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Abstract: In the relam of the Internet of Things (IoT), prevalence of missing data due to continuous data collection 

by smart devices necessitates the essential preliminary step of data imputation before engaging in information 

mining activities. IoT data exhibit robust interconnections in both spatial and temporal dimensions, surpassing the 

limitations of Euclidean space. Yet, prevailing machine learning and deep learning approaches often focus solely on 

temporal attributes or capture spatial features exclusively within a Euclidean framework. To address these challenges, 

this paper introduces a novel network named ST-Bi-LSTM-VAE (Spatio-Temporal Bidirectional Long Short-Term 

Memory based Variational Auto-Encoder). The architecture of ST-Bi-LSTM-VAE is primarily grounded in the 

Variational Auto-Encoder (VAE) framework. This innovative approach incorporates two distinct types of VAEs. 

The first type is dedicated to computing the adjacent matrix of the device network, a crucial input for the Graph 

Convolutional Network (GCN) essential in capturing intricate spatial relationships among devices. The second type 

of VAE is specifically tailored for data imputation, leveraging both global spatial and temporal dependencies. 

Empirical experiments conducted on diverse publicly available datasets substantiate the efficacy of ST-Bi-LSTM-

VAE. The results obtained consistently demonstrate that proposed method surpasses baseline techniques in 

maintaining pattern, structure, and trend across datasets even at 50% missing gap for imputation task with 4.91% 

performance improvement in case of Intel Berkley Research Laboratory (IBRL) dataset and 3.5% on PRSA dataset. 

Keywords: Internet of Things (IoT), Data imputation, Multivariate data, Spatial-temporal correlation, Variational 

auto encoder (VAE), Data quality. 

 

 

1. Introduction 

The advancement of Internet of Things (IoT) has 

facilitated an extensive number of applications, 

encompassing, but not confined to, health care, food 

traceability, environmental monitoring, and smart 

transportation and infrastructure [1, 2]. The IoT 

comprises a large number of intelligent sensors 

distributed across numerous networks, collecting 

data. IoT systems can be highly helpful in various 

contexts, but they may also face challenges due to 

high demands, aging or insufficient infrastructure, 

and harsh operating conditions caused by climate 

changes [3]. Depending on the area, severe events 

can include flooding, winds, snow squalls, extreme 

temperatures, and other weather conditions that can 

negatively impact the operation of some 

infrastructure components and hosted IoT devices. 

 Subsequently, the data produced by these 

devices is riddled with severe anomalies and data 

gaps. Nevertheless, every intelligent decision-

making technique operates under the presumption 

that comprehensive data is anticipated. In the IoT 

and its applications, such as intelligent 

transportation systems [4], smart health, 

environmental monitoring [5], and energy 

management are all susceptible to missing data for a 

variety of reasons, including faulty sensors and 

unstable network communications [6]. The existence 

of absent values within the dataset disrupts the data's 

pattern, structure, seasonality, and trend, thereby 

impeding the production of precise information that 

is necessary for making informed decisions [7]. 
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Data obtained from IoT devices exhibit two 

significant characteristics: temporal and spatial 

features. When data is collected by a single sensor, 

it is typically arranged and stored chronologically, 

forming a time series. However, considering the 

device itself, there can be spatial relationships 

among groups of devices, forming a network with a 

non-Euclidean topological structure. Consequently, 

sensors within such networks may collect time 

series data that demonstrate strong spatial 

dependencies. These data, combining both temporal 

and spatial aspects, constitute spatiotemporal data. 

For instance, when monitoring rainfall in 

geological disaster-prone areas, devices deployed 

randomly within the same mountain or forest can be 

grouped based on their non-Euclidean spatial 

relationships. It becomes reasonable to fill missing 

values by considering both the historical data 

collected from the same device (temporal feature) 

and the current data from spatially correlated 

devices (non-Euclidean spatial feature). 

Existing models demonstrated the importance of 

incorporating spatial information for imputing 

missing values in traffic data. However, they have 

primarily focused on utilizing spatial data from 

neighbouring locations, overlooking the potential 

benefits of leveraging non-Euclidean (global) spatial 

features combined with temporal features to a fuller 

extent. The proposed method ST-Bi-LSTM-VAE 

(Spatio-Temporal Bidirectional Long Short-Term 

Memory based Variational Auto-Encoder) utilised 

non-euclidian spatial correlations with temporal 

correlations by incorporateing two distinct 

variations of Variational Auto-Encoders (VAEs) 

designed to address distinct tasks: the SF-VAE 

(Spatial Features VAE) and the TF-VAE (Temporal 

Feature VAE). In more depth, we present the 

following technical contributions: 

1. SF-VAE for adjacency matrix: SF-VAE is a 

novel application of the VAE framework. This 

pioneering approach utilizes VAE to construct an 

adjacency matrix suitable for network of IoT 

devices. It uses Graph Convolutional Network 

(GCN) to capture non Euclidian spatial 

dependencies. 

2. TF-VAE for data imputation: Leveraging the 

spatial characteristics captured by the GCN, TF-

VAE (Temporal Feature VAE), a multi-head Bi-

LSTM-based VAE captures temporal features while 

simultaneously fulfilling data imputation tasks. 

Notably, both the Bi-LSTM hidden state (h) and the 

VAE latent variable (l) sampling are ordered in time, 

thereby endowing the TF-VAE with the capacity to 

extract temporal correlations. Furthermore, we apply 

Linear Normalization Flow to convert the 

Gaussian/Normal distribution of l into a randomized 

space, that improves the resilience of the network. 

3. Comprehensive Spatial-Temporal Approach: 

Our stochastic-based methodology combines the 

advantages of SF-VAE and TF-VAE to achieve 

remarkable dynamic generality prowess for 

individual variability, while simultaneously 

performing data imputation based on universal 

spatial and temporal correlations. This augmentation 

enhances the realism of imputed values. 

4. Experiments and Comparisons: The superior 

performance of our ST-Bi-LSTM-VAE method 

compared to numerous state-of-the-art alternatives.  

The amalgamation of these components leads to 

a powerful approach capable of precise data 

imputation, with promising generative capabilities 

validated through extensive experimentation. 

Further the existing literature regarding data 

imputation in IoT is discussed in section 2. Sections 

3 provided with preliminaries required for 

understanding the proposed method which is 

described in section 4. Section 5 presented with 

experiment setup, baseline methods for comparisons, 

evaluation metrics and dataset description. Section 6 

describes the performance evaluation followed by 

conclusion in section 7. 

2. Related works 

The Intelligent Internet of Things (IIoT) is 

comprised of a large quantity of intelligent sensors 

that are distributed across many networks. These 

sensors collect data that demonstrate unforeseen and 

unusual deviations. In general, approaches to 

address missing data in time series can be statistical 

methods, machine learning based, deep learning 

based and others. The integration of intelligent 

approaches, such as machine learning, deep learning, 

and the Internet of Things (IoT), is a key aspect of 

the IIoT [8, 9]. The literature pertaining to 

incomplete time series data modelling is presented 

in this section.  

To compensate for missing values, statistical 

methods utilize statistical values; for instance, the 

mean filling approach [10] and fuzzy-rough nearest 

neighbours [11] are two examples. Nevertheless, 

statistical approaches are inadequate for imputation 

of missing data in case of IoT, as these methods may 

not utilize temporal insight. The utilization of 

machine learning methods has made significant 

strides in data filling applications, which primarily 

involve determining the distribution of the original 

data and constructing an imputation model. In [33], 
Lightweight Window Portion-based Multiple 

Imputation (LWPMI) based on multivariate 
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variables, correlation, data fusion, regression, and 

multiple imputation was proposed using 

Lightweight Gradient Boosting Machine (LGBM) 

regression. KNN imputes missing data using the 

average of values from k neighboring nodes located 

around the absent sample. Additionally, matrix 

factorization was implemented to impute absent 

values. While conventional machine learning 

approaches were often effective in restoring missing 

values across various domains, they lack the 

capability to account for the temporal relationships 

between two observations [13]. Consequently, such 

approaches were unsuitable for IoT large data 

environments.  

The emergence of Generative Adversarial 

Networks (GANs), including GAIN [14], MisGAN 

[13], and others, introduced a method for imputing 

missing data values. By utilizing incomplete time 

series, a GAN-based method [13], was intended to 

discover the overall distribution of a multivariate 

time series dataset. ImputeGAN, proposed in [34] 

was an iterative GAN based imputation for 

multivariate data imputation for various types of 

data. Utilizing a new complete sample produced by 

the auto-encoder and GRUI, E2GAN was suggested 

as a method to impute incomplete time series [15]. 

Despite the notable efficacy of these models in 

imputation, they continue to be discarded as a data 

preprocessing stage in assignment to classification 

tasks. Additionally, they were not optimized at the 

same time as training the classifier, which will lead 

to unsuitable outcomes [16]. 

Traffic data is a collection of sequential data 

gathered over a period of time. Recurrent Neural 

Networks (RNNs) handle sequence data with 

general efficacy [17] due to the implementation of 

special gate mechanisms and the upkeep of chain-

like structures. Leveraging a basic RNNs, such as a 

Gated Recurrent Unit (GRU) or Long Short-Term 

Memory (LSTM), was considered as the simplest 

method for imputation [18]. But this usually results 

in less-than-ideal behavior because the model learns 

biassed parameters at first because it substitutes in 

missed data with predetermined data [19]. To 

enhance the network’s resilience and facilitate the 

ability to manage data that is not available, [20], 

[21] introduced innovative network architectures 

based on LSTM. The masking vector was 

incorporated into a regular LSTM structure in order 

to enhance the modelling of the missing patterns, as 

described in [20]. In accordance with this, [21] 

incorporated an imputation module within the 

LSTM architecture, whereby the absent values at the 

present time step were replaced with values deduced 

from the preceding cell and hidden states. An 

alternative approach involves aligning the attention 

mechanism with a modified version of a recurrent 

neural network [22]. Despite their moderate level of 

expressiveness, these approaches fail to consider the 

geographical interdependencies present in traffic 

data. For data imputation, [35] proposed Time-

Recurrent Variational AutoEncoder ODE 

(TRVAEODE) model using a time-aware LSTM 

encoder and neural ordinary differential equations 

(ODEs). This method did not utilise spatial 

correlations. Dynamic Adaptive Network-Based 

Fuzzy Inference System (D-ANFIS) was proposed 

in [36] for medical data imputation in Internet of 

Medical Things (IoMT). D-ANFIS did not consider 

spatial and temporal correlations. 

Graph Neural Networks (GNNs) have recently 

demonstrated remarkable efficacy in modelling non-

Euclidean data, specifically graphs [23], have 

achieved good results in smart transportation. [24] 

created a model using a GCN to simultaneously 

estimate traffic and fill in missing data. The model 

utilized weighted adjacency matrix based on 

distances to represent spatial relationships. In their 

study, [25] introduced a spatial interactive GCN 

network for the job of imputing. [26] developed a 

GraphSAGE model to gather spatio-temporal data 

from a graph created using correlation coefficients 

of past values. This was done since a fixed graph 

based on distance was unable to accurately represent 

the variations in spatial correlations over time. A 

heterogeneous graph-based GCN model in [27] 

constructed a multigraph by utilizing spatial and 

past data depict the intricate interrelationships 

between portions of road. A further kind of GNN, 

known as GAT, was created to tackle the issue of 

incomplete traffic data in [28]. GAT integrates the 

attention mechanism. While these methods primarily 

concentrate on representing geographical 

relationships, they are simplistic and depend on 

having a substantial amount of past data. In their 

study, [29] presented a spatial context sensing model 

that utilizes information from nearby sensors to 

reconstruct traffic data.  

These models illustrate the utility of spatial 

information in the process of imputation for traffic 

data. Nevertheless, their emphasis has been on 

utilizing local spatial data obtained from nearby 

locations, neglecting to fully exploit global spatio-

temporal information. 
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3. Preliminaries 

3.1 Problem statement 

The data collected in this study are sourced from 

diverse sensors integrated into various devices. 

These sensors amass data and arrange it in the form 

of time series. In this research, Data correspond to 

spatial and temporal data gathered by numerous 

sensors within the network of devices. It can be 

expressed as Smon =
{S1

mon,  S2
mon,  S3

mon,   … . . ST
mon} here, T represents 

the length of time series.  

The dimensions of St
mon =

st
mon−1,  st

mon−2,  st
mon−3,   … . . st

mon−X  encompass 

X*Y, and each st
mon−X  contains Y values. These 

values signify the presence of X devices collectively, 

and within each device, Y diverse sensors are 

operational. The core objective of this paper 

revolves around imputing missing values within 

Smon . This imputation is executed by utilizing 

existing data. In this article, our objective is to 

minimize the disparity between imputed data and 

actual data, leading us to formulate the imputation 

problem as follows: 

min
ŝ

∑ ∑ |ŝi
j

− si
j
|Y

j=0
X
i=0  , where ŝi

j
 ϵŜ  is the 

imputation of si
j
ϵSmon. Table 1 provides the list of 

notations for understanding the proposed method. 

3.2 Missing data types 

There are three distinct categories that 

encompass missing data situations: Missing 

Completely at Random (MCAR), Missing at 

Random (MAR), and Missing Not at Random 

(MNAR). MCAR pertains to cases where the 

missingness is unrelated to any observed or 

unobserved data, akin to the randomness of a coin 

flip. MAR involves missingness that can be 

elucidated by examining available data. For instance, 

missing spouse age data might be linked to the 

marital status data. On the other hand, MNAR arises 

when the absence of data is contingent on attributes 

that are either unobserved or connected to the 

missing attribute itself. This scenario is evident in 

instances such as prolonged device failures. Our 

primary focus is on addressing the first two types of 

missing data, as imputing missing values in MNAR 

scenarios holds lesser significance. 

3.3 Variational auto encoder (VAE) 

A Variational Autoencoder (VAE) is a type of 

generative model that combines techniques from 

both autoencoders and variational inference to learn 

a latent space representation of data and generate 

new data samples. It is widely used in tasks like data 

generation, compression, imputation and 

representation learning. 

In a VAE, the main idea is to assume that the 

observed data is generated from a latent variable and 

to learn a probabilistic model that can capture the 

underlying distribution of this latent space. The key 

components of a VAE are the encoder, the latent 

space, and the decoder. 

3.3.1. Encoder (recognition model) 

The encoder maps input data (𝑥)  to a 

distribution in the latent space using Equation 3.1. 

This distribution is typically a Gaussian distribution 

characterized by a mean M and a standard deviation 

SD. The encoder network is denoted as (𝑞ϕ(𝑧|𝑥)), 

where (𝑧)  represents the latent variable and (ϕ) 

represents the encoder's parameters. 

 

𝑞ϕ(𝑧|𝑥) = 𝒩(𝑀ϕ(𝑥), 𝑆𝐷ϕ(𝑥)2) (1) 

 

In the Equation 3.1, the symbol  𝒩  represents 

the normal distribution. In statistics and probability 

theory, the normal distribution is a commonly used 

probability distribution also known as the Gaussian 

distribution. It's characterized by its bell-shaped 

curve and is fully described by its mean Mϕ(x) and 

variance SDϕ(x)2 . So, the equation is specifying 

that the distribution of the generated data x given the 

latent variable z  follows a normal (Gaussian) 

distribution with mean Mϕ(x) and variance SDϕ(x)2. 

This is a fundamental assumption in the VAE 

framework, where the decoder generates data 

samples by sampling from this normal distribution. 

3.3.2. Latent space 

The latent variable (z) follows the distribution 

output by the encoder. This distribution in Equation 

3.2 is then used to sample a latent vector. 

 

Z ∼ QΦ(Z|X) (2) 

 

3.3.3. Decoder (generative model) 

The decoder takes a sample from the latent space 

(z) and maps it back to the data space using 

Equation 3.3. The goal is to reconstruct the input 

data as accurately as possible. The decoder network 

is denoted as (pθ(x|z)), where (θ) represents the 

decoder's parameters. 
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PΘ(X|Z) = 𝒩(X|MΘ(Z), SDΘ(Z)2) (3) 

 

3.3.4. Loss function 

The loss function for a VAE includes two 

components: a reconstruction loss that measures 

how well the generated data matches the input data, 

and a regularization term that encourages the latent 

space to follow a prior distribution (usually a 

standard Gaussian distribution). The reconstruction 

loss is typically a measure like the mean squared 

error (MSE) or the binary cross-entropy (BCE) 

between the input data and the reconstructed data. 

The regularization Kullback-Leibler (KL) 

divergence measures the difference between two 

probability distributions. In the context of a VAE, it 

quantifies how much the encoder's distribution 

deviates from the prior distribution. Mathematically, 

the KL divergence between two distributions 

(q(z|x)) and (p(z))  is defined as shown in 

Equation 3.4: 

 

𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧)) = 

∑ 𝑞(𝑧𝑖|𝑥)

𝑖

LOG
𝑞(𝑧𝑖|𝑥)

𝑝(𝑧𝑖)
(4) 

 

The overall loss as shown in Equation 3.5 

function is a combination of these two terms: 

 
Table 1. List of notations 

Notation Meaning 

𝑆𝑚𝑜𝑛 Monitor data that is  to be 

imputed 

𝑆𝑖
𝑚𝑜𝑛 Data at Node i 

𝑞ϕ(𝑧|𝑥) Encoder network 

𝑧 Latent variable 

ϕ Encoder parameters 

𝑀ϕ(𝑥) Mean of 𝑥 

𝑆𝐷ϕ(𝑥)2 Variance of 𝑥 

𝑝θ(𝑥|𝑧) Decoder network 

θ Decoder parameters 

(𝑞(𝑧|𝑥)) &(𝑝(𝑧)) Data Distributions 

L(x) Reconstruction Loss 

𝐴𝑑𝑗𝑚𝑜𝑛 Adjacent matrix 

𝐹𝑀𝑚𝑜𝑛 Feature Matrix 

𝐷𝐾𝐿  Kullback-Leibler (KL) 

divergence 

𝐽𝑆(𝑧1, 𝑧2) JS (Jensen-Shannon) between 

latent variables  𝑧1, 𝑧2 

α weight parameter 

l hidden layer 

W parameter matrix 

H Hidden-feature matrix 

I Identity matrix 

 

ℒ = Reconstruction Loss+ 

KL Divergence Regularization (5) 

 

where Reconstruction Loss L(x) can be 

calculated using Equation 3.6 

 

𝐿(𝑥) ≈
1

𝑛
∑ (LOG 𝑝 (𝑥|𝑧𝑖))

𝑛

𝑖=1

+

LOG 𝑝 (𝑧𝑖) − LOG 𝑞 (𝑧𝑖|𝑥) (6)

 

 

The VAE is trained by optimizing this loss 

function with respect to the encoder and decoder 

parameters. In summary, a VAE uses an encoder to 

map input data to a latent distribution, samples from 

this distribution, and then employs a decoder to 

generate data samples. The model is trained to 

minimize the reconstruction loss while also 

encouraging the latent space to follow a specific 

distribution through the KL divergence term. This 

encourages the VAE to generate meaningful and 

continuous latent representations of the input data. 

4. Proposed approach 

Data pre-processing task and imputation task are 

the two main parts of the ST-Bi-LSTM-VAE 

process, which is shown in the Figure 1. 

In the Data pre-processing phase, we employ 

SF-VAE to handle the data Smon , represented as 

S1
mon, S2

mon, S3
mon, … , ST

mon, and transform it into the 

adjacent matrix Adjmon . Additionally, we are 

required to reshape the this into the Feature Matrix 

FMmon. These two elements serve as crucial inputs 

for the subsequent data imputation stage. 

Next, the adjacency matrix Adjmon  and the 

Feature Matrix FMmon . are introduced into the 

imputation process, to address missing values within 

the data. The data imputation workflow can be 

further divided into 3 phases: encoder phase, feature 

mapping/ transformation phase, and decoder phase. 

TF-VAE enhances both the encoder and decoder 

stages, whereas feature/ attribute transformation 

utilizes normalization flow.  

4.1 SF-VAE  

SF-VAE plays a crucial role in preprocessing the 

input data into an adjacency matrix Adjmon , a 

necessary initial input for utilizing GCN to extract 

non-Euclidean spatial relationships within the data 

in TF-VAE. Many state-of-art studies made the 

assumption that the structural arrangement of the 

graph is already established and provided. However, 
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this assumption can often be challenged in practical 

situations. In contrast to this assumption, our 

approach involves the utilization of SF-VAE along 

with JS divergence to derive the adjacency matrix 

that encapsulates the non-Euclidean spatial 

relationships within the network of devices. The 

core concept of proposed methodology revolves 

around leveraging data symmetry to quantify the 

spatial connections among devices. 

To achieve this, we commence by inputting X 

multivariate time series, denoted as 

Smon−1, Smon−2, … , Smon−X , originating from X 

distinct devices, into X separate SF-VAEs. This 

process yields distinct representations of a hidden 

variable z, each of which can effectively 

characterize the structure of Smon−X =
s1

mon−x, s2
mon−x, s3

mon−x, … , sT
mon−x  belongs to 

various devices once the training of model is 

completed. After that, we estimate the JS divergence 

among these hidden variable distributions and use it 

to create the adjacency matrix for the device 

network. 

In contrast to TF-VAE, only integrate multi head 

attention based Bi-LSTM integrated into the SF-

VAE network as shown in Figure 3. This choice is 

made because time series data from various devices 

are directed to distinct SF-VAEs, making the sole 

utilization of temporal features sufficiently. 

Furthermore, for a given device, all timestamp 

values share a common mean denoted as M and a 

common variance represented as V. This choice is 

intentional, aiming to encapsulate the overall data 

pattern at the device level. Consider S1 and S2, 2 

multivariate time series that come from different 

nodes. We've obtained feature distributions, FM1 

and FM2, through the use of SF-VAEs. Specifically, 

FM1 can be represented as (M1, V1), and FM2 as 

(M2, V2). Now, we define a new distribution, FM3, 

as the average of FM1 and FM2, calculated using 

Equation 4.1: 

 

FM3 =
(FM1 + FM2)

2
 and FM3 ≈

(M1 + M2)

2
, FM3 ≈

(V1 + V2)

2
(7)

 

 

Subsequently, The Jensen-Shannon (JS) 

divergence between FM1 and FM2 using Equation 

4.2. In this equation, DKL  represents the Kullback-

Leibler (KL) divergence (Equation 4.3), defined as 

 

JS(z1, z2) =
1

2
KL (FM1 ∥

FM1 + FM2

2
) +

1

2
KL (FM2 ∥

FM1 + FM2

2
) (8)

 

 

DKL(𝑃//𝑄) = ∑  

s∈S

 P(s) log (
1

Q(s)
) +

∑  

s∈S

 Q(s) log (
1

P(s)
) (9)

 

 

The JS (Jensen-Shannon) similarity metric can 

be used to quantify the degree of resemblance 

between two time series that originate from different 

devices, denoted as JS (z1, z2). Correspondingly, 

the adjacency matrix Adjmon  is computed using 

above Equation 4.4. 

 

Adjij 
mon = {

0, ifJS(z1, z2) > β
1, otherwise

(10) 

 

As shown in Figure 2, the data collected from 

sensors inside each device is organized in one row, 

while data from other devices is placed in distinct 

rows, to transform the input data into FMmon. 

4.2 TF-VAE  

The fundamental structure of the VAE 

comprises two components: the encoder and the 

decoder. In the context of TF-VAE, we adopt a 

combination of GCN and multi-head attention based 

Bi-LSTM to implement the encoder, while the 

decoder exclusively employs the multi-head 

attention based Bi-LSTM. This choice of 

architecture serves specific purposes: the GCN is 

leveraged to capture non-Euclidean spatial features, 

while the attention based multi-head Bi-LSTM is 

employed to handle temporal features. Consequently, 

the model effectively captures spatio-temporal 

information from IoT data. 

It is important to note that TF-VAE diverges 

from traditional autoencoders by incorporating a 

more generative generation model. This introduces a 

higher level of stochasticity into the process of 

filling missing values, rendering the imputed data 

more realistic in its representation. Figure 4 provides 

a comprehensive view of the encoder component 

within TF-VAE. The process involves sending 

Adjmon  (adjacent matrix) and  AMmon  through 

numerous layers of GCN to capture non-Euclidean 

spatial features inherent in data. Subsequently, these 

features are directed into the multi-head attention 

based Bi-LSTM to acquire knowledge about 



Received:  February 17, 2024.     Revised: March 15, 2024.                                                                                             358 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.28 

 

temporal dependencies, device by device. This 

sequence of operations yields the spatio-temporal 

feature representation, denoted as hf0
mon  through 

hft
in . Parameter α is weight parameter that require 

training alongside the di-vae model as shown in 

equation 4.5. 

 

ℎ𝑓𝑐𝑜𝑚𝑏 = (𝛼 ∗ ℎ𝑓𝑚𝑜𝑛) (11) 

 

In contrast to the conventional encoder used in 

VAE, the TF-VAE introduces a novel approach to 

incorporate temporal dependencies not only into the 

hidden states hf0
comb  through hfT

comb  of the multi-

head attention based Bi-LSTM but also into the 

latent variables z0  through zT . In the traditional 

VAE framework, every zT  is independently drawn 

from a Gaussian Distribution, which implies that 

there are no inherent temporal correlations among 

them. 

To address this limitation, we take a different 

route by concatenating ht
comb  and zt−1  before 

feeding them into the Fully Connected Layer (FCN) 

for the purpose of learning the distribution 

parameters ( Mt  and Vt ) of zt , as illustrated in 

Equation 4.7. This concatenation of ht
comb and zt−1 

allows the sampled zt  to possess temporal 

relationships with the previous z0  through zt−1 , 

thereby incorporating valuable temporal context into 

the latent variable generation process. 

 

𝑀𝑡 = 𝑤𝑀[𝑧𝑡, ℎ𝑓𝑡
𝑐𝑜𝑚𝑏] + 𝑏𝑋,  𝜎𝑡 =

𝑅𝑒 𝐿𝑈(𝑤𝜎[𝑧𝑡−1, ℎ𝑓𝑡
𝑐𝑜𝑚𝑏] + 𝑏𝜎) (12)

 

 

In the Decoder of TF-VAE, we exclusively 

employ the multi-head attention based Bi-LSTM to 

decode the latent variables z0  through zT  and 

reconstruct the original Monitor Data, denoted as 

Smon. This process effectively fills in all the missing 

values present in the initial input data. 

4.2.1. GCN 

Starting with GCN, we initiate the process by 

inputting the adjacent and feature matrices derived 

from data into GCN. In a traditional GCN network, 

we compute each hidden layer (l) using Equation. 

4.7, where 'Adj' represents the adjacent matrix, and 

'W' corresponds to the parameter matrix which 

undergoes training and 'H' is the hidden-feature 

matrix. Additionally, we set H0  to be the Feature 

Matrix (FMmon). 

 

Hf l = σ(Adj. Hl−1Wl−1) (13) 

 

Nonetheless, when utilizing Equation.4.7, two 

significant challenges persist. Firstly, it fails to 

propagate a node's specific features to the 

subsequent layer by simply multiplying the 'Adj' 

with 'H'. Secondly, there's the issue of potential 

rapid growth in the values of the feature map as 

layers are successively extended. 

To address these issues, a solution presented in 

[20] proposes replacing 'Adj' with an adjusted 

adjacency matrix 'Adj' = I + Adj, where 'I' signifies 

an identity matrix. Furthermore, an additional 

spectral normalization scheme is introduced. The 

refined equation is expressed as Equation 4.8: 

 

Hf l = σ (D
−1

2 Adj′D
−1

2 Hf l−1Wl−1) ,

Dii = ∑  

j

Adj′ ij (14)
 

 

The feature maps produced by the GCN are 

partitioned into separate groups based on the 

specific devices they pertain to. These groups are 

subsequently processed by a multi-head attention 

based Bi-LSTM to capture temporal features. In this 

configuration, each head of the multi-head attention 

based Bi-LSTM corresponds to a distinct device. 

The rationale behind employing a multi-head 

attention based Bi-LSTM in our study is twofold: 

Firstly, data originating from various devices 

often exhibit significant differences in their inherent 

characteristics. Hence, it is not recommended to 

input such varied data into a unified set of Bi-LSTM 

that utilizes the identical parameter matrix. 

Secondly, the utilization of a multi-head 

attention based Bi-LSTM structure introduces 

greater adaptability to our network. This is 

particularly relevant in the context of the Internet of 

Things (IoT), where the arrangement and 

configuration of devices can frequently change due 

to installations, removals, or modifications. It's 

noteworthy that our approach differs from the 

conventional practice of utilizing only the last 

timestamp's hidden state, (hfTcomb
) . Instead, we 

incorporate hidden states from multiple timestamps, 

(hf0comb
)  to (hfTcomb

)  (where (T)  is the maximum 

timestamp), as the hidden states within our auto-

encoder. This decision is rooted in findings 

presented in [21], which indicate that when 

employing Recurrent Neural Networks (RNN) as 

auto-encoders, leveraging hidden states from 

multiple timestamps tends to yield superior results 

compared to relying solely on the last timestamp's 

hidden state. 
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4.2.2. Multi-head attention based BI-LSTM 

After receiving the input from GCN, proposed 

model leverages a multi-head self-attention 

mechanism to process that data. This mechanism 

enables the model to collectively focus on various 

aspects of the input representations and determine 

the degree of importance each element carries in 

generating the output. 

For a sequential feature set 𝑆 ∈ 𝑅𝑝×𝑞  (with 

sequence length 𝑝 and dimensionality 𝑞), the self-

attention mechanism initially projects these features 

using independent linear projection functions (LN) 

into queries 𝑄 ∈ 𝑅𝑝×𝑞𝑘, keys 𝐾 ∈ 𝑅𝑝×𝑞𝑘, and values 

𝑉 ∈ 𝑅𝑝×𝑞𝑣 . Subsequently, it computes a specific 

operation to determine the attention weights 

assigned to the values. This operation involves 

calculating the dot product between the query 

$Q$ and all keys 𝐾 and then normalizing the result 

by √𝑞𝑘 , where 𝑞𝑘  represents the dimension of 

queries and keys. Finally, a softmax function is 

applied to the normalized result, as illustrated  

in Equation 4.9. This process can be repeated in 

parallel multiple times.In essence, this self-attention 

mechanism allows the model to efficiently capture 

and weigh the significance of different elements 

within the input sequence, enhancing its ability to 

produce meaningful outputs. 

 

Attention(𝑄, 𝐾, 𝑉) = softmax(𝑄𝐾𝑇/√𝑑𝑘)𝑉 (15) 

 

The Bidirectional Long Short-Term Memory 

(Bi-LSTM) model, is an extension of LSTM models 

that involves the application of two LSTM layers to 

the input data.  

Allowing it to capture past and future context 

This architecture incorporates LSTM units that 

operate in both forward and backward directions, 

information simultaneously. This dual application of 

LSTM layers enhances the model's ability to learn 

long-term dependencies effectively, as it avoids 

retaining redundant context information and 

ultimately leads to improved model accuracy. 

The Bi-LSTM model comprises several essential 

components. The input gate, denoted as (𝑖𝑡) , 

controls the flow of information into the memory 

cell. On the other hand, the output gate, denoted as 

(𝑜𝑡) , governs how the state of the memory unit 

affects the network's output at the current time step. 

Additionally, the forget gate, represented as (𝑓𝑡) , 

determines the duration for which existing 

information is preserved. 

At each time step (𝑡), the value of the memory 

unit (𝐶𝑡) undergoes an update process. This update 

involves filtering the previous information using 

((𝑓𝑡 ⋅ 𝐶𝑡−1))  and incorporating candidate 

information computed as ((𝑖𝑡 ⋅ �̃�𝑡)), as described by 

the Equations 4.10, 4.11, 4.12 and 4.13: 

 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ �̃�𝑡 (16) 

 

�̃�𝑡 = 𝑡𝑎𝑛 ℎ(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (17) 

 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (18) 

 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (19) 

 

In the context of this model, σ  represents an 

activation function, typically the sigmoid function. 

Following the update of the memory unit, the 

calculation of the current hidden layer (ℎ𝑡)  is 

determined based on the current output gate (𝑜𝑡), as 

specified in Equation 4.14 and 4.15. 

 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (20) 

 

ℎ𝑡 = 𝑜𝑡 ⋅ tan h(𝐶𝑡) (21) 

 

 

 

 
Figure 1: Workflow of ST-Bi-LSTM-VAE including data preprocessing and imputation 
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Figure 2: Feature matrix arrangement of Monitor data 

 

 
Figure 3: Encoder In SF-VAE 

 

 
Figure 4: Encoder In TF-VAE 

 

Optimizing the hyperparameters of deep 

learning models is a crucial step in constructing an 

effective DL model that can achieve peak 

performance. In this study, we undertook a 

comprehensive exploration of various 

hyperparameters for fine-tuning purposes. We 

employed a random search technique to identify the 

optimal combination of hyperparameters for our 

neural network. 

The following hyperparameters were determined 

to be optimal for our model: 

- Optimizer type: Adam [20], 

- Learning rate: (1 × 10−5), 

- Number of units: 64, 

- Number of heads: 4, 

- Activation function: ReLU. 

guarantees that the output of each GCN layer 

aligns with the format outlined in Equation 4.4. In 

addition, the latent variable z is assigned a value of 

8 and the length of NFs is 4. 

These specific hyperparameter values were 

found to yield the best overall performance in terms 

of both accuracy and computational efficiency. 

Where the under-bars represent backward 

path.Using Y' to represent the predicted system 

states in the output sequence of the second 

bidirectional LSTM layer, we present a system state 

prediction setup using a bi-directional LSTM (Bi-

LSTM) depicted in Figure 3. The Bi-LSTM consists 

of two LSTM layers. Between these layers, the 
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outcomes from both the prediction and smoothing 

operations are combined and passed on to the 

subsequent LSTM layer to achieve varying levels of 

representation. Following the second LSTM layer, 

the ultimate prediction at each time step is generated 

by integrating the outcomes from both forward and 

backward paths. 

4.3 Normalization flow  

The hidden variable 'z' is drawn from the 

distribution q(z|x), a common assumption in 

traditional VAE is that this distribution follows a 

Gaussian distribution. However, relying on this 

assumption can diminish the network's robustness, 

as q(z|x) may not consistently conform to a 

Gaussian distribution. 

To address this problem, we utilize a method 

known as normalization flow (NF) to transform the 

distribution q(z|x) into a conventional distribution 

through a series of reversible mappings. NF applies 

a set of reversible mappings 𝑔1, 𝑔2, … , 𝑔𝐾 to build a 

potentially intricate distribution 𝑧𝐾 = 𝑔𝐾 ◦

𝑔(𝐾−1) ◦ … ◦ 𝑔0(𝑧0) , resulting in the following 

equation 4.16: 

 

log 𝑝𝑧𝑘 = log 𝑝𝑧(𝑘−1) − log |det
∂𝑔𝑘

∂𝑧𝑘−1
| =

log 𝑝𝑧𝑘 = log 𝑝𝑧(𝑘−1) − log |det
∂𝑔𝑘

∂𝑧𝑘−1
| (22)

 

 

Specifically, our choice falls on Linear 

Normalization Flow (Linear NF) due to its 

capability to articulate various forms of correlation 

between dimensions and IoT data. Furthermore, it 

boasts a straightforward and uncomplicated 

structural design. The definition of Linear NF is as 

follows: 

In the context provided, we have parameters 𝐴 ∈
𝑅𝐷(𝐷 ∗ 𝐷) and 𝑏 ∈ 𝑅𝐷 that require training within a 

neural network. Notably, A represents an invertible 

matrix. It's worth mentioning that the determinant of 

the Jacobian matrix can be straightforwardly 

computed as det(A), with a computational 

complexity of 𝑂(𝐷3), similar to the calculation of 

the matrix's inverse using Equation 4.17. 

 

𝑔(𝑧) = 𝐴𝑧 + 𝑏 (23) 

 

Conventionally, convolutions are known for 

their ease of inverse computation, while the 

determinant computation is less intuitive. To address 

this, [23] introduced a novel approach using 1-

Dimensional convolutions to efficiently calculate 

the det (determinant) of the Jacobian matrix. We 

adopted their method to optimize linear normalizing 

flows (NF), as shown in Equation 4.18: 

 

𝑔(𝑧) = 𝑧 + 𝑢 ⊙ ℎ(conv(𝑧, 𝑤)) (24) 

 

In Equation 4.18: 

- 𝑤 ∈ 𝑅𝐾  represents the filter used in the 1-

Dimensional convolution. 

- h is the activation function. 

- 𝑢 ∈ 𝑅𝑑  is a vector used to adjust the 

dimensions of the output derived from 'h'. 

By incorporating these techniques, we aim to 

enhance the efficiency and effectiveness of linear 

normalizing flows within our neural network. 

5. Proposed approach 

The performance enhancement of the suggested 

model has been assessed and validated through a 

comparison with existing imputation models. To 

quantitatively assess the performance of the ST-Bi-

LSTM-VAE model in imputation, this study reports 

Mean Squared Error (MSE), R- Squared Error 

𝑅2 Error), and Mean Absolute Error (MAE), 

comparing  

it with various baseline methods MDIMTFL, 

ImputeGAN, TRVAEODE, and D-ANFIS.  

5.1 Experimental setup  

The proposed method evaluated on Intel lab 

dataset. The experiments utilise Python 3.8.5 for 

coding purposes. PyTorch is chosen as the 

foundation for implementing our ST-Bi-LSTM-

VAE, a deep learning model that incorporates GCN, 

VAE, and Bi-LSTM, along with other comparison 

techniques. 

In the ST-VAE section, the hidden state ℎ0−𝑡  

for all timestamps in the Multi-head Bi-LSTM 

corresponds to a consistent average value denoted as 

l and variance 𝑟2 . This information is visually 

represented in Figure 2. The size of the latent 

variable z is explicitly set to be smaller than the 

output h of the Bi-LSTM. A hyperparameter search 

is utilized to attain optimal results across the IBRL 

dataset. The specific values assigned to z and h are 4 

and 8, respectively. 

In the DI-VAE component, the hidden state ℎ0−𝑡 

of all timestamps in the Multi-head Bi-LSTM is 

delivered to a single Fully Connected Network 

(FCN). However, each hidden state receives distinct 

mean and variance values, as depicted in Figure 2. 

In the case of Multi- head Bi-LSTM, the no. of 
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Bi-LSTMs corresponds to the no. of devices. The 

hidden state dimension of the output from the Data 

Bi-LSTM is set to 16. Concerning GCN, the lone 

hyperparameter is the structure of the weight matrix 

W. It is set to k*k, with k representing the count of 

sensors within a single device. This configuration  

5.1.1. Intel dataset 

The Berkeley Research Lab at Intel (IBRL) has 

set up a wireless monitoring network with 54 nodes 

to collect information about the area around the lab. 

These nodes, which are outfitted with sensors for 

light, temperature, humidity, and voltage, gather 

information on a range of environmental variables 

every 31 sec. The sensor data that was collected can 

be found in an open repository that can be used for 

study. Randomly adding missing sub-sequences of 

length were done on purpose throughout the whole 

dataset from Intel's Berkeley Research Lab website 

to show how well the suggested method works. The 

suggested method and the values that were assumed 

from other algorithms were then checked against the 

real values. 

5.1.2. PRSA dataset 

Recordings of air pollutants gathered 

(hourly) from Beijing, China's Twelve national air-

quality monitoring stations are included in the 

PRSA dataset [24]. The dataset covers the time 

between March, 2013, to 28th February, 2017. It 

includes data from six types of sensors measuring 

pollutants PM2.5, PM10, SO2, NO2, CO and O3. 

5.2 Data pre-processing  

Missing values in the original dataset are 

initially replaced using mean imputation. The 

dataset is subsequently split into two partitions, with 

one portion allocated for training and the other 

portion reserved for testing. During the testing step, 

certain values are randomly omitted prior to 

conducting a comparative experiment, and the 

respective places of the omitted values are annotated. 

In the IBRL dataset missing gaps were created with 

rates ranging from 0.1 to 0.5, enabling an 

assessment of the efficacy of prominent strategies in 

ST-VAE. 

It is important to mention that in practical IoT 

situations, if over 50% of the data gathered by a 

sensor is missing, the sensor is deemed defective 

and should be substituted. When the missing rate 

surpasses 50% in such circumstances, populating the 

missing data loses significance. The purpose of this 

setup is to test and evaluate the effectiveness of 

different strategies in dealing with situations where 

data is missing specifically in the context of ST-

VAE.  

5.3 Evaluation metrics  

5.3.1. Mean absolute error (MAE) 

It measures the average absolute difference 

between the imputed values ((Imputed
𝑖𝑗

)) and the 

true (actual) values ((Actual𝑖𝑗)) across all instances 

and variables using Equation 5.1. 

 

𝑀𝐴𝐸 =
1

𝑚𝑛
∑  

𝑛

𝑖=1

∑  

𝑚

𝑗=1

|Actual𝑖𝑗 − Impute𝑖𝑗| (24) 

 

5.3.2. Mean squared error (MSE) 

The Mean Squared Error (MSE) measures the 

average of the squared differences between the 

imputed values ((Imputed
𝑖𝑗

)) and the true (actual) 

values ((Actual𝑖𝑗)) across all instances and 

variables using Equation 5.2. 

 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ (Actual𝑖𝑗 − Imputed

𝑖𝑗
)

2
𝑚

𝑗=1

𝑛

𝑖=1

(25) 

 

5.3.3. 𝐑𝟐 squared error 

In the context of multivariate imputation, the 𝑅2 

error can be adapted to evaluate the performance of 

imputation models. For multivariate data, where 

each observation has multiple variables, 𝑅2can be 

calculated separately for each variable or as an 

overall measure for the entire imputation process. 

The formula for 𝑅2  error in the context of 

multivariate imputation can be calculated using 

Equation 5.3: 

 

𝑅2 =

1 −
∑ ∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖𝑗 − Mean(Actual)

𝑗
)

2
𝑚
𝑗=1

𝑛
𝑖=1

∑ ∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖𝑗 − 𝐼𝑚𝑝𝑢𝑡𝑒𝑑𝑖𝑗)
2𝑚

𝑗=1
𝑛
𝑖=1

(26)
 

 

where (𝐴𝑐𝑡𝑢𝑎𝑙𝑖𝑗) represents the actual value for 

variable (𝑗) in observation (𝑖), (Mean (Actual)
𝑗
) is 

the mean of the actual values for variable (𝑗), and 

(𝐼𝑚𝑝𝑢𝑡𝑒𝑑𝑖𝑗) is the imputed value for variable (𝑗) in 

observation (𝑖). 
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5.4 Baseline methods  

1) LWPMI [33] - Lightweight Window Portion-

based Multiple Imputation (LWPMI) based on 

multivariate variables, correlation, data fusion, 

regression, and multiple imputations. 

2) ImputeGAN [34] - A model based on 

generative adversarial networks (GANs) with 

an iterative strategy guided by complementary 

result gradients, to address missing values in 

multivariate time series data. 

3) Time-Recurrent Variational AutoEncoder ODE 

(TRVAEODE) [35] - Integrating a time-aware 

LSTM encoder with neural ordinary differential 

equations (ODEs) to capture continuous-time 

latent dynamics for imputation and prediction 

of incomplete IoT time series data. 

4) D-ANFIS [36]- A fuzzy inference system-

based approach to handle missing data in 

Internet of Medical Things (IoMT) systems 

imputation by categorizing collected data into 

complete and incomplete datasets. 

6. Type-style and fonts 

To evaluate the proposed method, two datasets 

IBRL and PRSA we used. The following 

subsections will provide the performance 

improvement of ST-Bi-LSTM-VAE over existing 

methods. 

6.1 Evaluation with intel dataset  

The performance of proposed method on IBRL 

dataset is depicted in Figure 5. The MSE values of 

remaining methods are high when compared with 

ST-Bi-LSTM-VAE. At missing gap of 10%, the 

MSE values obtained were 1.889, 1.724, 1.064, 

0.963 and 0.649 for the methods LWPMI, 

ImputeGAN, TRVAEODE, D-ANFIS, and ST-

BiLSTM-VAE respectively as shown in Figure .5(a). 

This is because LWPMI did not consider temporal 

correlations. ImputeGAN as this method was 

iterative method the performance of each iteration 

depends on previous iterations. D-ANFIS also not 

used spatial and temporal correlations. 

The 𝑅2 squared error for IBRL data at missing 

rate 20% were 12.09, 11.99, 11.37, 10.99, and 10.56. 

Similarly, 𝑅2  squared error at 50% missing rate 

were 14.25, 13.93, 12.80, 12.50, and 11.560. Even 

the missing gap increased the proposed method had 

less increased in 𝑅2 squared error value compared 

with existing state of art methods as shown in Figure. 

5(b) because it utilized non-Euclidian spatial and 

temporal features effectively compared with existing 

methods. TRVAEODE had less performance 

compared with the ST-Bi-LSTM-VAE because of 

not utilising the spatial correlations and also 

TRVAEODE used Sine wave simulation for the 

purpose of training the model which may not 

accurately represent diverse real-world noise 

patterns.  

The MAE values of the existing methods were 

obtained high for exiting methods as shown in 

Figure 5(c). The MAE values of LWPMI, 

ImputeGAN, TRVAEODE, D-ANFIS, and ST-

BiLSTM-VAE were 0.0300, 0.028, 0.0265, 0.0242 

and 0.020 (at 10%) and 0.0327, 0.0304, 0.029, 

0.0275 and 0.022 (at 20%).  The decreased MAE 

values indicate the imputation accuracy of current 

methods. Considering the global spatial correlations 

and temporal correlations is the added advantage of 

ST-Bi-LSTM-VAE. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure. 5 Performance of IBRL dataset 
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(a) 

 

 
(b) 

 

 
(c) 

Figure. 6 Performance of PRSA 

6.2 Evaluation with PRSA dataset  

Figure 6 shows the MSE, 𝑅2 squared error and 

MAE values of baseline methods and ST-Bi-LSTM-

VAE when working with PRSA dataset. At missing 

rate of 20%, the MSE values obtained for PRSA 

dataset were 1.60, 1.395, 1.225, 0.938, and 

0.785988201.  When MSE values of all the methods 

compared at 10% and 40% the differences were 1.13, 

1.09, 1.02,   0.95,   0.90 illustrating that even the 

missing gap increases the increase of MSE value is 

less for the proposed method. The Bi-LSTM VAE 

used in ST-Bi-LSTM-VAE effectively finds the 

hidden correlations among the sensors data resulted 

in decreased imputation errors. 

The 𝑅2  squared error values for LWPMI, 

ImputeGAN, TRVAEODE, D-ANFIS, and ST-

BiLSTM-VAE at missing gap 30% were 13.47, 

13.044, 12.758, 12.33, and 11.78. Similarly, the 

MAE values at 10% missing were 0.035,0.033,0.028, 

0.025, and 0.023. From Figure 6(a), 6(b) and 6(c), 

one can observe that ST-BiLSTM-VAE performed 

well when compared with existing methods. As the 

existing methods failed to utilise the spatial 

correlations such as ImputeGAN, TRVAEODE, D-

ANFIS got more MAE, MSE and 𝑅2 squared error. 

Though LWPMI taken the advantage of spatial 

correlations it requires more computational 

resources compared with ST-Bi-LSTM-VAE 

because of LGBM regression and data fusion. 

LWPMI also need high correlation among the data 

that is to be imputed. 

The notable points about the ImputeGAN are 

that it was an iterative method, which may be 

complex to implement for dataset with large size. At 

the time of training   ImputeGAN model all the 

missing gaps were filled with 0’s led to missing of 

data pattern resulted in increased MSE, MAE and 

𝑅2 squared error. 

TRVAEODE used sine wave simulation for 

traing the model. Simulating sine waves has 

limitations as it relies on fixed parameters such as 

frequency and amplitude, which may not fully 

capture real-world complexity. Adding Gaussian 

noise can improve realism, but it may not 

adequately represent the diverse noise patterns 

present in reality. Moreover, randomly initializing 

trajectories and selecting time points arbitrarily can 

introduce biases and overlook crucial details. 

Consequently, models trained on simulated data 

may face challenges when applied to real-world 

scenarios, underscoring the drawbacks of 

TRVAEODE methodology. 

The D-Adaptive Network-based Fuzzy Inference 

System (D-ANFIS) combines artificial neural 

networks and fuzzy logic for function approximation. 

Despite its utility, ANFIS faced challenges such as 

complex parameter tuning, limited interpretability, 

sensitivity to initialization conditions, and difficulty 

in generalization. Also suffered from computational 

intensity, overfitting, and dependence on domain. 

Addressing these limitations requires careful 

parameter tuning, validation techniques, and 

consideration of model interpretability and 

generalization capabilities. Figure 5 and Figure 6 are 

evidents that the ST-Bi-LSTM-VAE model 

surpasses comparative models in the imputation task. 

Recognizing the challenges of long-distance 

dependency and gradient vanishing in traditional 

RNNs, the study opts for an improved variant, 

specifically Bi-LSTM, as a baseline. Notably, the 

ST-Bi-LSTM-VAE model outperforms various 
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baseline methods MDIMTFL, Impute GAN, 

TRVAEODE and D-ANFIS. The enhanced encoder 

of the ST-Bi-LSTM-VAE model effectively 

addresses the limitations of the GRU encoder, 

enabling it to learn the time intervals of time series 

and accurately infer the posterior distribution of 

irregularly-sampled time series data. 

The Bi-LSTM encoder proves effective in 

learning the temporal distribution and GCN for 

spatial distribution, where the ST-Bi-LSTM-VAE 

model consistently outperforms other encoder 

methods across various missing rates. 

7. Conclusion 

To tackle the issue of multivariate missing data 

in IoT, our study introduced an innovative spatio-

temporal imputation model that integrates Bi-LSTM, 

VAE and GCN. A series of comprehensive 

experiments were undertaken by creating significant 

missing intervals and varying missing rates between 

10% to 50% across sensor-generated datasets 

featuring diverse characteristics IBRL (with more 

spatial and temporal correlations) and PRSA (with 

global spatial correlations) and evaluated with the 

measures MSE, MAE and 𝑅2  squared error. The 

proposed method addressed non-Euclidian spatial 

dependencies within the network by incorporating 

GCN and a spatial Bi-LSTM. The augmentation of 

these correlations with temporal correlations helped 

to achieve better performance. This novel method 

worked better even there may be less Euclidian 

spatial correlations among the data which was 

proved when evaluated on PRSA dataset. ST-Bi-

LSTM-VAE incorporated the temporal and global 

spatial correlations in the data so that it specifically 

suits for IoT data reconstruction compared with the 

existing methods. Furthermore, we enhance the 

robustness and stochastic generalization of our 

network by optimizing linear normalization flow 

and temporal concatenation for the latent variable of 

VAE. The effectiveness of our approach is 

demonstrated through experiments on two public 

datasets under various missing data scenarios, 

showcasing its feasibility compared to baseline 

methods. In future work, we aim to enhance the 

imputation accuracy by incorporating adversarial 

learning and leveraging auxiliary information. 

Furthermore, we plan to extend the application of 

our proposed model to the domain of traffic 

prediction with missing data. 
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