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Abstract: The focus of this study is a relatively new development in the field of control: machine learning control. 

This study offers a mathematical framework for machine learning control and explores three symbolic regression-

based techniques for supervised and unsupervised learning. One of the challenges associated with machine learning 

control pertains to the control general synthesis. This entails figuring out a control function contingent upon the 

object’s state, guaranteeing the attainment of the control objective while optimizing the quality criterion value across 

all possible initial states within a permissible zone where finding a satisfactory solution occurs within the space of 

codes. The implementation of the small variations principle within the basic solution is suggested as a viable technique 

for developing the algorithms of search. This paper extensively discusses three symbolic regression techniques, 

including Cartesian genetic programming (CGP), synthesized genetic programming (SGP) and parse-matrix evolution 

(PME). Notably, synthesized genetic programming, being a novel technique, and PME get utilized for the first time to 

address the general synthesis of control problems. The mathematical expression’s SGP code is a six-row integer matrix; 

the first row of the matrix represents the functions that take two arguments, while the second and fourth rows represent 

the functions that take one argument. The third and fifth rows represent the arguments of the mathematical expression, 

and the sixth row represents the priority. The computational example demonstrates the potential of symbolic regression 

approaches as unsupervised machine learning control techniques for addressing the machine learning control challenge 

of general synthesis of control in order to achieve the stability of a mobile robot system. Likewise, practical experience 

shows that synthesized genetic programming has faster efficiency than Cartesian genetic programming and parse-

matrix evolution in discovering solutions, about 2.33 and 2.11 times on average, respectively. 

Keywords: Unsupervised machine learning control, Symbolic regression, Cartesian genetic programming, 

Synthesized genetic programming, Parse-matrix evolution, Mobile robot. 

 

 

1. Introduction 

One of the most significant challenges in control 

theory is the general synthesis of control systems. 

The primary characteristic of the challenge 

concerning the general synthesis of the control 

system pertains to acquiring a control function under 

a range of initial conditions. The arguments of this 

control function structure consist of the various 

components that make up the state vector of the 

object. When the discovered control function is 

replaced in the model’s right part of the control object, 

an ordinary differential equation system that does not 

have a vector of free control is produced. This kind 

of model is usually referred to as the model of closed-

loop control. The primary distinction and intricacy of 

the synthesis problem, in contrast to the optimal 

control problem, lies in the presence of initial 

conditions within either the whole state space or some 

particular area within it. Additionally, the synthesis 
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problem involves determining the control as a 

multidimensional function derived from the 

coordinates of the state space for multiple initial 

conditions. In contrast, the optimal control problem 

seeks to find the control as a function of time for a 

single initial condition. 

Although the control synthesis problem is crucial, 

precise techniques for tackling it have yet to be 

available. Analytical solutions for the control 

synthesis problem are only available for simple 

objects of limited size. Analytical solutions for most 

applied control objects are generally unattainable. 

In the 1950s [1], R. Bellman proposed the 

Dynamic Programming (DP) approach to tackle the 

control synthesis problem. He derived the dynamic 

programming equation, a partial differential equation 

system referred to as the optimality equation, the 

Bellman equation, or the Hamilton-Jacobi-Bellman 

(HJB) equation for continuous-time optimal control 

problems [2-4]. 

A general solution to the Bellman equation is 

necessary to address the problem of control system 

synthesis analytically. Obtaining an analytical 

solution employing this technique is nearly 

impossible for most practical problems. Existing 

solutions only analyze the Bellman equation for 

systems of low order. 

When dealing with nonlinear systems, the DP 

approach can be used in conjunction with the HJB 

equation to find a numerical solution. Yet, the 

primary limitation of dynamic programming methods 

remains the computational complexity needed to 

define the value function and the restriction to a 

single initial condition because of the “curse of 

dimensionality”. Consequently, this numerical 

approach is not employed to address the general 

synthesis problem of control. Present-day methods 

like Adaptive Dynamic Programming (ADP) [5, 6] 

and Reinforcement Learning (RL) [7, 8] are gaining 

popularity as effective methodologies of machine 

learning for tackling control problems in nonlinear 

systems. These techniques involve using neural 

networks to numerically approximate solutions to the 

HJB equation. Nevertheless, these methods 

encounter numerous computational challenges, 

mainly concerning establishing and training the 

neural networks employed. 

Not long after the formulation of the problem of 

optimal control [9], V.G. Boltyanski dubbed the 

problem of general synthesis of control this name and 

came up with its formulation in the late 1960s [10]. 

Using Pontryagin’s Maximum Principle (PMP), 

Boltyanskii and Pontryagin addressed numerous 

general synthesis problems for plain models of 

control objects. They yielded control functions based 

on logical deductions by analyzing the optimal 

trajectories’ set. Extending this technique to control 

higher dimensions was not feasible. 

The control synthesis problem is currently being 

solved using many analytical techniques, such as 

integrator backstepping [11, 12], analytical design of 

aggregated regulators (ADAR) [13, 14], and control 

Lyapunov functions [15, 16]. 

The researcher manually implements the 

backstepping technique. Applying it yields good 

results for systems of low order. The primary 

limitation of this control technique is that it pre-

demands a strict feedback form-based dynamic 

system in order to be controlled. Another flaw in this 

control design is the presence of an unavoidable 

phenomenon called “explosion of complexity” on top 

of these disadvantages [12]. 

The ADAR technique is effective for specific 

tasks. It is essential to consider that the control vector 

typically has fewer dimensions than the state vector, 

resulting in multiple solutions for the nonlinear 

equations’ system regarding control. Additionally, 

the ADAR technique is manual and not easily 

automated, similar to backstepping. Previous 

instances of this technique effectively solving the 

synthesis problem have only included low-order 

systems. Generally speaking, almost all analytical 

techniques for solving control synthesis problems 

have an identical fundamental drawback: they are 

type-dependent concerning the nonlinear differential 

equations describing the model of the control object. 

Popular techniques such as neural network 

controllers [17, 18], fuzzy logic controllers [19, 20], 

and PID controllers [21, 22] are predominantly 

utilized to address the control synthesis problem. 

Each of these techniques specifies the control 

structure and optimally adjusts merely the parameters 

based on the functional perspective. Consequently, 

prior knowledge about the object is necessary for the 

developer to establish the controller structure 

accurately. 

Machine learning control represents an 

innovative approach in the control realm [23]. The 

main distinctive feature of this novel methodology 

for establishing a control system lies in using 

symbolic regression techniques to explore the proper 

structure and parameters of the desired control 

function. 

Symbolic regression techniques employ an 

automated process to seek out the mathematical 

expressions that represent the control functions. 

Symbolic regression employs a predetermined set of 

basic functions, such as cos, minus, multiplication, 

and others, to design an effective structure for the 

control function. At the same time, it optimizes the 
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necessary parameters for the controller. These 

techniques differ based on the encoding type of the 

mathematical expressions and use a special kind of 

genetic algorithm. Consequently, a researcher is 

instantly provided with the effective structure of the 

controller and the suitable parameters. 

This article primarily examines the utilization of 

symbolic regression in the context of control general 

synthesis problem-solving. Genetic programming 

(GP) was the technology predominantly that 

employed to showcase effective solutions for applied 

control challenges [24].  

The most important contribution that this article 

makes is to: 

• The invention of a novel symbolic regression 

technique, known as “synthesized genetic 

programming” (SGP), which involved the 

introduction of innovative coding concepts 

such as “priority” and “pivot,” which had not 

been employed in earlier symbolic regression 

techniques. 

• Employing the novel technique of 

“synthesized genetic programming” (SGP) 

for the first time to solve the general 

synthesis problem in the control system. 

• Likewise, the traditional technique of “parse-

matrix evolution” (PME) was utilized for the 

first time to address the problem of control 

system general synthesis. 

• Utilizing the small variations principle of the 

basic solution in symbolic regression 

techniques led to the development of further 

techniques such as ‘‘variational synthesized 

genetic programming’’ (VSGP) and 

‘‘variational parse-matrix evolution’’ 

(VPME). 

• The acquired results validate the efficacy of 

the employed symbolic regression 

techniques (CGP, PME and SGP) as 

unsupervised machine learning control 

techniques, which can serve as universal 

numerical techniques for addressing the 

control general synthesis problem. 

• The solutions to the control general synthesis 

problem were used for the first time to 

compare symbolic regression techniques. 

The results indicated that the SGP method 

outperforms other methods in terms of speed 

when discovering solutions. 

The rest of this work is structured as follows: In 

Section 2, a mathematical framework of the control 

general synthesis problem as supervised and 

unsupervised machine learning control is offered. 

Section 3 describes the principle of the small 

variation of the basic solution. The three symbolic 

regression techniques are explained in Section 4. The 

results and discussion are presented for a mobile 

robot in Section 5, and Section 6 focuses on the 

conclusions of this work. 

2. The general synthesis of control as a 

machine learning-based control problem 

The control general synthesis problem in control 

theory refers to the challenge of determining a control 

function, also known as a control law, which is 

contingent upon the state of the controlled object. The 

design challenge of a feedback controller can be 

classified as a control synthesis problem, as these 

controllers generate control signals by considering 

the object’s state. The seeking for a control function 

of this nature needs to become seen as a machine 

learning control problem. 

Let us contemplate the formal articulation of the 

control synthesis problem. 

The mathematical model of the control object is 

expressed as a system of ordinary differential 

equation 

 

𝒙̇ = 𝒇(𝒙, 𝒖)      (1) 

 

with 𝒙 being a vector representing the state space, 

𝒙 ∈ ℝ𝒏, 𝒖 denotes a vector representing the control, 

𝒖 ∈ 𝑼 ∈ ℝ𝒎, and 𝑼 representing a compact set, 𝑚 ≤
𝑛.  

The set of initial conditions is provided as the 

domain 

 

𝐗0 ⊆ ℝ𝑛      (2) 

 

The terminal condition is provided 

 

𝒙(𝑡𝑓) = 𝒙𝑓 ∈ ℝ𝑛     (3) 

 

where 𝑡𝑓 represents the unidentified time required to 

move from any arbitrary initial condition 𝒙0 ∈ 𝐗0 to 

the terminal one in Eq. (3).  

The finishing time is limited 

 

𝑡𝑓 ≤ 𝑡+      (4) 

 

where 𝑡+ represents a predetermined positive value. 

It is vital to identify a control function in the 

prescribed form 

 

𝒖 = 𝒈(𝒙) ∈ 𝑼     (5) 
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where 𝒈(𝒙) ∶  ℝ𝑛 → ℝ𝑚 , that guarantees that the 

dynamic model’s expressed object 

 

𝒙̇ = 𝒇(𝒙,𝒈(𝒙))     (6) 

 

will reach the terminal condition in Eq. (3) from any 

initial state while optimizing the specified quality 

criterion  

 

𝐽＝∫…∫ ∫ 𝑓0(𝒙(𝑡, 𝒙0), 𝒖(𝑡))𝑑𝑥1
0 …𝑑𝑥𝑛

0𝑑𝑡 →
𝑡𝑓

𝑡0𝐗0

min
𝒖∈𝑼

        (7) 

 

The control synthesis problem in machine 

learning is possible to address through two 

approaches: supervised machine learning control and 

unsupervised machine learning control. 

2.1 Synthesis-based control as supervised 

machine learning control 

This methodology involves the utilization of a 

training set for the purpose of learning. In order to 

generate a set for training regarding the control 

general synthesis problem, this makes it is imperative 

to address the optimal control problem for various 

points inside the offered initial set. This process will 

yield optimal controls sets 

 

𝑼0 = {𝒉(𝑡, 𝒙0,1),… , 𝒉(𝑡, 𝒙0,𝐿)}   (8) 

 

and optimal trajectories 

 

𝐗̃ = {𝒙̃(𝑡, 𝒙0,1),… , 𝒙̃(𝑡, 𝒙0,𝐿)}   (9) 

 

Hence, in order to address the control general 

synthesis problem and determine the control function 

in the specified form as in Eq. (5), it suffices for 

approximating the training set in Eq. (9) based on the 

following criterion 

 

𝐽1 = ∑∑‖𝒙(𝑡𝑗, 𝒙
0,𝑖) − 𝒙̃(𝑡𝑗 , 𝒙

0,𝑖)‖

𝐾𝑖

𝑗=0

𝐿

𝑖=1

→ min
𝒈(𝒙)𝜖𝑼

  

(10) 

 

where 𝑡𝑗 = 0 , 𝒙(𝑡𝑗, 𝒙
0,𝑖)  is deemed to be a partial 

solution to Eq. (6) given the initial conditions 𝒙0,𝑖 . 

Similarly, 𝒙̃(𝑡𝑗, 𝒙
0,𝑖) is regarded as a partial solution 

to Eq. (9), 𝑖 ∈ {1,… , 𝐿}.  
Symbolic regression is utilized as well, as a 

means to address the approximation problem. The 

utilization of control general synthesis based on the 

optimal trajectories’ approximation enables the 

determination of a control function in Eq. (5) that 

achieves optimal control with a level of precision 

corresponding to the training set approximation. 

2.2 Synthesis-based control as unsupervised 

machine learning control 

The other technique directly seeks the control 

function by minimizing a quality criterion.  

The system’s initial conditions in Eq. (2) are 

represented by a set of points corresponding to the 

initial states 

 

𝑿0 = {𝒙0,1, … , 𝒙0,𝐿}               (11) 

 

The terminal state is defined as a specific point 

within the state space as in Eq. (3). 

The quality criterion is presented in the 

subsequent form 

 

𝐽2 = ∑ 𝑡𝑓,𝑖
𝐿
𝑖=1 + 𝑐1 ∑ ‖𝒙(𝑡𝑓,𝑖, 𝒙

0,𝑖) − 𝒙𝑓‖ → min
𝒖𝜖𝑼

 𝐿
𝑖=1

                 (12) 

 

where 𝑡𝑓,𝑖 is a period characterized by the attainment 

of the terminal goal in Eq. (3) starting from the initial 

one 𝒙0,𝑖 ,  𝑖 = 1,… , 𝐿 , 𝑐1  represents a weight 

coefficient. 

 

𝑡𝑓,𝑖 = {
𝑡,   if   𝑡 < 𝑡+ and ‖𝒙(𝑡, 𝒙0,𝑖) − 𝒙𝑓‖ ≤ 𝜀

𝑡+, otherwise                                                
(13) 

 

𝑖 = 1,… , 𝐿, 𝑡+ and 𝜀 are provided positive values. 

It is important to determine a control function in 

the subsequent form with the objective of minimizing 

functional in Eq. (12) 

 

𝒖 = 𝒈(𝒙𝑓 − 𝒙)               (14) 

 

where this control function represents a stabilization 

system for the control object in Eq. (1). 

The challenge for this methodology is navigating a 

vast and intricate search space within a non-

numerical area of functions’ codes where a specific 

singular metric does not exist. Perhaps this can 

elucidate the observation that symbolic regression 

techniques, despite their extensive range of capacities, 

have not yet established themselves as an effective 

tool for addressing the challenge of machine learning 

control. It is probable that the introduction of 

supplementary processes is necessary to make 

searching for the proper solutions easier and faster. 

An example of such a process could be the small 

variations principles of the basic solution. 
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3. Small variations principles of the basic 

solution 

The complexity of seeking an optimal solution in 

the code space is attributed to the categorization of 

this work within the realm of non-numerical 

problems related to optimization. In the context of 

these particular search spaces, the utilization of 

evolutionary algorithms involving arithmetic 

operations is unfeasible. Hence, the genetic algorithm 

serves as a prominent search algorithm inside a space 

of codes, employing a methodology that does not rely 

on arithmetic operations during its iterative process.  

Research on this problem has resulted in the 

development of the small variations principle of the 

basic solution. This technique enables the discovery 

of near-effective solutions within an acceptable 

timeframe. In order to implement the principle, small 

variations are first made within the code of the 

symbolic regression technique. A small-dimensional 

integer vector represents the small variation. The 

provided code includes the necessary information to 

execute the small variation. Hence, one possible 

solution, referred to as a basic solution, can be 

encoded using the symbolic regression technique. 

The researcher picks up the basic solution and 

represents the solution that matches up closest with 

the effective solution of the problem. A small 

variation refers to a negligible alteration in the code 

that results in the emergence of an additional possible 

solution. Based on this principle, other possible 

solutions can be represented by coded sets of small 

variations of the proposed basic solution. In order to 

generate different possible solutions, it is vital to 

application a small variations vector to the basic 

solution. The new name of variational genetic 

algorithm (VarGA) is employed because the genetic 

algorithm utilizes genetic operations on a variation 

vector to search for the effective solution. This 

VarGA focuses on exploring the ordered sets space 

of vectors with small variations in order to get the 

effective solution. Continuing the search process and 

reaching a specified number of generations, the basic 

solution is substituted with the most effective 

solution discovered up to that point. This strategy 

proves to be highly advantageous for the search for 

control systems, as it capitalizes on the expertise of 

numerous control specialists who possess the ability 

to intuitively devise effective control systems or draw 

upon their experiential knowledge. The control 

system in question can be regarded as a basic solution. 

In this scenario, the researcher has the ability to 

intervene in the machine’s search process and 

provide guidance on the specific areas to explore in 

order to identify the most effective solution. 

In order to elucidate the concept of variation, it is 

necessary to introduce a vector denoting the extent of 

variation 

 

𝒲 = [𝓌1 …𝓌𝑑]𝑇               (15) 

 

where 𝑑  represents the dimension of the variation 

vector, specified by the information necessary to 

execute a small variation. This dimension is 

contingent upon the symbolic regression technique 

employed. As an illustration, let 𝓌1  represents an 

index denoting a small variation. Similarly, 𝓌2 and 

𝓌𝑑−1  can be understood as indices indicating the 

element position in the code or the indexes of the 

element in a vector or matrix that define the variable 

element. Finally, 𝓌𝑑 represents the updated value of 

the defined element. 

Possible solutions can be obtained from the sets 

of variations’ vectors 

 

𝑆 = {𝑾1, … ,𝑾𝐻}               (16) 

 

where 

 

𝑾𝒊 = {𝒲𝑖,1, … ,𝒲𝑖,𝐷}              (17) 

 

where 𝐷 is a variations depth or length.  

The genetic algorithm facilitates evolutionary 

processes on sets of small variation vectors. During 

the crossover operation, two sets of variations vectors 

are chosen either randomly or based on approaches 

often employed in the field of Genetic Algorithm 

(GA) 

 

𝑾𝒊 = {𝒲𝑖,1, … ,𝒲𝑖,𝐷}   

 

𝑾𝒋 = {𝒲𝑗,1, … ,𝒲𝑗,𝐷}              (18) 

 

Specify a crossover point 𝑝 ∈ {1,… , 𝐷} . Swap 

the variation vectors beyond the crossing point inside 

the chosen sets. Consequently, we get two additional 

sets of vectors representing variations 

 

𝑾𝑯+𝟏 = {𝒲𝑖,1, … ,𝒲𝑖,𝑝,𝒲𝑗,𝑝+1 , … ,𝒲𝑗,𝐷}     (19) 

 

𝑾𝑯+𝟐 = {𝒲𝑗,1, … ,𝒲𝑗,𝑝,𝒲𝑖,𝑝+1 , … ,𝒲𝑖,𝐷}     (20) 
 

Two additional sets of vectors representing 

variations refer to two newly introduced codes within 

the vicinity of the basic solution 

 

𝐺𝐻+1 = 𝑾𝑯+𝟏 օ 𝐺0 = 

𝒲𝐻+1,𝐷 օ…  օ 𝒲𝐻+1,1 օ 𝐺0              (21) 
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𝐺𝐻+2 = 𝑾𝑯+𝟐 օ 𝐺0 = 

𝒲𝐻+2,𝐷 օ…  օ 𝒲𝐻+2,1 օ 𝐺0              (22) 

 

where 𝐺0 represents the basic solution code. 

In order to execute the mutation process on the 

acquired sets in Eqs. (19) and (20), it is necessary to 

employ a random selection to choose one vector from 

the sets. This selected vector will then be substituted 

with a randomly produced vector that exhibits 

variations. 

This strategy may appear to involve a duplication 

of coding of the possible solutions, but it offers two 

advantages. Initially, the utilization of the basic 

solution provides a framework for exploration inside 

an intricate area of functions. It effectively expedites 

the search process by restricting the scope of the 

search. Furthermore, by applying the techniques of 

the genetic algorithm to the vectors of variations 

rather than directly to the codes for possible solutions, 

we may consistently obtain accurate codes of 

possible solutions without the necessity of 

incorporating further checks. 

The utilization of this principle was initially 

employed within the framework of the network 

operator method. The term “variational” is 

incorporated into the nomenclature of the symbolic 

regression technique, which leverages the concept of 

this principle. The application of the principle can be 

utilized in conjunction with any existing symbolic 

regression method as a means to address the 

difficulties associated with resolving the control 

general synthesis problem. 

4. Numerical techniques of symbolic 

regression for the synthesis of control 

problem 

Symbolic regression is a commonly employed 

numerical approach for addressing the control 

synthesis problem. Symbolic regression techniques 

have shown significant advancements in the last ten 

years. Moreover, the broader scientific community 

has lastly acknowledged the significance of 

interpretable machine learning. Currently, a 

multitude of symbolic regression techniques have 

been known. Several designations can be identified, 

including genetic programming (GP) [24], Cartesian 

GP [25], and network operator [26]. Symbolic 

regression approaches encode the mathematical 

expression being searched using a specific code form. 

These methods then employ a specialized genetic 

algorithm that looks for the effective solution within 

the code space. Various approaches exhibit 

differences in their code form. 

For instance, let us think about the subsequent 

mathematical expression 

 

𝑦 = exp(𝑞3𝑥2
2 + 𝑞1𝑥3

2) sin(𝑞2𝑥1) 

+cos(−𝑞3𝑥3 + 𝑥1)                     (23) 

 

where 𝑞1 , 𝑞2  and 𝑞3  exemplify the parameters, 𝑥1 , 

𝑥2  and 𝑥3  exemplify variables, and both exemplify 

arguments of the mathematical expression. 

In order to represent a mathematical expression in 

a coded form, it qualifies as satisfactory to utilize the 

subsequent sets of arguments and primary functions: 

• The arguments’ set 

 

F0 = {𝑓0,1 = 𝑥1, 𝑓0,2 = 𝑥2, 
𝑓0,3 = 𝑥3, 𝑓0,4 = 𝑞1, 
𝑓0,5 = 𝑞2, 𝑓0,6 = 𝑞3}                        (24) 

 

• The functions set that is characterized by one 

argument 

 

F1 = {𝑓1,1(𝑧) = 𝑧, 𝑓1,2(𝑧) = −𝑧, 

𝑓1,3(𝑧) = 𝑧2, 𝑓1,4(𝑧) = sin(𝑧), 

𝑓1,5(𝑧) = 𝑐𝑜𝑠(𝑧) , 𝑓1,6(𝑧) = 𝑒𝑥𝑝(𝑧)}           (25) 

 

• The functions set that is characterized by two 

arguments 

 

F2 = {𝑓2,1(𝑧1, 𝑧2) = 𝑧1 + 𝑧2, 𝑓2,2(𝑧1, 𝑧2) =

𝑧1𝑧2}                (26) 

 

where the first component of the indexes stands 

for the number of arguments while the second 

one exemplifies the function number, knowing 

that the argument of a mathematical expression 

is signified when the first component equals 

zero. 

4.1 Variational cartesian genetic programming 

Cartesian genetic programming (CGP) employs a 

non-graphical representation for expressing codes of 

expressions. This technique involves the integration 

of the two sets of fundamental functions into a unified 

set. 

 

𝐹 = 𝐹1 ∪ 𝐹2 = {𝑓1(𝑧) = 𝑧, 𝑓2(𝑧) = −𝑧, 
𝑓3(𝑧) = 𝑧2, 𝑓4(𝑧) = sin(𝑧) , 𝑓5(𝑧) = cos(𝑧), 

𝑓6(𝑧) = 𝑒𝑥𝑝(𝑧) , 𝑓7(𝑧1, 𝑧2) = 𝑧1 + 𝑧2, 
𝑓8(𝑧1, 𝑧2) = 𝑧1𝑧2}                   (27) 

 

CGP codes for mathematical expressions 

typically take the form of a three- or four-row integer 

matrix. The initial row of the matrix denotes the 
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indexes of functions obtained from the set of 

fundamental functions in Eq. (27). The fundamentals 

functions’ set in Eq. (27) consists of functions that 

have a maximum of two arguments. Consequently, 

encoding the matrix requires only three rows. It 

should be noted that the number of rows in the matrix 

varies depending on the number of arguments used 

for the available functions, where in the case of using 

the one-argument function, the third element in the 

column does not have any practical application. The 

remaining rows stand for the argument indices in Eq. 

(24). When a column’s calculation is complete, its 

result should be appended to the arguments in Eq. 

(24). So, after each computation, there will be more 

arguments. As a result, the total number of arguments 

will grow with each new calculation. 

Towards encoding the expression 𝑥2
2 as the first 

column of the CGP matrix for the example in Eq. (23), 

determining the square’s function in the set of 

fundamental functions in Eq. (27) is the first step 

where its number is 3, 𝑓3(𝑧) = 𝑧2. Next, locate the 

variable 𝑥2 in the arguments’ set in Eq. (24), and its 

number is 2. The third item in this column serves no 

use and is postulated as a number of 1. Therefore, the 

expression 𝑥2
2 that represents the first column of the 

matrix is encoded as [3 2 1]T. Once the value of this 

column has been calculated, it will have been 

appended to the arguments in Eq. (24) at position 7, 

(|𝐹0| + 1 = 6 + 1 = 7). The subsequent expression, 

denoted as 𝑞3𝑥2
2 , will be assigned to the second 

column. The index of the multiplication function in 

the set in Eq. (27) is 8. The parameter 𝑞3  and the 

expression 𝑥2
2 (the first column) of the set in Eq. (24), 

correspond to indices 6 and 7, respectively. 

Consequently, the code assigned to the second 

column is [8 6 7]T. Additionally, it has been included 

as the eighth argument, together with the existing 

arguments in Eq. (24). 

For this reason, the CGP final code of the 

example’s mathematical equation in Eq. (23) looks 

like this: 

 

𝑅𝐶𝐺𝑃 = [
3 8
2 6
1 7

   
3 8
3 4
2 9

   
7 6
8 11
10 3

   
8 4
5 13
1 4

   
2 8
6 15
5 3

   
7 5
16 17
1 6

   
8 7
12 19
14 18

]                                (28) 

 

A small variation to the CGP code involves 

altering an element within the matrix. In order to 

implement a small variation, a three-element integer 

vector will do the trick 

 

𝒲 = [𝓌1  𝓌2  𝓌3]
𝑇 ,                (29) 

 

in the context of a matrix, 𝓌1 represents the column 

number, 𝓌2  represents the row number inside that 

column, and 𝓌3 represents the updated value of the 

element. When 𝓌2  equals 1, the subsequent value 

( 𝓌3 ) is required to be selected from the set of 

fundamental functions in Eq. (27). In all other 

instances, the following value is required to be less  

 

 

than the aggregate of the set of arguments in Eq. (24) 

plus the number of columns (i.e., the sum of the 

number of arguments and the number of columns 

minus 1). 

In order to implement subsequent variations to 

the matrix in Eq. (28), 

 

𝒲1 = [2  2  1]𝑇 , 
𝒲2 = [9  1  4]𝑇 , 
𝒲3 = [7  3  2]𝑇 , 
𝒲4 = [13  1  7]𝑇                    (30) 

 

The CGP matrix will be updated to 

 

𝒲1 ∘ 𝒲2 ∘ 𝒲3 ∘ 𝒲4 ∘ 𝑅𝐶𝐺𝑃 = [
3 8
2 𝟏
1 7

   
3 8
3 4
2 9

   
7 6
8 11
10 3

   
8 4
5 13
𝟐 4

   
𝟒 8
6 15
5 3

   
7 5
16 17
1 6

   
𝟕 7
12 19
14 18

]        (31) 

 

and the corresponding mathematical expression for 

this updated matrix is 

 

𝑦 = exp(𝑥1𝑥2
2 + 𝑞1𝑥3

2)+ sin(𝑞2𝑥2) + 

cos(sin (𝑞3) ∗ 𝑥3 + 𝑥1)                   (32) 

 

4.2 Variational synthesized genetic programming 

This technique is invented by our team. This 

technique is brand new, being the first instance in 

which it has been applied to address the control 

synthesis problem. Synthesized genetic programming 

(SGP) eschews the utilization of graphical 

representations for expressing codes of mathematical 
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expressions. In general, the mathematical 

expression’s SGP code is a six-row integer matrix. 

The first row of the matrix denotes the indexes of 

functions belonging to the functions set that is 

characterized by two arguments in Eq. (26). The 

indexes of functions from the functions set that is 

characterized by one argument in Eq. (25) are 

represented by the second and fourth rows. The third 

and fifth rows represent the indexes of arguments 

from the arguments set in Eq. (24). The sixth row 

represents the priority, which will thereafter be 

elucidated to elucidate its role. Within each column 

of the matrix, the second element (the one-argument 

function) and the third element (the argument) 

represent the first argument for the first element of 

the column (the two-argument function). 

Additionally, the fourth and fifth elements represent 

the second argument for the first element of the 

column. The term of the pivot for each column means 

either the first argument (the second and third 

elements) or the second argument (the fourth and fifth 

elements) of this column. The pivot can be 

determined by assigning the priority (the sixth 

element in the column) of 1 or 2 to opt for the desired 

pivot of the column; nevertheless, in most contexts, 

its number is 1. It is important to acknowledge that 

the number of rows in the SGP matrix is contingent 

upon the number of arguments employed in the 

available functions. Specifically, when utilizing a 

three-argument function such as the if function, the 

number of rows is going to be 8. This is due to each 

argument being allocated two elements in the column, 

combined with the first element representing the 

three-argument function and the final element 

denoting the priority. As with the CGP approach, 

after completing the calculation for each column in 

the matrix of the SGP, the result of this column 

should be appended to the set of arguments in Eq. 

(24), progressively increasing the total number of 

arguments with each calculation. 

In order to implement the example in Eq. (23) by 

this technique, let us get started by coding the 

expression 𝑞3𝑥2
2  as the first column of the SGP 

matrix. For the first element in this column, 

determine the index of multiplication function in the 

functions set that is characterized by two arguments 

in Eq. (26); it is the number of 2, 𝑓2,2(𝑧1, 𝑧2) = 𝑧1𝑧2. 

For the second element, the function of the parameter 

𝑞3  is the identity function, 𝑓1,1(𝑧) = 𝑧 , from the 

functions set that is characterized by one argument in 

Eq. (25); the index of this function is 1. For the third 

element, the location of the parameter 𝑞3  in the 

arguments set in Eq. (24) is 6. For the fourth element, 

the variable 𝑥2  function is the square 𝑓1,3(𝑧) = 𝑧2 , 

and its index is 3 in the set in Eq. (25). For the fifth 

element, the location of the variable 𝑥2  in the 

arguments set in Eq. (24) is 2. The sixth element is 

the priority, and its number is 1. As a result, the code 

of the expression 𝑞3𝑥2
2  that represents the first 

column in the matrix is [2  1  6  3  2  1]T. After 

calculating this column, it will have been appended 

to the arguments set in Eq. (24) as the seventh 

element, denoted as ( |𝐹0| + 1 = 6 + 1 = 7) . The 

following expression 𝑞1𝑥3
2 will be the second column, 

which is the same idea as the first column, and its 

code is [2  1  4  3  3  1]T. Consequently, it will be 

appended as the eighth element to the arguments set 

in Eq. (24). The third column will demonstrate the 

amalgamation of the preceding two columns, 

specifically represented as 𝑞3𝑥2
2 + 𝑞1𝑥3

2. For the first 

element of the third column, the index of the addition 

function in the set in Eq. (26) is 1. The identity 

function will be the primary function in this case for 

the first column ( 𝑞3𝑥2
2 ) and the second column 

(𝑞1𝑥3
2); therefore, the second and fourth elements will 

get number 1 as the identity function in the set in Eq. 

(25). The indexes of the first column (𝑞3𝑥2
2) and the 

second column (𝑞1𝑥3
2) in the arguments set in Eq. 

(24) are 7 and 8, respectively. So, the code of the third 

column is [1  1  7  1  8  1]T and will have been 

appended to the arguments set in Eq. (24) as the ninth 

element. 

The final code of the SGP matrix, for example in 

Eq. (23), can be expressed as: 

 

𝑅𝑆𝐺𝑃 = 

[
 
 
 
 
 
2
1
6
   

2
 1
4
    

1
1
7
    

2
1
5
    

2
2
6
   

1
1
11

   
2
6
9
 
  1
  5

   12
3
2
1
    

3
3
1
    

1
8
1
    

1
1
1
    

1
3
1
    

1
1
1
   

4
10
1

 
1

 13
 1 ]

 
 
 
 
 

             (33) 

 

In order to keep track of a small variation, this 

technique resembles the CGP technique, wherein an 

identical integer vector is employed. Specifically, 

𝓌1  represents the column index inside the matrix, 

𝓌2 corresponds to the row index within the column 

𝓌1 , and 𝓌3  signifies the updated value of the 

element. If 𝓌2  equals 1, the subsequent number 

(𝓌3) must either be zero or modified based on the 

functions set that is characterized by two arguments 

in Eq. (26). If 𝓌2 is equal to either 2 or 4, then 𝓌3 

will be modified to either zero or selected from the 

functions set that is characterized by one argument in 

Eq. (25). If 𝓌2 is equal to either 3 or 5, then 𝓌3 can 

either be set to zero or can only be determined by the 

combination of the number of arguments in Eq. (24) 

and the number of columns minus one. Certain 
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conditions dictate the implementation of small 

variations to the SGP matrix based on the pivot and 

priority. These requirements can be elucidated by 

implementing the following variations to the matrix 

in Eq. (33): 

 

𝒲1 = [3  6  2]𝑇 , 
𝒲2 = [5  2  0]𝑇 , 
𝒲3 = [4  1  1]𝑇 , 
𝒲4 = [6  5  0]𝑇 ,                                                                    (34) 

𝒲5 = [3  1  0]𝑇 , 
𝒲6 = [8  2  3]𝑇 , 
𝒲7 = [6  6  2]𝑇  

 

The updated matrix of the SGP will look like: 

 

                𝒲1 ∘ 𝒲2 ∘ 𝒲3 ∘ 𝒲4 ∘ 𝒲5 ∘ 𝒲6 ∘ 𝒲7 ∘ 𝑅𝑆𝐺𝑃 =

[
 
 
 
 
 
2
1
6
   

2
 1
4
    

𝟎
1
7
    

𝟏
1
5
    

2
2
6
   

1
1
11

   
2
6
9
 
  1
  𝟑

   12
3
2
1
    

3
3
1
    

1
8
𝟐
    

1
1
1
    

1
3
1
    

1
𝟎
1
   

4
10
1

 
1

 13
 1 ]

 
 
 
 
 

                  (35) 

 

 

The first variation 𝒲1  has changed the third 

column’s priority (the 6th element) from 1 to 2. 

Consequently, it has changed the pivot from the first 

argument (the 2nd and 3rd elements) to the second 

argument (the 4th and 5th elements) of this column. 

It is worth noting that the second variation 𝒲2 did 

not affect the 5th column since it is not possible to 

alter any element of the pivot to zero in each column 

of the matrix, where the pivot of the 5th column is the 

first argument (the 2nd and 3rd elements) because of 

the number of priority is 1 in this column. In contrast, 

the fourth variation 𝒲4 can be accomplished since 

the 5th element of the 6th column is not an element 

of the pivot in this column, where the expression of 

this column was −𝑞3𝑥3 + 𝑥1 , then the variable 𝑥1 

has been neglected. In this case, the unit element of 

the function is used as the second argument where the 

unit element of the addition function is 0 and for the 

multiplication function is 1, so the expression has 

become (−𝑞3𝑥3 + 0) . Interestingly, the fifth 

variation 𝒲5 has fulfilled a primary change, where 

the expression of the third column was 𝑞3𝑥2
2 + 𝑞1𝑥3

2. 

This variation cancelled the addition function 

(changed the first element to 0). The number of 

priority turned out to be 2 as a result of the first 

variation 𝒲1, so the new expression of this column 

has got the expression of the pivot (the 2nd argument), 

whose code is [1  8]T that represents 𝑞1𝑥3
2  (the 

identity function and the expression of the second 

column). The seventh variation 𝒲7  was not 

accomplished since the fourth variation 𝒲4  has 

changed the 5th element in the 6th column to 0, and 

changing the priority means changing the pivot of the 

column, and the pivot element is not allowed to be 

zero. Eventually, the third and sixth variations 𝒲3 

and 𝒲6 can be performed directly. 

The new matrix can be expressed mathematically 

as 

 

𝑦 = exp(𝑞1𝑥3
2) sin(𝑞2 + 𝑥1) + (−𝑞3𝑥3)

2      (36) 

 

As mentioned above, the analysis highlights the 

crucial importance of the priority, which may be 

summed up as follows: The main task of the priority 

is to pick the pivot for each column. Moreover, it 

effectively avoids zero values in the pivot elements 

due to small variations. Additionally, it has the 

likelihood of decreasing the length of mathematical 

expressions. 

4.3 Variational parse-matrix evolution 

Parse-Matrix Evolution (PME) utilizes parse-

matrix as its chromosomal representation. It can be 

readily executed using any kind of programming 

language and is freely controllable [27]. 

The mathematical expression’s PME code is 

usually an integer matrix, where the number of 

columns depends on the number of the used 

arguments in the functions set in Eq. (27), the number 

of rows is equal to the number of arguments plus two; 

for instance, we have functions that take two 

arguments in Eq. (27), so, the number of columns will 

be 4. The first element in each row is the function 

number from the set in Eq. (27); the second and third 
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elements are the numbers of arguments from the set 

in Eq. (24); if there is a function that take one 

argument in the first element in any row, then the 

third element will not be utilized. The fourth element 

represents the number or sequence of the rows. 

The code of this method for any mathematical 

expression is a parse-matrix 

 

𝐶 = [𝑐𝑖,𝑗], 𝑖 = 1,… , 𝐿 ,   𝑗 = 1,… , 𝑝 + 2        (37) 

 

where (𝑝) is the maximal number of arguments and 

each row in the code matrix in Eq. (15) has the 

following elements: 

 

- 𝑐𝑖,1 = 𝑛(𝐹) − ⌊
|𝐹|

2
⌋                                       (38) 

 

where 𝑛(𝐹) is the ordinal number of an element in 

the set F in Eq. (27), and |𝐹| is the total number of 

elements in the set 𝐹. 

 

- 𝑐𝑖,𝑝+2 = 𝑛(𝐻) − ⌊
|𝐻|

2
⌋                                  (39) 

 

where 𝑛(𝐻) is the ordinal number of an element in 

the set 𝐻 in Eq. (41), and |𝐻| is the total number of 

elements in the set 𝐻. 

 

- 𝑐𝑖,𝐽 = 𝑛(𝐵) − ⌊
|𝐵|

2
⌋ ,     𝑗 = 2,… , 𝑝 + 1        (40) 

 

where 𝑛(𝐵) is the ordinal number of an element in 

the set 𝐵 in Eq. (42), and |𝐵| is the total number of 

elements in the set 𝐵. 

Now, to encode the example in Eq. (23) by the 

PME technique, the next sets should be prepared: 

 

                    𝐻 = {ℎ1, … , ℎ14}                        (41) 

 

𝐵 = {𝑏1 = 𝑥1,  𝑏2 = 𝑥2,  𝑏3 = 𝑥3,  𝑏4 = 𝑞1,
 𝑏5 = 𝑞2,  𝑏6 = 𝑞3,  𝑏7 = ℎ1, … ,  𝑏20 = ℎ14}      (42) 

 

where 𝐻 is an ordered set of elements for storing the 

results of calculations and 𝐵  represents the sets of 

arguments in Eqs. (24) plus (41). 

The first row of the matrix will be performed the 

expression 𝑥2
2 and as follows: 

 

𝑥2
2 ∶  𝑓3(𝑏2), 𝑐1,1 = 𝑛(𝐹) − ⌊

|𝐹|

2
⌋ = 3 − ⌊

|8|

2
⌋ =

                                       3 − 4 =  −1                       (43) 

where the ordinal number of the function 𝑧2 in the set 

𝐹 in Eq. (27) is 3 = 𝑛(𝐹), and the total number of 

functions in the set 𝐹 is 8 = |𝐹|.  

𝑐1,2 = 𝑛(𝐵) − ⌊
|𝐵|

2
⌋ = 2 − ⌊

|20|

2
⌋ =  2 − 10 =  −8                                   

(44) 

 

where the ordinal number of the element 𝑏2 = 𝑥2 in 

the set 𝐵 in Eq. (42) is 2 = 𝑛(𝐵), and the total number 

of elements in the set 𝐵 is 20 = |𝐵|.  
𝑐1,3 is not utilized and the sign (*) has been put in 

its place. 

 

𝑐1,4 = 𝑛(𝐻) − ⌊
|𝐻|

2
⌋ = 1 − ⌊

|14|

2
⌋ = 1 −  7 =  −6 

                                                                        (45) 

 

where the ordinal number of the element  ℎ1 in the set 

𝐻 in Eq. (41) is 1 = 𝑛(𝐻), and the total number of 

elements in the set 𝐻 is 14 = |𝐻|.  
The result of calculation of the first row will get 

 𝑏7 = ℎ1 in the set 𝐵 in Eq. (42), and the first row in 

the parse-matrix will be 𝑐1,𝑗 = [ −1  − 8  ∗   −6 ]𝑇. 

The second row of the matrix is the expression 

𝑞3𝑥2
2 and will be performed as such: 

 

𝑞3𝑥2
2 ∶  𝑓8(𝑏6, 𝑏7), 𝑐2,1 = 𝑛(𝐹) − ⌊

|𝐹|

2
⌋ = 8 −

              ⌊
|8|

2
⌋ =  8 − 4 =  4                                   (46) 

 

where the ordinal number of the multiplication 

function in the set 𝐹 in Eq. (27) is 8 = 𝑛(𝐹), and the 

total number of functions in the set 𝐹 is 8 = |𝐹|. 
 

𝑐2,2 = 𝑛(𝐵) − ⌊
|𝐵|

2
⌋ = 6 − ⌊

|20|

2
⌋ =  6 − 10 

                                  = −4                           (47) 

 

𝑐2,3 = 𝑛(𝐵) − ⌊
|𝐵|

2
⌋ = 7 − ⌊

|20|

2
⌋ =  7 − 10 

                                  = −3                           (48) 

 

where the ordinal number of the element  𝑏6 = 𝑞3 in 

the set 𝐵 in Eq. (42) is 6 = 𝑛(𝐵), and the total number 

of elements in the set 𝐵 is 20 = |𝐵|, and the ordinal 

number of element of  𝑏7 = ℎ1 = 𝑥2
2 in the same set 

is 7 = 𝑛(𝐵), and also the total number of elements in 

the set 𝐵 is 20 = |𝐵|. 
 

𝑐2,4 = 𝑛(𝐻) − ⌊
|𝐻|

2
⌋ = 2 − ⌊

|14|

2
⌋ = 2 −  7 =  −5 

                                                                        (49) 

 

where the ordinal number of the element ℎ2 in the set 

𝐻 in Eq. (41) is 2 = 𝑛(𝐻), and the total number of 

elements in the set 𝐻 is 14 = |𝐻|. 
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The result of calculation of the 2nd row will get 

 𝑏8 = ℎ2 in the set 𝐵 in Eq. (42), and the 2nd row in 

the parse-matrix will be 𝑐2,𝑗 = [ 3  − 1    0  − 1 ]. 

In the same way, the values of the remaining rows 

in the parse-matrix are calculated and the final code 

of the mathematical expression in Eq. (23) by this 

technique is 

 

𝑅𝑃𝑀𝐸 =

[
 
 
 
 
 
 
 
 
 
 
 
 
−1 −8
4 −4

−1 −7
4 −6

 ∗ −6
−3 −5
 ∗ −4
−1 −3

 
3   −2
2     1
4 −5
0    3

−2 −4
4  5
3     6
1     7
4     2
3     9

 

 0 −2
 ∗ −1
−9  0
∗ 1
∗ 2

−7  3
−9  4
∗ 5

  
4  6
8  7 ]

 
 
 
 
 
 
 
 
 
 
 
 

                      (50) 

 

To introduce a small variation, a three-ingredient 

integer vector suffices 

 

𝒲 = [𝓌1  𝓌2  𝓌3]
𝑇                 (51) 

 

where 𝓌1 represents the row index in the PME code, 

𝓌2 represents the column index in that row 𝓌1, and 

𝓌3  represents the new ingredient value. If 𝓌2 

equals 1, the subsequent number ( 𝓌3 ) must be 

modified based on the functions set in Eq. (27). If 𝓌2 

is equal to either 2 or 3, then 𝓌3 will be selected from 

the set in Eq. (24) minus one, and there is no variation 

on the fourth column. 

To facilitate the application of the small 

variations to this technique, firstly we should perform 

the Eq. (38) for each function in the set in Eq. (27), 

for example, if we have 30 functions, so the first and 

last functions will be 

 

𝑓1 = 𝑛(𝐹) − ⌊
|𝐹|

2
⌋ = 1 − ⌊

|30|

2
⌋ = 1 − 15 =  −14 

 

𝑓30 = 𝑛(𝐹) − ⌊
|𝐹|

2
⌋ = 30 − ⌊

|30|

2
⌋ = 30 − 15 

                                =  15                              (52) 

 

so, we renumber the functions in the set in Eq.  (27) 

from the first function, which is -14, 𝑓−14 = 𝑧, to the 

last function, which is 15 and so on. 

The same thing for Eq. (40), and apply it on the 

set in Eq. (42), for example, if we have 6 arguments 

and  𝐻 = 10, then the first and last arguments will be 

𝑏1 = 𝑛(𝐵) − ⌊
|𝐵|

2
⌋ = 1 − ⌊

|16|

2
⌋ =  1 − 8 =  −7, 

 

𝑏16 = 𝑛(𝐵) − ⌊
|𝐵|

2
⌋ = 16 − ⌊

|16|

2
⌋ =  16 − 8 

                                =  8                                (53) 

 

also, we renumber the arguments in the set in Eq. (42) 

from the first argument, which is -7, 𝑏−7 = 𝑥1, to the 

last argument, which is 8 and the calculation of the 

first row will be -1, and the calculation of the second 

row will be 0, and so on. 

          In order to implement the subsequent 

variations to the matrix in Eq. (50), 

 

𝒲1 = [6    1 − 𝟏]𝑇 , 
                          𝒲2 = [11     3    − 𝟑]𝑇             (54) 

 

The PME matrix will be updated to 

 

𝒲1 ∘ 𝒲2 ∘  𝑅𝑃𝑀𝐸 =

[
 
 
 
 
 
 
 
 
 
 
 
 
−1 −8
4 −4

−1 −7
4 −6

 ∗ −6
−3 −5
 ∗ −4
−1 −3

 
3   −2

−𝟏     1
4 −5
0    3

−2 −4
4  5
3     6
1     7
4     2
3     9

 

 0 −2
 ∗ −1
−9  0
∗ 1
∗ 2

−7  3
−𝟑  4
∗ 5

  
4  6
8  7 ]

 
 
 
 
 
 
 
 
 
 
 
 

    (55) 

 

where −𝟏   represents square function and −𝟑 

represents 𝑥2
2 (the calculation of the first row). 

The corresponding mathematical expression for 

this updated PME matrix is 

 

𝑦 = (𝑞3𝑥2
2 + 𝑞1𝑥3

2)2 sin(𝑞2𝑥1) 

+cos(−𝑞3𝑥3 + 𝑥2
2)                    (56) 

 

5. Results and discussions 

Suppose the general synthesis problem’s solution 

involves a mobile robot’s control system. 

The control object’s mathematical model is 

represented by the following form: 

 

𝑥̇1 = 0.5(𝑢1 + 𝑢2) cos(𝑥3), 
𝑥̇2 = 0.5(𝑢1 + 𝑢2) sin(𝑥3),              (57) 

              𝑥̇3 = 0.5(𝑢1 − 𝑢2), 
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where 𝐱 = [𝑥1  𝑥2  𝑥3]
𝑇  stands for the state vector 

and 𝐮 = [𝑢1  𝑢2]
𝑇 stands for the control vector. 

The extent of control is limited 

 

𝑢− = −10 ≤ 𝑢𝑖 ≤ 10 = 𝑢+, 𝑖 = 1,2.     (58) 

 

The initial conditions consist of 8 different states 

 

𝛸0 = {𝒙0,1 = [3  3.5 
5𝜋

16
]
𝑇
, 𝒙0,2 = [3  3.5 −

5𝜋

16
]
𝑇
, 𝒙0,3 = [3 − 3.5 

5𝜋

16
]
𝑇
, 𝒙0,4 = [3 − 3.5 −

5𝜋

16
]
𝑇
, 𝒙0,5 = [−3  3.5 

5𝜋

16
]
𝑇
, 𝒙0,6 = [−3  3.5 −

5𝜋

16
]
𝑇
, 𝒙0,7 = [−3 − 3.5 

5𝜋

16
]
𝑇
, 𝒙0,8 = [−3 −

3.5 −
5𝜋

16
]
𝑇
}                                                               (59) 

 

The terminal state is 

 

𝑥𝑓 = [0  0  0]𝑇                      (60) 

 

It is essential to pinpoint a function of control that 

is dependent on the state coordinates 

 

𝑢𝑖 = 𝑔𝑖(𝑥1, 𝑥2, 𝑥3), 𝑢
− ≤ 𝑔𝑖(𝑥1, 𝑥2, 𝑥3) ≤ 𝑢+,

𝑖 = 1,2,                                                                 (61) 

 

for minimizing the criterion 

 

𝐽𝑠𝑦𝑛 = ∑ (𝑡𝑓,𝑙 + √∑ 𝑥𝑖
2(𝑡𝑓,𝑙 , 𝐱

0,𝑙)3
𝑖=1  )8

𝑙=1     (62) 

 

where 

 

𝑡𝑓,𝑙 = {
𝑡,        𝑖𝑓   √∑ 𝑥𝑖

2(𝑡, 𝒙0,𝑙)3
𝑖=1 < 𝜀

 𝑡+, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             

          (63) 

 

𝜀 = 0.01, 𝑡+ = 2.5 s, 𝑥𝑖(𝑡, 𝐱
0,𝑙) represents a partial 

solution of the model in Eq. (57) with control in Eq. 

(61) for initial state 𝐱0,𝑙, 𝑙 ∈ {1,… ,8}.  
The problem was addressed using the three 

techniques: variational Cartesian genetic 

programming (VCGP), variational synthesized 

genetic programming (VSGP) and variational parse-

matrix evolution (VPME). 

The three techniques yielded the subsequent 

control law 

 

𝑔𝑖(𝑥1, 𝑥2, 𝑥3) = {

𝑢−, if 𝑢̃𝑖 < 𝑢− 

𝑢+, if 𝑢̃𝑖 > 𝑢+

𝑢̃𝑖, otherwise
   , 𝑖 = 1,2, (64) 

where for the variational Cartesian genetic 

programming, the found control functions as in Eq. 

(64) is 

 

𝑢̃1 = 𝑠𝑔𝑛 ((𝑞1(𝑥1
𝑓

−

𝑥1))
3
) √|(𝑞1(𝑥1

𝑓
− 𝑥1))

3|               (65) 

 

𝑢̃2 = (
1

𝑠𝑔𝑛((𝑥3
𝑓
−𝑥3)(𝑥2

𝑓
−𝑥2))√|(𝑥3

𝑓
−𝑥3)(𝑥2

𝑓
−𝑥2)|

) +

𝑞2(𝑥1
𝑓

− 𝑥1) + (𝑥3
𝑓

− 𝑥3)(𝑥2
𝑓

− 𝑥2) + (𝑥3
𝑓

− 𝑥3)
3                                    

(66) 

 

𝑞1 = 4.90261 , 𝑞2 = 8.79806. The quality criterion 

in Eq. (62) for the variational CGP solution is 𝐽𝑠𝑦𝑛 =

2.07197.  

The found control functions by the variational 

synthesized genetic programming as Eq. (64) is 

 

𝑢̃1 = (𝑥2
𝑓

− 𝑥2)
1

3(𝑥1
𝑓

− 𝑥1)𝑞1(𝑥2
𝑓

− 𝑥2) +

𝑞2(𝑥3
𝑓

− 𝑥3) + sin((𝑥2
𝑓

− 𝑥2)
1

3(𝑥1
𝑓

− 𝑥1)𝑞1(𝑥2
𝑓

−

𝑥2) + 𝑞2(𝑥3
𝑓

− 𝑥3)),                                                            (67) 

 

𝑢̃2 = 𝜌 (𝑞3
2(𝑥1

𝑓
− 𝑥1)) + 0.5 ∗ 𝑞3

2(𝑥1
𝑓

− 𝑥1), 

                                                   (68)                                                                                                          

 

𝜌(𝜇) = {
0,        if   |𝜇| < 𝛿  ,

 𝑠𝑔𝑛(𝜇), otherwise
  ,                      (69)    

 

𝑞1 = 2.07946 ,  𝑞2 = 2.63935  , 𝑞3 = 2.96333 ,  

𝛿 = 10−8. The quality criterion in Eq. (62) for the 

variational SGP solution is 𝐽𝑠𝑦𝑛 = 2.26092.  

The found control functions by the variational 

parse-matrix evolution as Eq. (64) is 

 

𝑢̃1 = (𝑞1(𝑥1
𝑓

− 𝑥1) + (𝑥1
𝑓

− 𝑥1)(𝑥2
𝑓

− 𝑥2) +

𝑞2(𝑥3
𝑓

− 𝑥3))/2,                                                           (70) 

 

𝑢̃2 = 𝑞3(𝑥1
𝑓

− 𝑥1)
3
− 𝑞4(𝑥1

𝑓
− 𝑥1),                  (71) 

 

𝑞1 = 8.98565 ,  𝑞2 = 9.73584 ,   𝑞3 = 6.96312 ,   

𝑞4 = 5.39341.  The value of criterion in Eq. (62) for 

the obtained solution is 𝐽𝑠𝑦𝑛 = 2.28499. 

The mobile robot trajectories from 8 different 

initial states in Eq. (59) to the terminal state in Eq. 

(60) have been illustrated in Figs. 1-3. When one  
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Figure. 1 The formed robot trajectories from multiple 

initial states to one terminal state using the obtained 

control function from VCGP 

 

 
Figure. 2 The formed robot trajectories from multiple 

initial states to one terminal state using the obtained 

control function from VSGP 
 

 
Figure. 3 The formed robot trajectories from multiple 

initial states to one terminal state using the obtained 

control function from VPME 
 

mobile robot changes its initial state (multiple initial 

states) and moves to one terminal state from each 

initial state to form multiple trajectories and obtain 

the control function as a feedback control function, 

this represents the control system general synthesis 

problem. 

It is essential to acknowledge that CGP, SGP and 

PME, when not implementing the principle of small 

variations within the basic solution, were unable to 

address the problem effectively and failed to identify 

a satisfactory solution using the given search 

parameters. 

The objective of the studies was to demonstrate 

the efficacy of computationally symbolic regression 

techniques in obtaining a control function. When 

incorporated into the right side of a system of 

differential equations governing the control object, 

this control function results in the stability of the said 

object. Consequently, it has been shown that several 

symbolic regression techniques can effectively 

address this machine learning problem without the 

need to create a training set. This is achieved by 

focusing solely on minimizing the quality functional 

criterion, which falls under the domain of 

unsupervised machine learning. 

To evaluate the performance of our technique, the 

synthesized genetic programming (SGP), in 

comparison to the Cartesian genetic programming 

(CGP) and parse-matrix evolution (PME), we 

conducted a series of 10 runs. These runs aimed to 

solve the control general synthesis problem. This 

problem is being employed for the first time to 

compare three techniques by doing a set number of 

runs. The assessment is conducted by considering the 

sequence of generation that leads to the attainment of 

the first best criterion in Eq. (62). The criterion is 

deemed best when the resulting value is in close 

range to, equal to, or smaller than the 𝑡+ value, where 

𝑡+ = 2.5 𝑠, and the robot’s trajectories are smooth. It 

is important to highlight that the same eight initial 

conditions in Eq. (59) and terminal condition in Eq. 

(60) were employed. The variational genetic 

algorithm utilized a population size of 256 

individuals and undergoes 256 generations. The 

results are presented in Table 1, where (No. of 

generation) represents the generation sequence at 

which the first best criterion was obtained, which 

corresponds to it in the table. 

As indicated in Table 1, concerning runs 2, 3 and 

6 of the CGP, as well as 5, 6 and 7 of the PME 

techniques, the generations sequence reached its 

conclusion, but the best criterion still needs to be 

obtained. Instead, only the lowest criterion achieved 

during those runs was recorded. This implies that the 

obtained criterion value was unsatisfactory, and some 

or all the trajectories did not accurately approach the 

terminal condition, as depicted in Fig. 4. It is evident 

that additional generations or time are required for the 

trajectories to accurately reach the terminal condition  
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Table 1. The comparison among the SGP, the CGP and the PME results to solve the control synthesis problem 

No. 

of 

run 

No. of 

generation 

for SGP 

First best 

criterion in 

Eq. (62) for 

SGP 

No. of 

generation 

for CGP 

First best 

criterion in 

Eq. (62) for 

CGP 

No. of 

generation 

for PME 

First best 

criterion in 

Eq. (62) for 

PME 

1 85 2.42091 242 1.27057 100 1.55012 

2 55 2.29666 256 2.98215 125 1.88136 

3 44 2.14699 256 3.07657 236 1.27184 

4 130 2.52565 89 2.58705 33 2.35650 

5 40 2.18848 219 2.39783 256 2.69261 

6 66 1.95788 256 3.28522 256 3.71335 

7 24 1.90595 125 2.5949 256 3.37253 

8 68 2.49517 158 2.18277 102 2.38121 

9 111 2.39997 28 1.99979 85 2.49953 

10 100 2.29468 57 2.09583 79 2.28305 

ave-

rage 

72.3 2.263234 168.6 2.447268 152.8 2.40021 

 

 
Figure. 4 The robot trajectories do not all reach the 

terminal condition 

 

and consequently achieve a better criterion value. On 

the contrary, the results of the SGP technique were 

deemed satisfactory. As a result of the above, 

practical evidence has confirmed that synthesized 

genetic programming exhibits a faster solution-

finding rate, about 2.33 and 2.11 times on average, 

than Cartesian genetic programming and parse-

matrix evolution, respectively. This disparity in 

performance could be attributed to the presence of a 

more significant number of functions available for 

each argument within each column inside the matrix 

of the SGP code. 

6. Conclusions 

This study introduces a formal mathematical 

framework for the control synthesis problem, both in 

a direct manner (unsupervised machine learning) and 

by employing a training set (supervised machine 

learning). When one control object changes its initial 

state (multiple initial states) and moves to one 

terminal state from each initial state to form multiple 

trajectories and obtain the control function as a 

feedback control function, this represents the control 

system general synthesis problem. The utilization of 

machine learning techniques, namely symbolic 

regression approaches, for control purposes, presents 

an opportunity to address the intricate challenge of 

control general synthesis inside control theory. The 

computational instance regarding a mobile robot 

showcases the potential and future aspirations of 

symbolic regression techniques like Cartesian genetic 

programming, synthesized genetic programming and 

parse-matrix evolution for solving the control general 

synthesis problem as unsupervised machine learning 

control techniques. This marks the first use of parse-

matrix evolution and synthesized genetic 

programming in solving the control general synthesis 

problem, where synthesized genetic programming   

consists of innovative coding concepts such as the 

pivot and the priority. On top of that, evidence from 

our experiments has demonstrated that the efficiency 

of synthesized genetic programming, being a novel 

technique, surpasses that of Cartesian genetic 

programming and parse-matrix evolution in terms of 

speed of solution discovery for the control system 

general synthesis problem. This performance 

discrepancy could be attributed to the greater 

availability of diverse functions for each argument 

within the respective columns of the synthesized 

genetic programming code matrix. Generally, the 

results elucidated in this work possess significant 

implications regarding theoretical understanding and 

practical applications. 

The potential applications of different symbolic 

regression techniques in machine learning control 

offer novel opportunities in the field of control 

systems. This shift involves moving away from 

manual and analytical approaches towards machine 
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search and machine learning control, thereby 

expanding the horizons of control-related research. 
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Notations 
Symbol The meaning 

𝒙 The state space vector 

𝒖 The control vector 

𝐗0 The domain of initial conditions 

𝒙𝑓 The terminal condition 

𝑡𝑓 The finishing time from initial 

condition to terminal one 

𝒈 Unknown function 

𝑼0 The optimal controls set 

𝐗̃ The optimal trajectories set 

𝐽1 The functional for supervised 

machine learning control 

𝐽2 The functional for unsupervised 

machine learning control 

𝐿 No. of initial points 

𝑐1 A weight coefficient 

𝑡+ , 𝜀 Provided positive values 

𝒲 The vector of small variations 

𝑆 Possible solution 

𝑾  The set of variations’ vectors 

𝐷 A variations depth or length 

𝑾𝑯+𝟏, 𝑾𝑯+𝟐 

 

The new sets of variations’ vectors 

from crossover 

𝐺0 The basic solution code 

𝐺𝐻+1 , 𝐺𝐻+2 The codes within the vicinity of the 

basic solution code 

𝑅𝐶𝐺𝑃 The code of CGP technique  

𝑅𝑆𝐺𝑃 The code of SGP technique 

𝐻 An ordered set of elements for 

storing the results of calculations in 

PME technique 

𝐵 the sets of arguments in Eqs. (24) 

plus (41) in PME technique 

𝑅𝑃𝑀𝐸  The code of PME technique 

𝑢−, 𝑢+ The lower and upper of the control 

values 

𝐽𝑠𝑦𝑛 The functional for unsupervised 

machine learning control for a 

mobile robot example 

𝑢̃1, 𝑢̃2 The control functions 

𝑞1, …, 𝑞4 The parameters of the control 

functions 
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