whose Lift value is >1 as it implies the 

occurrence in the defect data sets. The steps for 

processing of CLM are presented in the Algorithm 1.  

The algorithm initially implements 4 functions to 

identify the of defect occurrence. These functions are: 

 

• findBoth_Occurance_Count(Fa, Fb, D) - finds  

the count of feature Fa and Fb occurrence in 

dataset D.  

• findNo_Occurance_Count(Fa, Fb, D) - finds the 

count of feature Fa and Fb are not found in 

dataset D. 

• find_Occurance_Count(Fa, D) - finds the Fa 

count of occurrence in dataset D. 

• find_Occurance_Count(Fb, D) - finds the Fb 

count of occurrence in dataset D. 

 

Later it computes the probability of occurrence of 

Fa and Fb defect utilizing the occurrences values, and 

also the value of Lift (L) using Eq. (1). If the value of 

L is more than 1 then Fa and Fb are correlated in the 

defect prediction, otherwise negatively correlated. 

These identified correlated features are stored in an 

array of CO-FSD[  ] as a correlation learning rules. 

 

Algorithm-1:  CLM Method 

 

D → is the collection of data sets. 

FSD → is a set of frequent defects. 

 

for i=0, each defect in FSD, i++ loop { 

Fa = FSD[i]; 

for j=1, each defect in FSD, j++ loop { 

Fb = FSD[j]; 

 

//--No. of occurrence where both Fa and Fb are  

identified  in the datasets. 

Bval = findBoth_Occurance_Count (Fa, Fb, D); 

 

//-- No. of occurrence where both Fa and Fb  

not identified in the datasets. 

Nval = findNo_Occurance_Count (Fa, Fb, D); 

 

//--No. of occurrence where Fa identified but Fb  

not  identified in the datasets. 

Xval = find_Occurance_Count (Fa, D); 

 

//--No. of occurrence where Fb identified but Fa  

not identified in the datasets. 

Yval = find_Occurance_Count (Fb, D); 

 

//--probability of occurrence of Fa defect 

 

 

//--probability of occurrence of F2 defect 

 

 

//-- According the Eq (1) 

 

 
 

If L > 1 then 

//--Fa and Fb are correlated then defect 

predicted 

CO-FSD[c] = {Fa, Fb}; 

Else 

Fa and Fb are negatively correlated. 

End-If 

} 

} 

So, on completion of the CLM process, we can 

identify the most correlated FSD that can strongly 

impact the software development. Now, utilizing the 

learned CO-FSD rules we classify the real-time 

defects in a software product. 

3.2 FSDP mechanism 

The FSDP is perform through the classification of 

defects for the prediction will be performed using a 

rule-based classification approach by using the 

learned rule patterns generated by CLM. The rule of 

associations identifies a defect by predicting the 

relations among the different defect types, with an 

assumption that if a program has a defect F1 and F2  

then the defect F3 will also occur, which generally 

represents as, “F1 ^ F2 → F3”. For example, in a 

situation where we have a rule “F1 ^ F2 → F3” for a 

defect F1, F2, and F3 obtained from the datasets, the 

correlation of F3 with other defects is not yet 

identified. So, the rule indicates that defect F3 also 

needs to check whether the corresponding defect 

correlated or not to other defects. If the correlation 

occurs is positive, then the new rule will be “F1 ^ F2 

^ F3 → F4”, and it will continue until we find all the 

defects correlated for the defect prediction. 

The mechanism of FSDP is designed using a rule-

based classification approach. It was learned in past 

studies [26, 28, 29] that rules can be the most 

prominent in providing the best knowledge to do 

classification. The FSDP utilizes the learned 

knowledge from CO-FSD learning rules to classify 

the defect. 

( )
( )

( )

val val
a

val val val val

B X
prob F

B X N Y

+
=

+ + +

( )
( )

( )

val val
b

val val val val

B Y
prob F

B X N Y

+
=

+ + +

( )

( ) ( )

a b

a b

prob F F
L

prob F prob F
=


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To predict the possibility of defects in datasets we 

classify them with the learned CO-FSD rules. 

According to the rule-based classification theory if 

the set precondition rules are satisfying the rules of 

consequent then we can relate to a prediction class. 

Let’s assume dataset D consists of a collection of 

x data records, and CO-FSD learning has a set of rules 

as R. Now if each condition of R holds as true for a 

data record of D, then we say the rule is satisfied for 

the defect prediction. The FSDP prediction 

performance will be measured in terms of its 

coverage and accuracy.  

Let’s assume FSDP classifies nrecord using the 

rules of CO-FSD learning, and mcorrect is the number 

of correctly classified by using rules from the dataset 

D. So, by using Eq.(2) and (3) we can compute the 

FSDP prediction coverage and accuracy. 

 

    (2) 

 

   (3) 

 

So, FSDP is being evaluated using the designed CLM 

process over attributes of the NASA datasets as 

presented next section. 

4. Experiment evaluation 

4.1 Datasets 

We utilized the NASA Metrics Data Program 

(MDP) dataset [30] for the evaluation. The NASA 

MDP dataset is a valuable resource that provides 

information about software defects in various NASA 

projects. This includes details such as the number of 

defects found in each project, the size of the code 

base, and the effort required to address the software 

issues. The dataset is commonly employed by 

software engineers to analyze the relationship 

between different software metrics and software 

defects. A set 6 datasets from projects: MW1, PC1, 

PC2, PC3, PC4, and CM1 are considered which have 

different number of features variation, but they all 

have the same classes as “defective Y” and “defective 

N.” The distribution of defective instances and 

defects percentage of these dataset are given in Table 

2. 

The NASA defect datasets are commonly used 

for this purpose, and they are publicly available for 

users to assess and validate various fault prediction 

techniques. By using NASA defect datasets for 

evaluating the FSDP method provides a standardized  

Table 2. Datasets Description 

Datase

t 

No. of 

Attribute

s 

Defectiv

e 

Instance

s 

Total 

Instance

s 

Defect

s (%) 

MW1 37 27 253 10.67 

PC1 37 61 705 8.65 

PC2 36 16 745 2.14 

PC3 37 134 1077 12.44 

PC4 37 177 1287 13.75 

CM1 22 49 498 9.83 

 

 

and accessible framework for assessing the 

performance of fault prediction techniques, 

promoting advancements in the field and contributing 

to the overall improvement of software reliability. 

4.2 Evaluation measures 

In this section, we will consider various 

measurements for SDP using the WEKA tool 

utilizing the datasets of NASA. We run the training 

process initially to build the CO-FSD learning rules 

and then utilizing these rules in the classification to 

evaluate each dataset and measure the accuracy, 

precision, recall and F-score to analyse the 

improvement. 

 

   (4) 

 

 

   (5) 

 

   (6) 

 

  (7) 

 

where, 

 

• TP → Number of defective instances correctly 

classified as nominal defects. 

• TN → Number of clean instances correctly 

classified as clean. 

• FP → indicates the number of clean instances 

that have been misclassified as faults. 

• FN → indicates the number of faulty software 

instances that have been accidentally classified 

as clean. 
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Figure. 1 Comparison of classifiers Accuracy 

 

 
Figure. 2 Comparison of classifiers Precision 

4.3 Result analysis 

The evaluation of analytical enhancement is 

performed using four conventional classifiers: NB, 

RF, SVM and two state-of-the-art comparative 

studies on SDP analysis in [4, 14] in compared to the 

proposed FSDP. The classifier provides us with an 

opportunity to compare the performance of previous 

classification methods and techniques. Since these 

classifiers also use the ability to predict, it makes 

sense to investigate whether different sources were 

identified by each individual and whether these 

changes compare differences between these 

differences. 

A. Accuracy Analysis 

The performance of a proposed FSDP in the 

context of predicting defects in different datasets 

suggests that the FSDP achieved better accuracy in 

prediction compared to various classifiers. The 

calculated accuracy value using Eq. (4) of all the 

classifiers are presented in Table 3. 

Fig. 1 illustrates the performance of different 

 
Figure. 3 Comparison of classifiers Recall 

 

 
Figure. 4 Comparison of classifiers F-Score Scores 

 

 

classifiers, particularly focusing on FSDP, SVM-

SDP, and RF based SDP, in predicting defective 

instances across various datasets (PC1, PC2, PC3, 

MW1, and CM1).  FSDP outperformed other 

classifiers in most cases, achieving the highest 

accuracy. Specifically, FSDP achieved an accuracy 

of 98.88% with PC2, 96.31% with PC1, and 91.9% 

with PC3 datasets. SVM-SDP achieved the highest 

accuracy of 98.91% in the MW1 dataset. The 

comparison between SVM-SDP and RF based SDP 

showed similar accuracies, while NB based SDP 

demonstrated the lowest accuracy. In the case of the 

CM1 dataset, SVM-SDP demonstrated the best result 

with an accuracy of 99.80%. The choice of the best 

classifier might depend on the specific dataset being 

used. In the MW1 dataset, for instance, SVM-SDP 

performed slightly better than FSDP. 

B. Precision and Recall Analysis 

The performance of precision of the proposed 

FSDP in comparison to other classifiers such as NB,  
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Table 3. Accuracy (%) Comparison  

Datasets 
NB-SDP 

[4] 

NB-SDP 

[14] 

SVM-SDP 

[4] 

SVM-SDP 

[14] 

RF-SDP 

[4] 

RF-SDP 

[14] 

Prop. 

FSDP 

MW1 80.15 83.54 98.53 98.91 93.38 93.51 98.61 

PC1 86.56 89.14 95.35 95.32 91.21 92.12 96.31 

PC2 92.92 93.25 98.63 96.16 98.86 98.51 98.88 

PC3 81.98 88.19 88.87 90.18 87.51 90.28 91.90 

PC4 86.49 89.58 93.69 92.26 89.19 91.23 94.11 

CM1 89.24 93.80 94.74 99.80 92.48 99.5 98.1 

 

 

Table 4. Precision (%) Comparison  

Datasets 
NB-SDP 

[4] 

NB-SDP 

[14] 

SVM-SDP 

[4] 

SVM-SDP 

[14] 

RF-SDP 

[4] 

RF-SDP 

[14] 

Prop. 

FSDP 

MW1 80.31 84.25 98.57 98.85 93.47 92.89 96.92 

PC1 86.58 87.22 95.65 96.14 91.22 92.54 97.26 

PC2 93.81 92.15 98.67 98.11 98.86 98.55 98.86 

PC3 82.25 85.32 89.34 90.29 87.18 88.89 96.34 

PC4 86.49 89.24 94.05 93.89 89.28 90.08 94.26 

CM1 94.22 100 96.19 99.7 95.14 100 99.21 

 

 

Table 5. Recall (%) Comparison  

Datasets 
NB-SDP 

[4] 

NB-SDP 

[14] 

SVM-SDP 

[4] 

SVM-SDP 

[14] 

RF-SDP 

[4] 

RF-SDP 

[14] 

Prop. 

FSDP 

MW1 80.15 82.36 98.53 98.89 93.38 94.21 98.45 

PC1 86.57 88.51 83.98 84.12 95.36 96.05 96.58 

PC2 92.91 93.21 91.78 92.04 98.63 98.14 99.12 

PC3 81.98 82.58 80.92 82.15 88.87 89.22 92.47 

PC4 86.49 89.14 82.43 83.19 93.69 93.28 95.14 

CM1 90.14 92.9 96.32 100 91.54 99.5 98.85 

 

 

Table 6. F-Score (%) Comparison  

Datasets 
NB-SDP 

[4] 

NB-SDP 

[14] 

SVM-SDP 

[4] 

SVM-SDP 

[14] 

RF-SDP 

[4] 

RF-SDP 

[14] 

Prop. 

FSDP 

MW1 80.12 81.22 98.53 99.61 93.38 94.05 99.21 

PC1 86.56 86.89 95.34 96.14 91.21 91.98 96.22 

PC2 92.89 93.29 98.63 98.35 98.86 98.51 98.95 

PC3 81.94 82.45 88.84 89.54 87.12 90.26 90.21 

PC4 86.49 88.29 92.61 92.95 89.18 91.51 94.16 

CM1 62.57 67.3 91.28 96 88.98 91.1 97.22 

 

 

RF and SVM on different datasets calculated using 

Eq. (5) is given in Table 4. 

Fig. 2 illustrates the performance of different 

methods for prediction on precision values across 

various datasets. FSDP Method consistently achieves 

better precision in prediction across all datasets, 

except for MW1 where SVM-SDP performs better. It 

shows a highest precision of 98.86% for dataset PC2 

and a lower but still strong precision of 94.26% for 

PC4.  It outperforms NB, RF, and SVM-based SDP 

methods [4, 14] in terms of positive predictions and 

precision. The proposed FSDP also demonstrates a 

nearby precision of 99.21% for CM1, indicating 

competitive performance where NB-SDP and RF-

SDP from reference [14] show 100% results with 

CM1. The lowest precision for FSDP is observed in 

PC4, with a still respectable value of 94.26%. The 

FSDP method seems to be a robust and competitive 

approach for prediction, consistently performing well 

across various datasets and outperforming other 

classifiers in terms of precision. 
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The recall results comparison analysis of various 

classifiers with the proposed FSDP method 

calculated using Eq. (6) is given in Table 5 across all 

datasets. It is a measure of sensitivity or true positive 

rate which indicates better performance in capturing 

all positive instances. 

Fig. 3 demonstrates the performance of different 

classifiers, particularly focusing on the FSDP method. 

It shows improvements in accuracy and precision, 

leading to better recall scores across various datasets. 

The recall scores vary across datasets, with the 

highest of 99.12% observed for PC2 and the lowest 

of 92.47% for PC3. In the case of MW1 dataset, 

SVM-SDP [14] outperforms FSDP with a higher 

recall of 98.89%. The NB based SDP is mentioned as 

one of the classifiers with the lowest performance 

across different datasets. Specifically for CM1 

datasets, SVM-SDP [14] achieves a perfect 100% 

recall, while FSDP shows a slightly lower result, 3% 

below. The FSDP method generally performs well in 

terms of recall scores, but there are instances where 

other classifiers, such as SVM-SDP [14], may 

outperform it on specific datasets. 

C. F1-Score Analysis 
The performance comparison of F1-score on 

different datasets for the proposed FSDP and other 

classifiers is given in Table 6. It evaluates the class 

imbalance problem during classification using Eq. (7) 

based on the value of precision and recall. 

Fig. 4 show the performance of different models, 

specifically the FSDP model, SVM-SDP, and NB 

based SDP, on various datasets such as PC1, PC2, 

PC3, CM1, and MW1, specifically focusing on the 

F1-Score metric.  The FSDP method demonstrates 

superior F1-Score scores across all datasets 

compared to other methods. The improvement in F1-

Score is attributed to better accuracy, precision, and 

recall. Specifically, FSDP achieved the best F1-Score 

with PC2 and CM1 datasets, showing 98.95% and 

97.22%, respectively. 

The FSDP method exhibited the lowest F1-Score 

with the PC3 dataset, reaching 90.21%. In contrast, 

SVM-SDP achieved the highest F1-Score with MW1, 

reaching 99.61%. The NB based SDP showed the 

lowest performance among the methods. The results 

suggest that FSDP generally outperforms other 

methods across the given datasets, while the NB 

classifier exhibits less consistent performance across 

different datasets. It’s important to consider the 

specific characteristics of each dataset when 

choosing a classifier, as different algorithms may 

perform better or worse depending on the nature of 

the data. 

 

5. Conclusion 

This paper focuses on developing a FSDP system 

using a Correlation Learning Method (CLM). The 

main goal is to predict the most frequently occurring 

defects in software development. The FSDP is based 

on the CLM builds the attribute to generate a set of 

rules that aids in the accurate prediction of the 

probability of occurrence of a defect. The proposed 

FSDP is tested using five datasets from NASA 

repositories. The performance of the FSDP is 

evaluated through metrics such as accuracy, precision, 

recall, and F1-Score. The FSDP demonstrates high 

performance with 98.88% accuracy, 98.86% 

precision, 99.12% recall, and a F1-Score of 98.95%. 

These metrics indicate the effectiveness of the 

proposed approach in defect prediction. The paper 

suggests that in future work, the FSDP will explore 

attribute correlation using deep learning techniques 

for all defect-impacting input attributes, aiming to 

enhance SD prediction. 
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