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Abstract: Post-Partum Depression (PPD) is a significant medical condition that occurs in some women after childbirth 

as a consequence of physiological behavioral and mental alterations. The complicated symptoms of this condition 

make it difficult to diagnose and differentiate from other conditions. Timely detection and diagnosis of PPD are crucial 

for controlling morality rates and ensuring effective treatment. Various Machine Learning (ML) models was developed 

to predict PPD based on the patients demographic status, mental health history and vital signs. But, additional 

psychological attributes are needed for predicting mental status and identifying individuals with PPD risk. Also, cost-

effective and innovative methods are needed to identify individuals with PPD and detect potential development 

tendencies. Hence, in this paper, Osprey Parameter Optimized MLP (OPOMLP) is developed to address the above 

issues for efficient PPD. Initially, the Application Programming Interface (API) function of online social network like 

Twitter (tweets) and Instagram (comments) are used to collect the data posted by health care professionals. Then, 

Natural Language Processing (NLP) is utilized to pre-process the collected data \and extract relevant text of Twitter 

users to estimate PPD phases. The additional psychological attributes like mental health and behavioural changes 

attributes of women are extracted using Linguistic Inquiry Word Count (LIWC) and Latent Semantic Analysis (LSA) 

methods. Next, MLP network is trained using the extracted attributes along with the attributes of demographic status, 

mental health history and vital signs. Since, the parameters of MLP were not optimized properly which leads to 

computational complexities in the PPD prediction. So, the weights initialization and the hyper-parameters of MLP is 

optimized simultaneously by using an Osprey Optimization Algorithm (OOA). OOA is a metaheuristic optimization 

algorithm derived from osprey bird hunting behavior which aims to find the global optimum solutions and reduces the 

complex optimization issues. The relationship between hyperparameters and classification performance will identify 

an optimal hyperparameter space regions for optimal classification with less computational time and resources. Finally, 

the OPOMLP is employed for the final prediction of PPD. The test outcomes reveal that the OPOMLP model achieves 

an accuracy of 96.12% on the collected dataset compared to the classical PPD detection models. 

Keywords: Postpartum depression, Machine learning, Electronic health records, Application programming interface, 

Osprey optimization. 

 

 

1. Introduction 

PPD is a severe mental condition that can develop 

within a year before childbirth, leading to maternal 

postnatal death [1]. It negatively impacts the 

physiological and emotional wellbeing of new 

mothers and hinders the growth and progression of 

newborns [2]. PPD symptoms are linked to 

inadequate mother-baby relationships, neonatal 

physiological and psychological analysis, linguistic 

growth, infant reactions and napping coordination, 

making it the most common cause of postpartum 

hemorrhage in women postpartum [3, 4]. New 

mothers may experience symptoms such as difficulty 

dropping or remaining drowsy, extended slumbering, 

mood fluctuations, starvation, fear of harming others, 

extreme anxiety, melancholy and self-harm [5, 6]. 

Early prevention can reduce mortality rates, improve 

the physiological and mental health of new mothers 

and enhance the infant’s well-being. 
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Pharmacological or psychological interventions 

can reduce perinatal anxiety and improve maternal 

and infant outcomes. However, determining 

antidepressant drug exposure during pregnancy and 

breastfeeding remains a concern [7, 8]. Despite 

awareness of PPD-associated variables, no statistical 

sensitivity evaluation techniques are available for 

prenatal monitoring or medical care. Primary care 

EHRs can help in risk assessment and illness 

prediction, combining patient information with 

socio-demographic details [9, 10]. 

In order to diagnose PPD, psychiatrists and 

clinicians often employ the Edinburgh Postnatal 

Depression Scale (EPDS) [11]. Medical 

professionals reviewed the EPDS scores after one 

week of data collection from new moms and those 

exhibiting PDD symptoms were identified. Patient 

Health Questionnaire-9 (PHQ-9) and the Postpartum 

Depressive Surveillance Scale (PDSS) surveys were 

collected from the aforementioned subjects up to six 

weeks as part of a multistage progress follow-up [12]. 

EPDS testing acknowledges postpartum attitude 

disturbance but overlooks prevalent signs in women 

during reproductive periods like impatience and 

anxiousness. [13]. Nevertheless, The EPDS 

assessment, which does not include demographic 

data or social support information, may not be 

sensitive enough to identify various conditions before 

and after giving birth and it also performs worse in 

normal populations compared to validation cohorts in 

terms of positively forecasted value.  

To address the above-mentioned issues, ML 

models have been developed to predict PPD early, 

efficiently categorize large EHR data, reduce 

computational issues and improve decision-making 

in psychiatry [15]. For instances,  ML algorithm was 

developed [16] to predict the risk of preeclampsia in 

pregnant women by pre-processing and normalizing 

questionnaire EHR data, including socioeconomic 

health variables, treatments, medications, procedures, 

laboratory measures and demographic status. The 

basic characteristics were selected using structured 

queries and NLP [16] Finally, various ML models, 

such as Support Vector Machine (SVM), Random 

Forest (RF), Decision Tree (DT), Logistic Regression 

(LR), XGBoost (XGB) and Multilayer Perceptron 

(MLP) were used to identify shared patterns among 

characteristics that provide the greatest degree of 

result class discrimination for PPD identification. 

However, this model considers common 

attributes of PPD patients, including intellectual well-

being, personality characteristics, information 

positions, wellness assistance, cognitive wellness 

background, recently treated mental disorders during 

pregnancy, additional obstetrics or health-related 

illnesses and other essential symptoms. However, it 

needs to consider additional physiological attributes 

like mental health and behavior changes to predict the 

mental status of women with PPD risk. Additionally, 

cost-effective and innovative methods are needed to 

identify individuals with PPD and detect potential 

development tendencies. 

In this paper, the cost-effective model OPOMLP 

is developed for the PPD prediction using diverse 

PPD attributes including physiological attributes 

(mental health and mood changes from the initial 

day), patients demographic status, mental health 

history and vital signs. Initially, the API services of 

Twitter and Instagram is used to get tweets and 

comments shared by health care professionals. Then, 

the feature extraction is performed using the LIWC 

and LDA schemes to extract the attributes regarding 

mental health and mood changes of the women’s with 

PPD. The extracted features are trained using MLP 

for PPD prediction.  But, the parameters of MLP were 

not optimized properly which leads to computational 

complexities in the PPD prediction. The weights 

initialization and the hyper-parameters of MLP is 

optimized simultaneously by using an OOA.  

Some classical metaheuristic optimization 

models like Four Directed Search [17], Total 

Interaction [18] Walk-Spread [19] and AttackLeave 

[20] struggles with non-linear, discontinuous, non-

differentiable and high-dimensional optimization 

problems, leading to unfavorable solutions due to 

poor local optimality. Also, the performance of these 

models does not guarantee its similar performance in 

solving other optimization problems.  

OOA is also metaheuristic optimization 

algorithm derived from osprey bird hunting behavior, 

offering unique advantages. It mimics the behavior of 

osprey birds, aiming to find the global optimum while 

minimizing local optima. This makes OOA suitable 

for complex optimization issues. It is flexible, 

converges quickly and simplifies implementation and 

tuning for specific problems. OOA is robust, 

withstands noise and uncertainty and doesn’t require 

the gradient of the objective function, making it 

suitable for non-differentiable or expensive 

optimization problems. 

By considering the advantages of OOA method 

will identify the ideal hyperparameter space regions 

for classification with less time and computational 

resources by analyzing the relationship between each 

hyperparameters of MLP. Finally, the layers of MLP 

are optimized using OOA (OPOMLP) which is 

employed for the final PPD prediction. Thus, this 

OPOMLP algorithm enhances the efficiency of 

predicting women’s who are at high risk towards the 

PPD with low cost resources. 
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The remaining portions of this paper are prepared 

as, various existing methods used to identify and 

categorize PPD. The suggested PPD model is 

presented in Section III. The performance assessment 

of the existing and suggested models is given in 

Section IV. The complete investigation is summed up 

in Section V which also recommends the future scope. 

2. Literature survey 

A predictive model was developed [21] for PPD 

depression using ML model. The model used 

pregnancy risk assessment monitoring system data to 

analyze imbalances between groups, predicting PPD 

using RF, SVM and LR. But, accuracy of this model 

was low as it trained with limited dataset.  

   An ML model for PPD detection was created 

[22].  The gradient-boosted DT algorithm was 

utilized to extract clinical characteristics from EHR 

data, which were then integrated into an ML model 

for automated risk analysis for early PPD prediction 

tasks. However, this accuracy was inefficient due to 

inappropriate bias selection. 

A women with depressive postpartum symptoms 

was predicted [23] with ML using clinical, 

demographic and psychometric data from postpartum 

questionnaires. The collected dataset was pre-

processed and normalized using K-Nearest 

Neighbour (KNN) model. Then the obtained data was 

given as input to the ML model to predict the 

depressive postpartum depression. However, this 

model results with lower F1-Score evaluation.  

 ML approach was constructed [24] for early 

detection of PPD in Bangladesh. The survey on 

socio-demographic questions and EPDS data was 

collected, pre-processed and augmented using 

SMOTE and PPD detection was performed using 

SVM, RF, LR and XGBoost. But, unbalanced sample 

distribution in the dataset may affect the accuracy 

results.  

In order to predict PPD, a ML approach was   

constructed [25]. The RF model was used to select 

relevant features, while the Extremely Randomized 

Trees (XRT) model was trained to anticipate PPD 

symptoms and identify risk variables. However, high 

class disparity in training models hinders precise 

prediction due to reduced accuracy.  

ML model predicted [26] women who are 

suffering with PPD. The data, including mother’s 

relatives and information-related positions was pre-

processed and standardized using Min-Max 

normalization. It was then used to predict PPD risk 

levels using Feed-Forward Neural Network 

(FFANN), RF and SVM. However, insufficient data 

samples leads to degrade the accuracy performance. 

A DT model was developed [27] to predict the 

likelihood of recurrent post-traumatic stress disorder 

in pregnant women. The model divided women into 

two categories: Stable-High-PTS-FC and Stable-

Low-PTS-FC and used implicit class assessment to 

identify women susceptible to Stable-High PTS-FC 

for early prognosis. However, when the data was 

increased, the performance accuracy decreased.  

A prenatal depression assessment model was 

developed [28] using ML model, pre-processed and 

normalized EHR data from a large urban hospital. 

The data was analyzed using Shapley Addition 

Elucidation, Diversed Impression and Equivalent 

Opportunity Difference and fed into an elastic net to 

classify and predict PPD stages. But, this model 

failed to identify the optimal features subset which 

lowers the accuracy rate. 

A LR model was employed [29] to detect PPD 

using HER data. Four models were developed using 

distributed RF and LR models, including socio-

demographic data, pre-pregnancy mental health data, 

recursive feature removal and simplified pre-

pregnancy mental health factors. But, the model’s 

accuracy were significantly lower due to its training 

on a limited dataset. 

An optimization ML model was developed [30] 

for assessing PPD risk and implementing preventive 

interventions. It collected and pre-processed EHR 

data from caesarean delivery patients, used SHAP for 

data interpretation, developed Propensity Score 

Matching for PPD incidence comparison and 

employed XGB for early intervention. However, this 

accuracy results were reduced due to train the model 

with predefined parameters. 

3. Proposed methodology 

In this section, the complete illustration of 

OPOMLP model for early PPD prediction. The Fig. 

1 depicts the outline of the proposed model. Table 1 

lists the notations used in this study. 

3.1 Dataset description 

For this experiment, a Google form is used to 

deliver a questionnaire that collects 1503 records 

from a medical institution [31]. Out of the fifteen 

characteristics in the dataset, ten were chosen, nine 

of which were utilized for analysis and one of which 

was the objective feature. The choice for a PPD 

predictor was “Feeling Anxious,” the target features. 

Also, the Disease Control and Prevention website 

provides access to relevant keywords for extracting 

related terms from social media (instagram and 

twitter) [32], including terms for Symptoms of 

Postpartum Depression and Risk Factors for  
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Figure. 1 Entire pipeline of the proposed study 

 

 
Table 1. Lists of notations 

Notations Description 

𝑂𝐶𝑘,𝑅𝑊 LIWC  outcome 

𝑊𝐶𝑘,𝑅𝑤
 Weight of a Category 

 𝑑𝑊 Words category in the database 

𝑆  Text topic generated from the actual data 

𝑍 Input matrix column   

𝑍⊤ transpose matrix of  𝑍 

𝐿 Diagonal matrix with singular values  

�̂� Non-negative integer matrix with all 

diagonal members  

𝑉 Term-document matrix 

�̂�  Mean Square Error (MSE) 

approximation of  𝑉 

𝐻1𝑦 Node 𝑦 of the hidden layer 𝐻1, is the 

 and  

𝑊𝑥𝑦 Input gate of the 𝐻1 

𝐵𝑦 Bias 

𝐺 Population matrix of osprey's positions,  

𝐺𝑎 𝑎𝑡ℎ  osprey (i.e., a candidate solution)  

𝑔𝑎,𝑏  𝑏𝑡ℎ  size (i.e., problem variable) 

𝑛 Number  of ospreys 

𝑝 Number of  MLP hyperparameters 

ℒ𝑏 and 𝒰𝑏 Lower and upper bound of the 𝑏𝑡ℎ 

problem variable 

𝑟𝑎,𝑏 Random value ranging [0,1] 

𝐹 Fitness function values  

 𝐹𝑎   𝐹  for the 𝑎𝑡ℎ  osprey 

𝑇𝑎 Fish locations for the 𝑎𝑡ℎ osprey  

𝐺𝑎
𝑇1 Location of the 𝑎𝑡ℎ osprey based on the 

first phase of OOA 

𝑆𝑇𝑎 Selected fish for 𝑎𝑡ℎ osprey, is it 𝑏𝑡ℎ 

dimension  

𝑆𝑇𝑎,𝑏 Selected fish for 𝑎𝑡ℎ osprey with 𝑏𝑡ℎ 

dimension 

𝐽𝑎,𝑏 Random value in the range of {1,2} 

𝑒 Number of iterations  

𝐸 Greatest number of iterations 

 

Depression. To extract the keywords tweets and 

comments from the twitter and instagram, this model 

adopts for the API function Posted by Health Care 

Professionals. 

3.2 Data pre-processing 

In this model, various NLP approaches are used 

to pre-process the data, integrating gathered tweets 

and comments to provide an extensive collection of 

characteristics. In this stage, emojis, punctuation, 

stopwords, distinctive typescripts, superfluous space 

and special characters in tweets are removed. Before 

preprocessing, the tweet content is tokenized, 

stemmed and lemmatized. This step processes 

redundant or undesired terms stated in tweets and 

comments, such as typographical mistakes or 

acronyms of common nouns. After pre-processing, a 

few online behaviors of Twitter and users, such as 

emotion, event, online activity, user-specific features 

and consumption of depression-related texts, posts 

posted by physicians or depressed people, are 

extracted to estimate the PPD phases. By deleting 

duplicate data, these pre-processing methods may 

lower the overall quantity of information acquired 

from online social networks concerning PPD 

instances. In addition to these variables, attributes 

from online social networks are acquired in order to 

train the MLP network model. 

3.3 Feature extraction 

Following the collection of the dataset, the feature 

extraction approaches listed below are used to extract 

the physiological aspects of the women’s sufferings 

from PPD phases. 

3.3.1 LIWC feature extraction 

LIWC is a feature extraction software technique 

that gathers and classifies language features based on 

psychological factors. Based on the LIWC lexical 

dictionary, the proportion of all mental health classes 

for every woman afflicted with PPD conditions. 

Consider, the weight of a category 𝑊𝐶𝑘,𝑅𝑤  

determined by the cumulative amount of instances of 

the words in that category in the database  𝑑𝑊. The 

outcome of LIWC  (𝑂𝐶𝑘,𝑅𝑊) for all 𝐶𝑘 classes is then 

normalized by dividing 𝑊𝐶𝑘,𝑅𝑊  in Eq. (1) by the 

overall number of data instances in the dataset 𝑅𝑤. 

 

𝑂𝐶𝑘,𝑅𝑊 =
𝑊𝐶𝑘,𝑅𝑊

𝑑𝑊
                             (1) 

 

LIWC attributes are physiological words such as 

a woman’s mental health behavior that varies 

considerably from mood swings in women the 

previous day. It identifies phrases that depressed 
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patients often use and that are associated with their 

psychological actions as a result of their 

psychological backgrounds (e.g., sentiments, 

happiness, regrets and sorrow). 

3.3.2 LSA Feature Extraction 

It is also known as Latent Semantic Indexing 

(LSI), is an unsupervised indexing approach used in 

natural language processing that retrieves 

semantically linked terms from text sources. The co-

occurrence of the approach demonstrates the 

relationships between the phrases used in the 

document’s sentences to incorporate Singular Value 

Decomposition (SVD). SVD categorizes words and 

texts, preserving noiseless data for optimal retrieval. 

It emphasizes pattern relevance in content. LSI uses 

SVD to find semantically related terms hidden in a 

given material. The LSI approach develops a term 

document matrix and the words from the document 

generate the SVD to find the appropriate word. 

Assume  𝑉  is a vector space model-determined 

term-document matrix. 

 

𝑉 = 𝑆𝐿𝑍⊤                                                            (2)                                                                                         

 

In above Eq. (2),  𝑆  and 𝑍  are the orthogonal 

matrices. 𝑆 specifies the topic of the text generated 

from the original with the most relevant word is put 

in the matrix’s first column. As the extracted notion, 

𝑍  represents the input matrix column and the 

transpose matrix is provided as 𝑍⊤ . 𝐿 is a diagonal 

matrix with diagonal components representing 

singular values in decreasing order. The term-

document matrix is correlated using LSI by choosing 

bases with the greatest singular values. If �̂�  is a 

matrix with all diagonal members except the 

𝑁 −largest set to zero, the term-document matrix (𝑉) 
may be approximated as in Eq. (3) 

 

�̂� = 𝑆�̂�𝑍⊤                                                        (3) 

 

The resulting matrix �̂� is the best mean square 

error (MSE) approximation of  𝑉. According to LSI, 

reducing the tiny single values in L reveals a latent 

semantic pattern exhibited by word usage across texts. 

The LSA employs a database with an arbitrary mix of 

latent themes, where every topic is described by a 

distribution over terms such as physiological 

terminology frequently utilized by PPD patients. 

Thus, both the LIWC and LSA methods are used to 

extract physiological variables linked to women’s 

mental health and behavioural changes from the 

online twitter tweets and instagram comments. 

3.4 Proposed PPD prediction model 

For the final prediction result, the retrieved 

features from LIWC and LSA are input into the 

OPOMLP model. 

3.4.1 MLP structure 

MLP is a back-propagation-based artificial neural 

network (ANN) that is extensively used in supervised 

learning for data categorization and prediction. MLP 

is made up of numerous layers of neurons organized 

in a directed graph, with each layer completely linked 

to the next. A directed graph connects every layer of 

neurons in an MLP, creating an organized network of 

connections between them. Weights and polarization 

units are often modified throughout training. It 

should be emphasized that, with the exemption of the 

input nodes 𝑄, each node in the network is a neuron 

with a complex activation function, as shown in Eq. 

(4). 

 

𝐻1𝑦 = 𝑓(∑ 𝑊𝑥𝑦
𝑛
𝑥=1 𝑄𝑥 + 𝐵𝑦)                           (4)                                                                                         

 

Loss In Eq. (4), 𝐻1𝑦  denotes the node 𝑦 of the 

hidden layer 𝐻1, 𝑊𝑥𝑦 is the input gate of the 𝐻1 and 

𝐵𝑦 depicts the bias. functions play an important role 

in MLP network training since they represent feature 

vectors and are assessed based on the structure’s 

ability to model them. MLPs do not need vast 

volumes of data, making them appropriate for a wide 

range of applications. Since the MLP parameters 

were not adequately tuned, this results in 

computational difficulties in the PPD prediction. The 

OOA is employed in this prediction model to fine-

tune the parameters of MLP. 

3.4.2 Osprey optimization for hyperparameter tuning 

of MLP 

The capacity of the nocturnal bird of prey known 

as the osprey to grab fish and move them to a more 

suitable position might serve as inspiration for a 

novel optimization technique. The OPOMLP 

mathematical modelling is detailed further below. 

A. Initialization 

The suggested OOA is a population-based 

strategy that finds an appropriate solution based on 

the exploration capacity of its population members 

via a repetition-based procedure. Based on its 

location in the search space, each osprey in the OOA 

population determines issue parameters, allowing 

every osprey a possible solution. Every osprey in the 

OOA population is a possible solution because it 

identifies decisions about the problem’s variables 
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based on its position in the search space. First, a 

matrix is used to represent the OOA population as 

follows in Eq. (5). 

 

𝐺 =

[
 
 
 
 
𝐺1
⋮
𝐺
⋮
𝐺𝑛]
 
 
 
 

𝑛×𝑝

=

[
 
 
 
 
𝐺1,1 ⋯ 𝐺1,𝑏 ⋯ 𝐺1,𝑝
⋮ ⋱ ⋮ ⋰ ⋮

𝐺𝑎,1 ⋯ 𝐺𝑎,𝑏 ⋯ 𝐺𝑎,𝑝
⋮ ⋰ ⋮ ⋱ ⋮

𝐺𝑛,1 ⋯ 𝐺𝑛,𝑏 ⋯ 𝐺𝑛,𝑝]
 
 
 
 

𝑛×𝑝

 (5) 

 

Then, the location of ospreys in the search space 

is initialized randomly by Eq. (6). 

 

𝑔𝑎,𝑏 = ℒ𝑏 + 𝑟𝑎𝑏 ∙ (𝒰𝑏 − ℒ𝑏), 𝑎 = 1, … , 𝑛;  𝑏 =

1,… , 𝑝                              (6) 

 

In Eqs. (5) and (6),  𝐺 denotes the population 

matrix of osprey’s positions, 𝐺𝑎    indicates the 𝑎𝑡ℎ  

osprey (i.e., a candidate solution), 𝑔𝑎,𝑏  indicates its 

𝑏𝑡ℎ  size (i.e., problem variable), 𝑛 represents to the 

amount of ospreys, 𝑝 denotes the numeral of problem 

variables (i.e., number of hyperparameters of the 

MLP model), 𝑟𝑎,𝑏 is the random value ranging [0,1], 

ℒ𝑏 and 𝒰𝑏  represents the lower and upper bound of 

the 𝑏𝑡ℎ problem variable, respectively. The objective 

(fitness) function of a problem such as prediction 

accuracy is computed by comparing each osprey as a 

candidate solution and the evaluated values can be 

depicted using a vector as: 

 

𝐹 =

[
 
 
 
 
𝐹1
⋮
𝐹𝑎
⋮
𝐹𝑛]
 
 
 
 

𝑛×1

=

[
 
 
 
 
𝐹(𝐺1)
⋮

𝐹(𝐺𝑎)
⋮

𝐹(𝐺𝑛)]
 
 
 
 

𝑛×1

    (7) 

 

In Eq. (7), 𝐹  is the vector of fitness function 

values and 𝐹𝑎   means the derived fitness function 

value for the 𝑎𝑡ℎ  osprey. The calculated values of the 

objective function are critical for obtaining the 

feasibility of proposed solutions. The finest value 

represents the best potential solution, while the worst 

value represents the poor solution. Updating the 

ospreys’ location in the search space necessitates 

in changing the best candidate solution throughout 

each iteration of the search process. 

B. Exploration - Searching Location and Hunting 

Prey 

Because of their keen vision, ospreys are able to 

see fish underwater and attack them. This natural 

behavior serves as the basis for modeling the first 

phase of the OOA population update. The osprey’s 

location in the search space is significantly altered by 

this simulation, improving OOA’s search ability in 

locating ideal regions and avoiding local optima. 

Underwater fishes with higher fitness function values 

for each osprey’s location in the exploration space are 

taken into account by the OOA design. Each osprey’s 

group of fish is illustrated by 

 

𝑇𝑎 = {𝐺𝑢|𝑢 ∈ {1, … , 𝑛}⋀𝐹𝑢 < 𝐹𝑖} ∪ {𝐺𝑏𝑒𝑠𝑡}  (8) 

 

The collection of fish locations for the 𝑎𝑡ℎ osprey 

is denoted by 𝑇𝑎  in Eq. (8) and the best osprey or 

optimum candidate solution is denoted by 𝐺𝑏𝑒𝑠𝑡. One 

of these fish is randomly located by the osprey which 

then strikes it. An osprey’s new position is 

ascertained by tracking its movement in relation to 

the fish, which is specifically defined as 

 

𝑔𝑎,𝑏
𝑇1 = 𝑔𝑎,𝑏 + 𝑟𝑎,𝑏 ∙ (𝑆𝑇𝑎,𝑏 − 𝐽𝑎,𝑏 ∙ 𝑔𝑎,𝑏)            (9) 

 

𝑔𝑎,𝑏
𝑇1 =

{
 

 𝑔𝑎,𝑏
𝑇1 , ℒ𝑏 ≤ 𝑔𝑎,𝑏

𝑇1 ≤ 𝒰𝑏

ℒ𝑏 , 𝑔𝑎,𝑏
𝑇1 < ℒ𝑏

𝒰𝑏 , 𝑔𝑎,𝑏
𝑇1 > 𝒰𝑏

                     (10) 

 

The osprey’s previous position is modified by this 

new location as the fitness function value increases: 

 

𝐺𝑎 = {
𝐺𝑎
𝑇1 , 𝐹𝑎

𝑇1 < 𝐹𝑎
𝐺𝑎 , 𝑒𝑙𝑠𝑒

                          (11) 

 

In Eqs. (9), (10) and (11), 𝐺𝑎
𝑇1  defines the 

subsequent location of the 𝑎𝑡ℎ  osprey based on the 

first phase of OOA, 𝑔𝑎,𝑏
𝑇1  indicates its 𝑏𝑡ℎ dimension, 

𝐹𝑎
𝑇1  indicates its fitness function value, 𝑆𝑇𝑎  denotes 

the selected fish for 𝑎𝑡ℎ  osprey, 𝑆𝑇𝑎,𝑏  is it 𝑏𝑡ℎ 

dimension and 𝐽𝑎,𝑏  is random value in the range of 

{1,2}. 

C. Exploitation - Moving the Fish to the Safe 

Location 

Once the osprey has caught a fish, it brings it to a 

secure area so it may be eaten. This natural behavior 

serves as the basis for the second step of updating the 

OOA population. As a result, the osprey’s location in 

the search space is somewhat altered, which 

strengthens the OOA’s ability to utilize local search 

and causes it to converge toward better solutions that 

are closer to found solutions. 

 

𝑔𝑎,𝑏
𝑇2 = 𝑔𝑎,𝑏 +

ℒ𝑏+𝑟𝑎𝑏∙(𝒰𝑏−ℒ𝑏)

𝑒
, 𝑎 = 1,… , 𝑛; 𝑏 =

1,… , 𝑝; 𝑒 = 1,… , 𝐸               (12) 
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Figure. 2 Block structure of OOA model for MLP optimization 

 

 

𝑔𝑎,𝑏
𝑇2 =

{
 

 𝑔𝑎,𝑏
𝑇2 , ℒ𝑏 ≤ 𝑔𝑎,𝑏

𝑇2 ≤ 𝒰𝑏

ℒ𝑏 , 𝑔𝑎,𝑏
𝑇2 < ℒ𝑏

𝒰𝑏 , 𝑔𝑎,𝑏
𝑇2 > 𝒰𝑏

             (13) 

 

𝐺𝑎 = {
𝐺𝑎
𝑇2 , 𝐹𝑎

2 < 𝐹𝑎
𝐺𝑎 , 𝑒𝑙𝑠𝑒

               (14) 

 

It is modelled by finding a new random place 

which is safe for each member of the group to eat the 

fish in Eqs. (12) and (13) Subsequently, the previous 

position of the related osprey is altered if the fitness 

function value is increased in this new place as 

follows in Eq. (14).  The new position of the 𝑎𝑡ℎ 

osprey corresponding to the second stage of OOA is 

defined by 𝑔𝑎
𝑇2  in Eqs. (12), (13) and (14). 

𝑔𝑎,𝑏
𝑇2  denotes its 𝑏𝑡ℎ dimension, fitness function value 

is depicted by 𝐹𝑎
𝑇2 , the number of iterations is 

indicated by 𝑒 and the greatest number of iterations is 

denoted by 𝐸. 
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Fig. 2 depicts the OOA’s general procedure and 

Algorithm 1 describes the OOA’s pseudocode for 

hyperparameter tweaking. As a result, the OOA is an 

iteration-based method that adjusts the osprey 

locations in the first iteration, which compares the 

values of the fitness function in the second iteration 

and modifies the optimal candidate solution in the 

third. In the last iteration, the algorithm changes the 

locations of the ospreys. The optimal candidate 

solution (best hyperparameters) captured throughout 

the iterations is taken into consideration. 

 

Algorithm 1: Hyperparameter tuning using OOA 

Input: Set of hyperparameters for the MLP model 

Output: Optimal hyperparameters 

Begin 

//Initialization stage 

Initialize the OOA population size 𝑛 and the total 

number of iterations 𝐸; 

Define the fitness function (prediction accuracy) 

Create the initial population matrix randomly 

using Eqs. (5) and (6) 

Determine the fitness function using Eq. (7)  

𝑓𝑜𝑟 (𝑒 = 1: 𝐸) 
𝑓𝑜𝑟(𝑎 = 1: 𝑛) 

//Exploration Stage 

Update fish locations for the 𝑎𝑡ℎ  OOA member 

using Eq. (8) 

Determine the chosen fish by the 𝑎𝑡ℎ  osprey 

randomly 

Determine the new location of the 𝑎𝑡ℎ OOA 

member using Eq. (9) 

Verify the boundary criteria for the new location 

of OOA members using Eq. (10)  

Update the  𝑎𝑡ℎ   OOA member using Eq. (11) 

//Exploitation Stage: 

Compute the new location of the 𝑎𝑡ℎ OOA 

member of OOA using Eq. (12) 

Verify the boundary criteria for new location of 

OOA members using Eq. (13) 

Update the 𝑎𝑡ℎ  OOA member using Eq. (8)  

𝑒𝑛𝑑 𝑓𝑜𝑟  

𝑒𝑛𝑑 𝑓𝑜𝑟  

Return the best solution (i.e., optimal 

hyperparameters) 

End 

 

3.4.3 Model Training 

The OPOMLP model for PPD prediction is 

trained with a set of optimal hyperparameters listed 

in Table 1. Moreover, the trained model can be 

applied to accurately predict the women’s depression 

from the tweets and comments shared by them 

gathered from the online media.  Thus the proposed 

OPOMLP model helps to identify the individuals 

suffering from PPD with low computational cost and 

time. 

4. Experimental results 

This section evaluates the performance of 

OPOMLP in comparison to other existing models, 

namely MLP [16], XRT [25], DT [27], LR [29] and 

XGB [30]. 

4.1 Experimental setup and performance metrics 

The implementation of both proposed and 

existing model is executed on a system with an Intel® 

CoreTM i5-4210 CPU @ 3GHz, 4GB RAM and a 

1TB HDD running on Windows 10 64-bit which is 

carried out in Python 3.11 language. From the 

collected dataset, 1503 instances have been obtained 

which is divided into 70% for training (1052) and 

30% for testing (451). Table 2 presents the 

parameters and their values utilized for simulating 

both existing and proposed OPOMLP model to 

measure performance.  The model’s ability to predict 

PPD is assessed using the performance indicators 

listed below. 

• Accuracy: It is computed as the proportion of 

accurately forecasted samples to overall amount 

of samples. 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
   (15) 

 
 
Table 2. Experiment parameters for existing and proposed 

model 

Parameters Search Space Optimal 

Range 

No. of. Hidden 

layers 

[1, 3, 5, 7] 3 

Word 

embedding 

 size 

[128, 256, 520] 256 

Learning rate [0.0001, 0.1] 0.001 

 

Optimizer 

[Stochastic gradient 

descent, Adam, 

RMSProp  Adagrad] 

Adam 

Dropout rate [0.1, 0.15, 0.2] 0.15 

Weight decay [0.0001, 0.001] 0.0001 

Batch size [20, 40, 60, 80] 80 

Momentum [0.4, 0.8, 0.12, 0.16] 0.12 

Activation 

function 

[linear, ReLU, tan-

sigmoid, swish] 

ReLU 

Loss function [MSE, Cross-entropy] MSE 
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Figure. 3 Performance Comparison of Proposed and Existing for PPD 

 

 

In Eq. (15), TP refers to the scenario in which the 

model accurately predicted a positive PPD cases 

when the actual case was indeed positive.  TN alludes 

to the circumstances in which the classifier properly 

predicted a negative PPD when the actual class was 

negative. FP represents a situation in which the model 

detected a positive PPD case while the actual case 

was negative. FN denotes a condition in which the 

model anticipated a negative PPD case when the 

actual case was positive. 

• Precision: The proportion of true positive 

predictions (properly predicted positive PPD 

instances) out of all positive predictions by the 

model is calculated in Eq. (16). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃 
                                                (16) 

 

• Recall:  It calculates the proportion of genuine 

positive forecasts out of all positive occurrences 

in the dataset. It is mentioned in Eq. (17). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 
                                            (17) 

 

• F1-score: It is the partials average of precision 

and recall. It is shown in Eq. (18). 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                  (18) 

 

Fig. 3 displays the efficacy of various models on 

gather PPD dataset for PPD recognition. The 

OPOMLP model has a higher success rate in 

accuracy, precision, recall and F1-score when 

compared to all other previous models.   

Accordingly, it is observed that the accuracy of 

the OPOMLP is 5.6% superior to MLP, 4.08% higher 

to XRT, 2.73% higher to DT, 1.94% higher to LR and 

1.67% higher to XGB, respectively.  

The precision of the OPOMLP is 5%, 3.81%, 

2.81%, 2.19% and 1.25% higher when compared to 

the MLP, XRT, DT, LR and XGB   models, 

respectively. 

The recall of the OPOMLP model is 5.75%, 

4.67%, 3.12%, 1.75% and 1.09% higher than the 

MLP, XRT, DT, LR and XGB models, respectively. 

Similarly, the F-measure of the OPOMLP model 

is 5.13%, 4.41%, 2.89%, 2.39% and 0.90% higher 

than the MLP, XRT, DT, LR and XGB respectively. 

4.2 Discussion 

The existing deep learning models MLP [16], 

XRT [21], DT [23], LR [25] and XGB [26] can detect 

the PPD from the dataset, but they do not effectively 

optimize the parameters resulting in high 

computational complexity. In contrast, the proposed 

OPOMLP model specifically addresses this 

limitation and efficiently learns this information, 

resulting in high PPD detection ability. As because, 

the proposed model uses LIWC and LSA to learn 

complex features from input data, resulting in 

improved results with a large feature set. It also 

employs OOA for fine-tuning MLP hyperparameters, 

reducing computational time and resources while 

enhancing accuracy for effective global solutions for 

PPD recognition. From the above evaluation, it is 

clear that proposed OPOMLP model provides highest 

performances compared to other existing models. 

Thus, the proposed model can effectively address the 

limitations discussed in Section 2 and achieve higher 

accuracy in detecting PPD in contrasted to other 

exiting models. 
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5. Conclusion 

In this paper, OPOMLP is proposed for PPD 

prediction using online social network data. The data 

is collected through the API function of social media 

platforms like Twitter and Instagram, Then, an 

additional psychological attributes like mental health 

and behavioural changes are extracted using LIWC 

and LSA methods. Finally, The OPOMLP network is 

trained using these extracted attributes, along with 

demographic status, mental health history and vital 

signs for the final prediction of PPD. The OPOMLP 

model achieves an accuracy of 96.12% compared to 

classical PPD detection models with less 

computational complexities in the prediction of PPD. 

6. Main text 

Type your main text in 11-point Times New 

Roman, single-spaced. Do not use double-spacing. 

All paragraphs should be indented 1.5 times character 

size. Be sure your text if fully justified—that is, flush 

left and flush right. Please do not place any additional 

blank lines between paragraphs. 
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