
Received: February 29, 2024. Revised: March 25, 2024. 473

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.37

FSDP: Frequent Software Defects Prediction Based on Defect Correlation

Learning for Quality Software Development

Sareddy Shiva Reddy1* Suresh Pabboju2

1Department of Computer Science and Engineering,

JNTUH University College of Engineering, Science & Technology Hyderabad, India
2Department of IT, CBIT, Osmania University, Hyderabad, India

* Corresponding author’s Email: reddyshiva996655@gmail.com

Abstract: Software has become an essential and important part of every domain system. Developing quality software

is critical to maintaining a stable and secure system. Most of the existing software defect prediction tasks focus on the

various kinds of defects leftover in the software system, but they do not focus on the most common and frequent

software defects that developers most commonly do and which have a significant effect on the quality of software

development. These unnoticeable defects have a considerable impact on the functionality and also on development

time, effort, and cost of the software. This paper propose a frequent software defects prediction (FSDP) mechanism

based on defects Correlation learning method (CLM) utilizing various defects metrics. The aim of this work is to assist

developers in accurately identifying software defects and support project managers in ensuring software quality by

minimizing the presence of defect-prone code during development. The evaluation of FSDP was performed using

NASA datasets in comparison with the conventional Naive Bayes, Support Vector Machine, and Random Forest

classifiers and also compare with the state-of-the-arts methods to measure accuracy, precision, recall and F-Score to

understand the impact of the prediction accuracy. The proposed FSDP achieves 98.88% accuracy and 98.86% precision

in compare to state-of-the-arts classifiers methods indicates the effectiveness of the proposed approach in defect

prediction.

Keywords: Frequent defects, Correlation, Software defect prediction, Machine learning.

1. Introduction

The challenges of software development are

considerable, and addressing defects early in the

development cycle is crucial to mitigate potential

consequences. The cost of fixing defects increases

exponentially as the development process progresses.

Early detection and correction are cost-effective

compared to addressing issues later in the

development or even post-deployment stages.

Identifying defects in the early stages helps in

preventing downstream issues that might require

extensive rework and resources. So, addressing

issues at the inception of development prevents the

accumulation of defects, resulting in a more robust

and reliable system [1].

Defect prediction methods based on regression

techniques [2] aim to identify and quantify the

relationship between various software metrics and

the likelihood of defects. The primary goal is to build

a predictive model that can estimate the number or

density of defects in software based on the values of

independent variables or attributes. It is useful for

providing quantitative estimates of defect proneness

[3]. Classification mechanisms [4-6] are commonly

employed in these methods to categorize instances as

either defective or non-defective based on various

attributes.

The past studies methods [7, 8, 10] typically rely

on historical data, including information about

previously identified defects and corresponding

software metrics, to train and validate the models.

The goal is to build models capable of generalizing

well to new, unseen data and effectively identify

Received: February 29, 2024. Revised: March 25, 2024. 474

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.37

Table 1. Notation and Description

Abbreviation Description

CLM Correlation Learning Method

CO-FSD Correlation-FSD

DPM Detection Profile Method

DT Decision Trees

FSD Frequent Software Defect

FSDP FSD Prediction

LOC Lines of Code

LR Logistic Regression

LDA Linear Discriminant Analysis

ML Machine Learning

MLP Multilayer Perceptron

NB Naive Bayes

OO Object Orientation

RF Random Forest

SD Software Defect

SDP Software Defect Prediction

SDLC Software development life cycle

SHL-MLP Single hidden layer-MLP

SVM Support Vector Machine

potential software defects during development or

maintenance phases. It helps identify which software

components are more likely to contain defects,

allowing for targeted quality assurance efforts.

The effectiveness of the model depends on the

quality and relevance of the selected attributes and

the underlying assumption that the relationship

between metrics and defects is captured accurately by

the chosen regression method [11-13]. But, defect

prediction in software development is a challenging

task, and despite advancements in classifiers, there

are still several issues and research areas that remain

under exploration. In this work we focus on the

problem of frequent software defects occurrences due

to interdependency in the analysis and coding the

various system blocks which are based on conditional

statements, loops, or case statements, which may

affect the performance of software applications.

Identifying and rectifying these common issues can

significantly improve the overall quality of software.

But, the presence of unnoticeable FSDs can indeed

have a significant impact on the functionality,

development time, effort and cost implications and

also the quality assurance challenges.

Early detection and resolution of defects can help

minimize their impact on both the functionality and

the overall development process [14]. Hence, in this

paper we propose a mechanism for Frequent

Software Defect Prediction (FSDP) in software

development using a Correlation Learning Method

(CLM) with a focus on defects metrics. The primary

goal of the designed learning method is to improve

the prediction performance of classifiers by

recognizing and exploiting the close correlation

among Attribute-Set Dependencies (FSD). FSDs are

identified as the most interpretative defects, often

occurring if prior defects exist in the software. A most

common example FSD is observed software defect is,

when a variable being declared but not initialized for

a conditional check or a variable being initialized for

a loop without proper increment for termination

which effects the software quality development and

can lead to performance instability. Here we

contribute the following to achieve the benefit the

attribute software development:

• Correlation Learning Method (CLM) to predict

defects in software development, specifically

targeting defects metrics dependencies, and

highlights the potential benefits for project teams.

• The CLM is applied to NASA datasets to address

the defect prediction problem by finding

associations between defects using defect

correlation. This approach aims to improve the

overall quality of software development by

identifying and addressing potential defects early

in the development process.

• The outcome is expected to help software project

teams in reducing costs and efforts by enhancing

defect prediction accuracy. This, in turn,

contributes to better software quality and stability.

A process for FSDP is performed using the

WEKA tool and NASA datasets. The FSDP

mechanism is trained and then empirically evaluated

its performance on each dataset and measures the

accuracy, precision, recall and F-score. The notation

utilized in this paper is described in Table 1.

The following paper is organized in four sections.

Section 2, discuss the related works related software

defects metrics and predictions. Section 3, present the

proposed FSDP methodology and function process.

Section 4, discusses the evaluation measures and its

results comparisons. Finally, Section 5, summarize

the paper conclusion.

2. Related works

Software Defect Prediction (SDP) is crucial for

enhancing the efficiency of the software development

process, saving time, and minimizing the resources

required for defect correction. By identifying

potential defects early in the development process,

SDP aims to reduce the time and resources spent on

fixing issues later in the software development life

cycle [15-17]. It aligns with the broader goal of

improving the quality of software products and

reducing the burden on both users and the companies

dependent on the software.

Received: February 29, 2024. Revised: March 25, 2024. 475

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.37

Most of the SPD works activities that involve

using statistical methods, Capture-Recapture (CR)

models, and Detection Profile Method (DPM) for

coding methods, auditing data, and ensuring the

quality process in software development through the

estimation of the number of defects remaining in the

software system [18-20]. The estimated number of

defects can be used as a key metric for managing

software processes and evaluating the quality of the

software system before its delivery.

The importance of early detection of defective

software components in the software development

life cycle (SDLC) implies that metrics and indicators

can applied to assess and enhance the quality of the

software being developed.

2.1 Software defects metrics

Software parameters and metrics are essential to

measure and assess various aspects of software

development to ensure its quality and effectiveness

[11]. Metrics are indicators that describe specific

attributes of the software Process Efficiency, Effort

Assessment, Defect Reduction and Project

Performance Evaluation [21, 22].

Lines of Code (LOC) are one of the traditional

and widely used metrics in software engineering to

measure various aspects of a software project [13].

However, it’s important to note that while LOC can

provide some insights, it has its limitations and

should be used cautiously as a sole indicator for

evaluating software quality or predicting defects.

With increasing LOC the probability of defects might

also increase and it can oversimplify the relationship

between code length and defects. While LOC can be

a useful metric in certain contexts, it’s important to

consider other metrics and qualitative aspects when

assessing software quality and predicting defects.

The most widely used indicator in SDP software

is the “cyclic complexity indicator” proposed by

“McCabe” [23] and utilized to characterize the

complication of software products. McCabe’s

metrics are calculated by considering the number of

nodes, arcs, and related components following the

code management scheme. Several studies in the SDP

utilizes McCabe’s metrics [5, 7, 11, 13] have shown

an apparent correlation between LOC indicators

which suggests that there is an apparent relationship

between the complexity of the code (as measured by

McCabe’s metrics) and the identification of deficits

in the software, and deficit identification for

predicting the shortcomings, flaws, or issues in the

software.

Halstead [24] also provides a collection of

software indicators to quantify various aspects of

source code measures. The metrics are based on

counting the number of operands and operators in a

program. It metrics are associated with program level

vocabulary, program length, volume, difficulty,

effort and time with the development cycle and can

be used to assess code complexity and estimate

development effort and time required in conjunction

with other software metrics for a more

comprehensive analysis [25].

Šikic et al. [11] presents a set of features designed

to capture the evolution of software modules over

time. These features take into account all changes

made in the module’s source code and are calculated

by aggregating change metrics extracted from each

modification. The chronological order of the changes

is considered in this process, providing a more

detailed and nuanced view of the module’s

development compared to existing metrics. This

approach recognizes that the history of changes made

to a software module can be valuable in

understanding its development process. By

aggregating change metrics over time, the proposed

features aim to offer insights into the evolution of the

module. These features have proven to be relevant for

defect-proneness, indicating that they may be useful

for identifying potential issues or vulnerabilities in

the software. Even these metrics have been effective

in improving model performance, particularly on data

that is affected by class imbalance. It can be

problematic because it may lead models to prioritize

the majority class, resulting in suboptimal

performance for the minority class, which in this case

might represent defect instances.

Rhmann et al. [13] describes the software change

metrics (SCM) for defect prediction in software and

the use of machine learning and hybrid algorithms,

specifically MLT (Machine Learning Techniques)

and HBSA (Hybrid Binary Swarm Algorithm), has

been explored for predicting faulty classes. A GFS-

loogitboost hybrid algorithm is proposed for the best

performance in terms of precision and recall indicates

a successful for the application context. Even though,

different techniques used for defect prediction are

statistically similar in terms of their performance

suggests a certain level of consistency among the

methods but it also need to suggest the importance of

generalizing results by suggesting the need for

experiments on different types of large datasets.

Huda et al. [21] proposed a framework for finding

significant metrics using a hybrid wrapper and filter

approach appears to be innovative and promising. By

integrating the training of metric selection and fault

prediction into a single process, it aims to reduce

complexity, making the approach more efficient. The

use of a hybrid heuristic, combining intrinsic

Received: February 29, 2024. Revised: March 25, 2024. 476

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.37

characteristics from both filters and wrappers, is an

interesting strategy. It allows for a more

computationally efficient metric selection process.

The incorporation of ANNIGMA and SVM wrappers,

along with maximum relevance filters, in two

different hybrid models, adds diversity to the

approach. The ability to identify a more compact set

of significant metrics while achieving higher

performance in fault prediction is a notable

achievement. This study is limited to procedural

metrics which need to extend to object-oriented (OO)

metrics for the broader applicability in SDP.

Automated software defect prediction is a crucial

aspect of software development, and the complexity

of modern software systems poses challenges in

building effective prediction models. The issue of

dealing with a large number of correlated metrics and

selecting a subset that improves model performance

is indeed a significant challenge. By addressing the

challenge of feature selection in software defect

prediction models, researchers and practitioners can

enhance the efficiency and accuracy of predicting

defects in complex software systems.

2.2 Software defect predictions

Addressing software defects (SD) is crucial

because they can lead to malfunctions, security

vulnerabilities, or other issues that negatively impact

user experience. The creations of SDs are due to the

coding mistakes, incorrect conditions, or flawed

design. The impact of these defects is substantial,

affecting the reliability and quality of the software

[1]. Reliable software is expected to perform

consistently and correctly under various conditions.

A testing team can analyze software test results to

detect bugs, but testing the entire software module

can be costly and time-consuming. Therefore, it is

necessary to identify faulty modules at an early stage

so that software testers can detect modules that

require intensive testing [16].

The importance of Software Defect Prediction

(SDP) is to identify and addressing defects in

software before its release. It aims to save time and

resources by anticipating and addressing defects

early in the development process. The utilization of

Machine Learning (ML) algorithms in SDP is

highlighted as a means to predict and identify

potentially defective modules within the software.

The effectiveness of SDP relies on the choice and

implementation of ML algorithms. These ML

classification algorithms play a crucial role in

predicting and identifying defective modules.

• Naive Bayes (NB): It is a popular classification

algorithm that is commonly used in SDP. It is

particularly well-suited for this task because it is

simple, efficient, and performs well even with

relatively small datasets [6]. It’s important to note

that while NB is effective for many classification

tasks, it may not capture complex dependencies

between features. In SDP, where the relationships

between different metrics may be intricate, other

ML algorithms might also be considered based on

the characteristics of the dataset.

• Support Vector Machine (SVM): In the context of

SDP the SVM can be applied to classify whether

a software module or component is likely to be

defective based on various features or metrics. It

works well with a set of relevant features which

include code complexity, code churn, developer

experience, and various code metrics [17]. The

selection of these features is crucial, and domain

knowledge is often used to identify relevant

metrics that may correlate with defect proneness

and need to choose appropriate features with fine-

tune for optimal performance.

• Random Forest (RF): It is a popular ML algorithm

in SDP which aims to identify potential defects or

bugs in software early in the development process,

helping developers and testers focus their efforts

on high-risk areas [10, 25]. It is less prone to

overfitting compared to individual decision trees,

making it more robust on new and unseen data.

But, the imbalanced datasets of SDs making it

challenging to interpret the rationale behind SD

predictions. So, it its success depends on defect

metrics and the relevance of the chosen features.

Several researches works utilizing ML has

proposed for SDP [3, 4, 6, 8, 14], and also

demonstrated success in terms of accuracy, reliability,

and performance improvements, there appears to be

a lack of clear evidence for predicting the FSD in

software developments.

Siswantoro et al. [4] propose a comprehensive

evaluation study for SDP using various traditional

ML models on NASA metrics datasets such as k-NN,

DT, LR, LDA, SHL-MLP and SVM.

Hyperparameter tuning was performed using random

search for each model, improving their performance.

Feature dimensionality reduction was carried out

using PCA for reducing the number of features while

retaining the most critical information. The analysis

revealed that all classifiers were impacted by data

imbalance and overfitting initially, but with

hyperparameter tuning shows an effective in

mitigating these issues. k-NN emerged as the top-

performing classifier among the methods evaluated.

Khalid et al. [14] focuses on utilizing machine

learning (ML) techniques, specifically feature

selection and K-means clustering, for software defect

Received: February 29, 2024. Revised: March 25, 2024. 477

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.37

prediction. The study involves examining various

ML techniques and optimizing them on a freely

available dataset to enhance accuracy compared to

previous research. Additionally, the research

employs the Particle Swarm Optimization (PSO)

method and an ensemble approach to analyze results

and improve accuracy performance on the CM1

dataset. The results indicate enhanced performance

across all ML and optimized ML models, but there

are still cases with error rates. The need for improving

data correlation learning among features is

highlighted as a potential avenue for further

improvement. The improving data correlation

learning suggests that future work could focus on

refining the understanding and utilization of data

features to further enhance accuracy.

Choudhary et al. [19] deployed machine learning

methods for software change matrices-based

software failure prediction. They compare their

designed methods to existing classifier methods

based on the labelling matrix for prediction defects.

They use RF, J48 and k-NN for fault prediction. In

this work, an SDP model is designed based on

previous software change matrices by using an

algorithm based on hybrid search ML methods.

Malhotra [26] uses SDP-based ML algorithms for

designing an OO software metric. It did some testing

on the Android app that they got from the online

repository. The methodology was evaluated by

comparing with MLP, LR and SVM. The analysis

results show that MLP and LR show better

enhancement in comparison, whereas SVM performs

the lowest.

Jiang et al. [27] highlighted the advantages and

disadvantages of the prediction evaluation

technology and state the cost of the project should

determine the best type of designed model. They used

13 datasets from the NASA MDP and six different

classification algorithms to determine the optimal

algorithm performance in RF, NB, LR, Bagging, J48,

and IBK. This study strongly suggests using cost-

effective curves to provide an accurate assessment of

the types of programs, and randomization in the RF

is the best.

To the best of our knowledge, the current

literature has limited research and methods to

determine key indicators for all automated

monitoring and control, achieving high-quality

products in all releases. The choice of high-quality

metrics is essential to developing highly accurate

SDP mechanisms. So, to address this gap in the

literature, in consideration we contribute to fill by

providing a more comprehensive understanding of

the prevalence of SDs in the context of ML-based

SDP in the next section.

3. Proposed FSDP methodology

The core objective of the FSDP classifier is to

find the defect that most frequently occurs during

development utilizing past historical data sets. To

understand the FSD we utilized NASA datasets. For

each data set, we initially perform the training

process through the Correlation Learning Method

(CLM). The CLM identifies the knowledge and

constructs the rule patterns to classify the defects

associated. The constructed rule patterns will be

utilized by the FSD classifiers using rule-based

association mining. In the following section, we

discuss the mechanism of CLM and the process of

FSD classification.

3.1 Correlation learning method (CLM)

Most existing defect learning approaches [3, 4, 8,

9] utilize the defect association through association

rule mining by employing support-confidence

methods. However, it was observed that many rules

that are constructed with low support and confidence

thresholds result in low deficit rules for defect

prediction. The CLM supplements the defect

association rule mining with added interestingness

measures dependent on “statistical importance” and

“correlation analysis”.

An association rule based on the support-

confidence method mostly estimates only the

conditional probability of defects to a given set of

defects. It is unable to measure the actual strength of

the correlation and its implications between them. So,

to enhance we supplement the correlation rules along

with the support-confidence method to learn the best

defect association rules for the classifier prediction.

The CLM implements Lift correlation measures

to learn the strong relation of the FSD defects among

the datasets. To identify a correlation among the

defects, let’s assume F1 and F2 are the two defects

from an FSD set. The relation of F1 with F2 will be

considered independent if

among the

probability of occurrence among F1 with F2, it is

identified as dependent and has an event of

correlation.

So, to measure the correlation value among the

F1 and F2 it computes the Lift using Eq. (1).

 (1)

If the value of Lift is >1 then the correlation is

considered as positive for the prediction, else if <1

then it is considered as negatively correlated, and if

(1 2) (1) (2)prob F F prob F prob F= 

(1 2)
(1, 2)

(1) (2)

prob F F
Lift F F

prob F prob F
=



Received: February 29, 2024. Revised: March 25, 2024. 478

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.37

Lift =1, then both are completely independent of each

other without any correlation. So, we only considered

the defects whose Lift value is >1 as it implies the

occurrence in the defect data sets. The steps for

processing of CLM are presented in the Algorithm 1.

The algorithm initially implements 4 functions to

identify the of defect occurrence. These functions are:

• findBoth_Occurance_Count(Fa, Fb, D) - finds

the count of feature Fa and Fb occurrence in

dataset D.

• findNo_Occurance_Count(Fa, Fb, D) - finds the

count of feature Fa and Fb are not found in

dataset D.

• find_Occurance_Count(Fa, D) - finds the Fa

count of occurrence in dataset D.

• find_Occurance_Count(Fb, D) - finds the Fb

count of occurrence in dataset D.

Later it computes the probability of occurrence of

Fa and Fb defect utilizing the occurrences values, and

also the value of Lift (L) using Eq. (1). If the value of

L is more than 1 then Fa and Fb are correlated in the

defect prediction, otherwise negatively correlated.

These identified correlated features are stored in an

array of CO-FSD[] as a correlation learning rules.

Algorithm-1: CLM Method

D → is the collection of data sets.

FSD → is a set of frequent defects.

for i=0, each defect in FSD, i++ loop {

Fa = FSD[i];

for j=1, each defect in FSD, j++ loop {

Fb = FSD[j];

//--No. of occurrence where both Fa and Fb are

identified in the datasets.

Bval = findBoth_Occurance_Count (Fa, Fb, D);

//-- No. of occurrence where both Fa and Fb

not identified in the datasets.

Nval = findNo_Occurance_Count (Fa, Fb, D);

//--No. of occurrence where Fa identified but Fb

not identified in the datasets.

Xval = find_Occurance_Count (Fa, D);

//--No. of occurrence where Fb identified but Fa

not identified in the datasets.

Yval = find_Occurance_Count (Fb, D);

//--probability of occurrence of Fa defect

//--probability of occurrence of F2 defect

//-- According the Eq (1)

If L > 1 then

//--Fa and Fb are correlated then defect

predicted

CO-FSD[c] = {Fa, Fb};

Else

Fa and Fb are negatively correlated.

End-If

}

}

So, on completion of the CLM process, we can

identify the most correlated FSD that can strongly

impact the software development. Now, utilizing the

learned CO-FSD rules we classify the real-time

defects in a software product.

3.2 FSDP mechanism

The FSDP is perform through the classification of

defects for the prediction will be performed using a

rule-based classification approach by using the

learned rule patterns generated by CLM. The rule of

associations identifies a defect by predicting the

relations among the different defect types, with an

assumption that if a program has a defect F1 and F2

then the defect F3 will also occur, which generally

represents as, “F1 ^ F2 → F3”. For example, in a

situation where we have a rule “F1 ^ F2 → F3” for a

defect F1, F2, and F3 obtained from the datasets, the

correlation of F3 with other defects is not yet

identified. So, the rule indicates that defect F3 also

needs to check whether the corresponding defect

correlated or not to other defects. If the correlation

occurs is positive, then the new rule will be “F1 ^ F2

^ F3 → F4”, and it will continue until we find all the

defects correlated for the defect prediction.

The mechanism of FSDP is designed using a rule-

based classification approach. It was learned in past

studies [26, 28, 29] that rules can be the most

prominent in providing the best knowledge to do

classification. The FSDP utilizes the learned

knowledge from CO-FSD learning rules to classify

the defect.

()
()

()

val val
a

val val val val

B X
prob F

B X N Y

+
=

+ + +

()
()

()

val val
b

val val val val

B Y
prob F

B X N Y

+
=

+ + +

()

() ()

a b

a b

prob F F
L

prob F prob F
=



Received: February 29, 2024. Revised: March 25, 2024. 479

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.37

To predict the possibility of defects in datasets we

classify them with the learned CO-FSD rules.

According to the rule-based classification theory if

the set precondition rules are satisfying the rules of

consequent then we can relate to a prediction class.

Let’s assume dataset D consists of a collection of

x data records, and CO-FSD learning has a set of rules

as R. Now if each condition of R holds as true for a

data record of D, then we say the rule is satisfied for

the defect prediction. The FSDP prediction

performance will be measured in terms of its

coverage and accuracy.

Let’s assume FSDP classifies nrecord using the

rules of CO-FSD learning, and mcorrect is the number

of correctly classified by using rules from the dataset

D. So, by using Eq.(2) and (3) we can compute the

FSDP prediction coverage and accuracy.

 (2)

 (3)

So, FSDP is being evaluated using the designed CLM

process over attributes of the NASA datasets as

presented next section.

4. Experiment evaluation

4.1 Datasets

We utilized the NASA Metrics Data Program

(MDP) dataset [30] for the evaluation. The NASA

MDP dataset is a valuable resource that provides

information about software defects in various NASA

projects. This includes details such as the number of

defects found in each project, the size of the code

base, and the effort required to address the software

issues. The dataset is commonly employed by

software engineers to analyze the relationship

between different software metrics and software

defects. A set 6 datasets from projects: MW1, PC1,

PC2, PC3, PC4, and CM1 are considered which have

different number of features variation, but they all

have the same classes as “defective Y” and “defective

N.” The distribution of defective instances and

defects percentage of these dataset are given in Table

2.

The NASA defect datasets are commonly used

for this purpose, and they are publicly available for

users to assess and validate various fault prediction

techniques. By using NASA defect datasets for

evaluating the FSDP method provides a standardized

Table 2. Datasets Description

Datase

t

No. of

Attribute

s

Defectiv

e

Instance

s

Total

Instance

s

Defect

s (%)

MW1 37 27 253 10.67

PC1 37 61 705 8.65

PC2 36 16 745 2.14

PC3 37 134 1077 12.44

PC4 37 177 1287 13.75

CM1 22 49 498 9.83

and accessible framework for assessing the

performance of fault prediction techniques,

promoting advancements in the field and contributing

to the overall improvement of software reliability.

4.2 Evaluation measures

In this section, we will consider various

measurements for SDP using the WEKA tool

utilizing the datasets of NASA. We run the training

process initially to build the CO-FSD learning rules

and then utilizing these rules in the classification to

evaluate each dataset and measure the accuracy,

precision, recall and F-score to analyse the

improvement.

 (4)

 (5)

 (6)

 (7)

where,

• TP → Number of defective instances correctly

classified as nominal defects.

• TN → Number of clean instances correctly

classified as clean.

• FP → indicates the number of clean instances

that have been misclassified as faults.

• FN → indicates the number of faulty software

instances that have been accidentally classified

as clean.

coverage()
| |

recordsn
R

D
=

accuracy() corrects

records

n
R

n
=

()

()

TP TN
Accuracy

TP TN FP FN

+
=

+ + +

()

TP
Precision

TP FP
=

+

()

TP
Recall

TP FN
=

+

(2 Precision Recall)
F-Score =

(Precision + Recall)

 

Received: February 29, 2024. Revised: March 25, 2024. 480

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.37

Figure. 1 Comparison of classifiers Accuracy

Figure. 2 Comparison of classifiers Precision

4.3 Result analysis

The evaluation of analytical enhancement is

performed using four conventional classifiers: NB,

RF, SVM and two state-of-the-art comparative

studies on SDP analysis in [4, 14] in compared to the

proposed FSDP. The classifier provides us with an

opportunity to compare the performance of previous

classification methods and techniques. Since these

classifiers also use the ability to predict, it makes

sense to investigate whether different sources were

identified by each individual and whether these

changes compare differences between these

differences.

A. Accuracy Analysis

The performance of a proposed FSDP in the

context of predicting defects in different datasets

suggests that the FSDP achieved better accuracy in

prediction compared to various classifiers. The

calculated accuracy value using Eq. (4) of all the

classifiers are presented in Table 3.

Fig. 1 illustrates the performance of different

Figure. 3 Comparison of classifiers Recall

Figure. 4 Comparison of classifiers F-Score Scores

classifiers, particularly focusing on FSDP, SVM-

SDP, and RF based SDP, in predicting defective

instances across various datasets (PC1, PC2, PC3,

MW1, and CM1). FSDP outperformed other

classifiers in most cases, achieving the highest

accuracy. Specifically, FSDP achieved an accuracy

of 98.88% with PC2, 96.31% with PC1, and 91.9%

with PC3 datasets. SVM-SDP achieved the highest

accuracy of 98.91% in the MW1 dataset. The

comparison between SVM-SDP and RF based SDP

showed similar accuracies, while NB based SDP

demonstrated the lowest accuracy. In the case of the

CM1 dataset, SVM-SDP demonstrated the best result

with an accuracy of 99.80%. The choice of the best

classifier might depend on the specific dataset being

used. In the MW1 dataset, for instance, SVM-SDP

performed slightly better than FSDP.

B. Precision and Recall Analysis

The performance of precision of the proposed

FSDP in comparison to other classifiers such as NB,

Received: February 29, 2024. Revised: March 25, 2024. 481

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.37

Table 3. Accuracy (%) Comparison

Datasets
NB-SDP

[4]

NB-SDP

[14]

SVM-SDP

[4]

SVM-SDP

[14]

RF-SDP

[4]

RF-SDP

[14]

Prop.

FSDP

MW1 80.15 83.54 98.53 98.91 93.38 93.51 98.61

PC1 86.56 89.14 95.35 95.32 91.21 92.12 96.31

PC2 92.92 93.25 98.63 96.16 98.86 98.51 98.88

PC3 81.98 88.19 88.87 90.18 87.51 90.28 91.90

PC4 86.49 89.58 93.69 92.26 89.19 91.23 94.11

CM1 89.24 93.80 94.74 99.80 92.48 99.5 98.1

Table 4. Precision (%) Comparison

Datasets
NB-SDP

[4]

NB-SDP

[14]

SVM-SDP

[4]

SVM-SDP

[14]

RF-SDP

[4]

RF-SDP

[14]

Prop.

FSDP

MW1 80.31 84.25 98.57 98.85 93.47 92.89 96.92

PC1 86.58 87.22 95.65 96.14 91.22 92.54 97.26

PC2 93.81 92.15 98.67 98.11 98.86 98.55 98.86

PC3 82.25 85.32 89.34 90.29 87.18 88.89 96.34

PC4 86.49 89.24 94.05 93.89 89.28 90.08 94.26

CM1 94.22 100 96.19 99.7 95.14 100 99.21

Table 5. Recall (%) Comparison

Datasets
NB-SDP

[4]

NB-SDP

[14]

SVM-SDP

[4]

SVM-SDP

[14]

RF-SDP

[4]

RF-SDP

[14]

Prop.

FSDP

MW1 80.15 82.36 98.53 98.89 93.38 94.21 98.45

PC1 86.57 88.51 83.98 84.12 95.36 96.05 96.58

PC2 92.91 93.21 91.78 92.04 98.63 98.14 99.12

PC3 81.98 82.58 80.92 82.15 88.87 89.22 92.47

PC4 86.49 89.14 82.43 83.19 93.69 93.28 95.14

CM1 90.14 92.9 96.32 100 91.54 99.5 98.85

Table 6. F-Score (%) Comparison

Datasets
NB-SDP

[4]

NB-SDP

[14]

SVM-SDP

[4]

SVM-SDP

[14]

RF-SDP

[4]

RF-SDP

[14]

Prop.

FSDP

MW1 80.12 81.22 98.53 99.61 93.38 94.05 99.21

PC1 86.56 86.89 95.34 96.14 91.21 91.98 96.22

PC2 92.89 93.29 98.63 98.35 98.86 98.51 98.95

PC3 81.94 82.45 88.84 89.54 87.12 90.26 90.21

PC4 86.49 88.29 92.61 92.95 89.18 91.51 94.16

CM1 62.57 67.3 91.28 96 88.98 91.1 97.22

RF and SVM on different datasets calculated using

Eq. (5) is given in Table 4.

Fig. 2 illustrates the performance of different

methods for prediction on precision values across

various datasets. FSDP Method consistently achieves

better precision in prediction across all datasets,

except for MW1 where SVM-SDP performs better. It

shows a highest precision of 98.86% for dataset PC2

and a lower but still strong precision of 94.26% for

PC4. It outperforms NB, RF, and SVM-based SDP

methods [4, 14] in terms of positive predictions and

precision. The proposed FSDP also demonstrates a

nearby precision of 99.21% for CM1, indicating

competitive performance where NB-SDP and RF-

SDP from reference [14] show 100% results with

CM1. The lowest precision for FSDP is observed in

PC4, with a still respectable value of 94.26%. The

FSDP method seems to be a robust and competitive

approach for prediction, consistently performing well

across various datasets and outperforming other

classifiers in terms of precision.

Received: February 29, 2024. Revised: March 25, 2024. 482

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.37

The recall results comparison analysis of various

classifiers with the proposed FSDP method

calculated using Eq. (6) is given in Table 5 across all

datasets. It is a measure of sensitivity or true positive

rate which indicates better performance in capturing

all positive instances.

Fig. 3 demonstrates the performance of different

classifiers, particularly focusing on the FSDP method.

It shows improvements in accuracy and precision,

leading to better recall scores across various datasets.

The recall scores vary across datasets, with the

highest of 99.12% observed for PC2 and the lowest

of 92.47% for PC3. In the case of MW1 dataset,

SVM-SDP [14] outperforms FSDP with a higher

recall of 98.89%. The NB based SDP is mentioned as

one of the classifiers with the lowest performance

across different datasets. Specifically for CM1

datasets, SVM-SDP [14] achieves a perfect 100%

recall, while FSDP shows a slightly lower result, 3%

below. The FSDP method generally performs well in

terms of recall scores, but there are instances where

other classifiers, such as SVM-SDP [14], may

outperform it on specific datasets.

C. F1-Score Analysis
The performance comparison of F1-score on

different datasets for the proposed FSDP and other

classifiers is given in Table 6. It evaluates the class

imbalance problem during classification using Eq. (7)

based on the value of precision and recall.

Fig. 4 show the performance of different models,

specifically the FSDP model, SVM-SDP, and NB

based SDP, on various datasets such as PC1, PC2,

PC3, CM1, and MW1, specifically focusing on the

F1-Score metric. The FSDP method demonstrates

superior F1-Score scores across all datasets

compared to other methods. The improvement in F1-

Score is attributed to better accuracy, precision, and

recall. Specifically, FSDP achieved the best F1-Score

with PC2 and CM1 datasets, showing 98.95% and

97.22%, respectively.

The FSDP method exhibited the lowest F1-Score

with the PC3 dataset, reaching 90.21%. In contrast,

SVM-SDP achieved the highest F1-Score with MW1,

reaching 99.61%. The NB based SDP showed the

lowest performance among the methods. The results

suggest that FSDP generally outperforms other

methods across the given datasets, while the NB

classifier exhibits less consistent performance across

different datasets. It’s important to consider the

specific characteristics of each dataset when

choosing a classifier, as different algorithms may

perform better or worse depending on the nature of

the data.

5. Conclusion

This paper focuses on developing a FSDP system

using a Correlation Learning Method (CLM). The

main goal is to predict the most frequently occurring

defects in software development. The FSDP is based

on the CLM builds the attribute to generate a set of

rules that aids in the accurate prediction of the

probability of occurrence of a defect. The proposed

FSDP is tested using five datasets from NASA

repositories. The performance of the FSDP is

evaluated through metrics such as accuracy, precision,

recall, and F1-Score. The FSDP demonstrates high

performance with 98.88% accuracy, 98.86%

precision, 99.12% recall, and a F1-Score of 98.95%.

These metrics indicate the effectiveness of the

proposed approach in defect prediction. The paper

suggests that in future work, the FSDP will explore

attribute correlation using deep learning techniques

for all defect-impacting input attributes, aiming to

enhance SD prediction.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, methodology, software,

validation, Sareddy Shiva Reddy; formal analysis,

investigation, resources, data curation, Sareddy Shiva

Reddy; writing-original draft preparation, writing-

review and editing, Sareddy Shiva Reddy; visualization,

supervision, Dr. Suresh Pabboju.

References

[1]. P. Afric, D. Vukadin, M. Silic, G. Delac,

“Empirical Study: How Issue Classification

Influences Software Defect Prediction”, IEEE

Access, Vol. 11, pp. 11732-11748, 2023.

[2]. A. Abdelaziz, N. R. Darwish, H. A. Hefny,

“Multiple Linear Regression for Determining

Critical Failure Factors of Agile Software

Projects”, International Journal of Intelligent

Engineering and Systems, Vol. 12, No. 3, 2019,

doi: 10.22266/ijies2019.0630.24.

[3]. G. Esteves, E. Figueiredo, A. Veloso, M.

Viggiato, and N. Ziviani, “Understanding

machine learning software defect predictions”,

Automated Software Engineering, Vol. 27, No.

3-4, pp. 369-392, 2020.

[4]. M. Z. F. N. Siswantoro, U. L. Yuhana,

“Software Defect Prediction Based on

Optimized Machine Learning Models: A

Comparative Study”, TEKNIKA, Vol. 12, No.

2, pp. 166-172, 2023.

Received: February 29, 2024. Revised: March 25, 2024. 483

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.37

[5]. D. Bowes, T. Hall, J. Petri, “Software defect

prediction: do different classifiers find the

same defects?”, Software Quality Journal, Vol

26, pp. 525-552, 2018.

[6]. R. Marco, S. S. S. Ahmad, S. Ahma,

“Empirical Analysis of Software Effort

Preprocessing Techniques Based on Machine

Learning”, International Journal of Intelligent

Engineering and Systems, Vol. 14, No. 6, 2021,

doi: 10.22266/ijies2021.1231.49.

[7]. S. Amasaki, “Cross-version defect prediction:

use historical data, cross-project data, or both?”,

Empirical Software Engineering, Vol. 25, No.

2, pp. 1573-1595, 2020.

[8]. S. Ali, M. Adeel, S. Johar, M. Zeeshan, S.

Baseer, A. Irshad, “Classification and

Prediction of Software Incidents Using

Machine Learning Techniques”, Security and

Communication Networks, Article ID 9609823,

Vol. 2021.

[9]. Y. Shao, B. Liu, S. Wang, G. Li, “Software

defect prediction based on correlation weighted

class association rule mining”, Knowledge-

Based Systems, Vol. 196, 105742, 2020.

[10]. A. Balaram, S. Vasundra, “Software Fault

Detection using Multi-Distinguished-Features

Sampling with Ensemble Random Forest

Classifier”, International Journal of Intelligent

Engineering and Systems, Vol. 15, No. 5, 2022,

doi: 10.22266/ijies2022.1031.43.

[11]. L. Šikic, P. Afric, A. S. Kurdija, M. ŠIlic,

“Improving Software Defect Prediction by

Aggregated Change Metrics”, IEEE Access,

Vol. 9, 2021.

[12]. J. Sohn, S. Yoo, “Empirical Evaluation of Fault

Localisation Using Code and Change Metrics”,

IEEE Transactions on Software Engineering,

Vol. 47(8), 2021.

[13]. W. Rhmann, B. Pandey, G. Ansari, D. K.

Pandey, “Software fault prediction based on

change metrics using hybrid algorithms: An

empirical study”, Journal of King Saud

University - Computer and Information

Sciences, 2019.

[14]. A. Khalid, G. Badshah, N. Ayub, M. Shiraz,

and M. Ghouse, “Software Defect Prediction

Analysis Using Machine Learning

Techniques”, Sustainability, 15, 5517, 2023.

[15]. C. Liu, S. Sanober, A. S. Zamani, L. R.

Parvathy, R. Neware, and A. W. Rahmani,

“Defect Prediction Technology in Software

Engineering Based on Convolutional Neural

Network”, Security and Communication

Networks, Article ID 5058461, Vol. 2022.

[16]. L. Yang, Z. Li, Dongsheng Wang, Hong Miao,

Zhaobin Wang, “Software Defects Prediction

Based on Hybrid Particle Swarm Optimization

and Sparrow Search Algorithm”, IEEE Access,

Vol. 9, 2021.

[17]. L. Gong, S. Jiang, L. Bo, L. Jiang, and J. Qian,

“A novel classimbalance learning approach for

both within-project and cross-project defect

prediction”, IEEE Transactions on Reliability,

Vol. 69, No. 1, pp. 40-54, 2020.

[18]. M. O. Elish, K. Elish, “An Empirical

Comparison of Resampling Ensemble Methods

of Deep Learning Neural Networks for Cross-

Project Software Defect Prediction”,

International Journal of Intelligent

Engineering and Systems, Vol. 14, No. 3, 2021,

doi: 10.22266/ijies2021.0630.18.

[19]. G. R. Choudhary, S. Kumar, K. Kumar, A.

Mishra, C. Catal, “Empirical analysis of

change metrics for software fault prediction”,

Computers & Electrical Engineering, Vol. 67,

pp. 15-24, 2018.

[20]. A. Alsaeedi, M. Z. Khan, “Software Defect

Prediction Using Supervised Machine

Learning and Ensemble Techniques: A

Comparative Study”, Journal of Software

Engineering and Applications, Vol. 12, pp. 85-

100, 2019.

[21]. S. Huda, S. Alyahya, M. M. Ali, S. Ahmad, J.

Abawajy, H. Al-dossari, J. Yearwood, “A

Framework for Software Defect Prediction and

Metric Selection”, IEEE Access, Vol. 6, 2018.

[22]. X. Sun, W. Zhou, B. Li, Z. Ni, J. Lu, “Bug

localization for version issues with defect

patterns”, IEEE Access, Vol. 7, 18811-18820,

doi: 10.1109/ACCESS.2019.2894976, 2019.

[23]. T. J. McCabe, “A Complexity Measure”, IEEE

Transactions on Software Engineering, Vol. 2,

pp. 308-320, 1976.

[24]. M. H. Halstead, Elements of Software Science

(Operating and Programming Systems Series),

1977.

[25]. T. Zhou, X. Sun, X. Xia, B. Li, X. Chen,

“Improving defect prediction with deep forest”,

Information and Software Technology, Vol.

114, pp. 204-216, 2019.

[26]. R. Malhotra, “An empirical framework for

defect prediction using machine learning

techniques with Android software”, Applied

Soft Computing, Vol. 49, pp. 1034-1050, 2016.

[27]. Y. Jiang, B. Cukic, and T. Menzies, “Fault

prediction using early lifecycle data”, In: Proc.

of 18th IEEE Int. Symp. Softw. Rel. (ISSRE), pp.

237-246, 2007.

Received: February 29, 2024. Revised: March 25, 2024. 484

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.37

[28]. K. Bashir, T. Li, C. W. Yohannese, Y. Mahama,

“Enhancing software defect prediction using

supervised-learning based framework”, In:

Proc. of 12th International Conference on

Intelligent Systems and Knowledge

Engineering (ISKE), 2017.

[29]. F. Hassan, S. Farhan, M. A. Fahiem, H.

Tauseef, “A Review on Machine Learning

Techniques for Software Defect Prediction”,

Technical Journal, Vol. 23, pp. 63-71, 2018.

[30]. M. Shepperd, Q. Song, Z. Sun, and C. Mair,

“Data quality: Some comments on the NASA

software defect datasets”, IEEE Transaction

Software Engineering, Vol. 39, No. 9, pp.

1208-1215, 2013.

