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Abstract: This paper introduces a novel metaheuristic named the stochastic shaking algorithm (SSA), which is rooted 

in swarm intelligence principles. The innovation lies in its unique utilization of iteration for selecting references during 

guided searches through a stochastic approach. The optimization process involves two sequential steps: the primary 

reference in the first step is the finest swarm member, while in the second step, it is the mean of all finer swarm 

members plus the finest one. This primary reference is then combined with a randomly chosen solution within the 

space, serving as the secondary reference. SSA undergoes evaluation in two contexts. The first involves assessing its 

performance using a set of 23 classic functions as a theoretical use case. The second involves tackling the economic 

load dispatch problem (ELD), a practical use case featuring a system with 13 generators of various energy resources. 

The study compares SSA against five other metaheuristics—One to One Based Optimization (OOBO), Kookaburra 

Optimization Algorithm (KOA), Language Education Optimization (LEO), Total Interaction Algorithm (TIA), and 

Walrus Optimization Algorithm (WaOA). Results indicate SSA’s superiority over OOBO, KOA, LEO, TIA, and 

WaOA in 21, 13, 11, 16, and 14 functions out of 23 functions, respectively. Additionally, the evaluation of the 

economic load dispatch problem reveals intense competition among the six metaheuristics. 
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1. Introduction 

The economic load dispatch problem is a well-

known optimization challenge within the energy 

sector. This problem, a variant of the economic 

dispatch problem with a differentiable form [1], has 

been the subject of numerous studies aiming to 

leverage metaheuristic approaches for optimization. 

Unfortunately, many of these investigations continue 

to rely on, modify, or integrate traditional 

metaheuristics to form hybrid methods. Examples 

include simulated annealing (SA) [2], modified 

particle swarm optimization (MPSO) [3], modified 

directional bat algorithm (DBA) [4], teaching 

learning-based optimization (TLBO) [5], particle 

swarm optimization (PSO) [6], slime mold algorithm 

(SMO) [7], chaotic social group optimization 

(CSGO) [8], multi-verse optimization (MVO) [9], 

and others. 

In recent years, a plethora of novel metaheuristics 

have emerged, with the majority being rooted in 

swarm intelligence principles. Many of these swarm-

based metaheuristics draw inspiration from animal 

behavior, adopting metaphors in their designs. 

Examples include the Kookaburra Optimization 

Algorithm (KOA) [10], Lyrebird Optimization 

Algorithm (LOA) [11], Stochastic Komodo 

Algorithm (SKA) [12], Green Anaconda 

Optimization (GAO) [13], Walrus Optimization 

Algorithm (WaOA) [14], Coati Optimization 

Algorithm (COA) [15], White Shark Algorithm 

(WSA) [16], Squirrel Search Optimization (SSO) 

[17], Tasmanian Devil Optimization (TDO) [18], 

Northern Goshawk Optimization (NGO) [19], 

Osprey Optimization Algorithm (OOA) [20], and 

others. Some swarm-based metaheuristics 

incorporate social behavior elements, as seen in the 

Migration Algorithm (MA) [21], Language 

Education Optimization (LEO) [22], Mother 
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Optimization Algorithm (MOA) [23], and so forth. 

Conversely, several metaheuristics eschew 

metaphors altogether, such as One-to-One Based 

Optimization (OOBO) [24], Total Interaction 

Algorithm (TIA) [25], Attack-Leave Optimization 

(ALO) [26], Subtraction-Average Based 

Optimization (SABO) [27], Fully Informed Search 

Algorithm (FISA) [28], and so on. 

Numerous research articles introducing 

innovative metaheuristic approaches predominantly 

focus on four mechanical engineering design 

problems: pressure vessel design, welded beam 

design, tension/compression spring design, and speed 

reducer design. In contrast, there is a notable scarcity 

of research articles exploring the application of these 

metaheuristics within use cases in the energy sector. 

SSO is an example of a new metaheuristic that is 

utilized to solve disparate economic dispatch 

problems in several power systems [17]. The 

Technique of Narrowing Down Area (ToNDA) is 

another example of a new metaheuristic developed 

based on the neighborhood search designed 

especially for economic load dispatch problems [1]. 

In ToNDA, the local search space, which is the power 

range in each generator is reduced through iteration 

[1]. This concept is like neighborhood search which 

becomes a secondary search in many swarm-based 

metaheuristics, such as NGO [19], COA [15], OOA, 

and so on. 

Meanwhile, there is a challenge to explore the use 

of iteration not only for a counter but also to decide 

the strategy. In some metaheuristics, such as TIA, 

FISA, and OOBO, iteration is used only for the 

counter. In some other metaheuristics like NGO, 

COA [15], and WaOA [14], iteration is used to 

determine the local search space in its neighborhood 

search. 

The present research introduces an innovative 

metaheuristic termed the Stochastic Shaking 

Algorithm (SSA). SSA is developed within the 

framework of swarm intelligence and introduces a 

unique approach that employs iteration as a crucial 

factor in determining the strategy. Subsequently, the 

effectiveness of SSA is evaluated by applying it to the 

economic load dispatch problem, serving as a 

practical use case, in addition to assessing its 

performance on 23 classic functions representing the 

theoretical use case. 

The primary scientific contributions of this study 

are outlined as follows. 

• A new swarm-based metaheuristic that is 

developed based on swarm intelligence and 

utilizes iteration to determine the strategy is 

introduced. 

• The presentation of the SSA consists of the 

concept, algorithm, and mathematical 

formulation. 

• The performance of SSA is assessed on 23 

classic functions as theoretical use cases and 

economic load dispatch problem as practical use 

case. 

• The competition of SSA with five recent 

metaheuristics is performed to assess the 

improvement of the proposed algorithm with the 

existing methods. 

The subsequent sections of this research article 

are organized as follows. Section 2 provides a 

comprehensive review of recent studies that have 

introduced new metaheuristics, encompassing details 

on the strategy employed and the use cases 

considered for assessment. In Section 3, the model of 

the proposed Stochastic Shaking Algorithm (SSA) 

and its application to the economic load dispatch 

problem are presented. The SSA model includes an 

explanation of the concept, the algorithm, and the 

mathematical formulation. Simultaneously, the 

economic load dispatch problem model comprises 

the concept and its corresponding mathematical 

formulation. Moving on to Section 4, the 

experimental setup for the assessment and the 

obtained results are elucidated. Section 5 delves into 

an in-depth investigation of the results, highlights key 

findings, and discusses any limitations to the 

theoretical framework. Finally, Section 6 concludes 

the study and outlines potential avenues for future 

research. 

2. Related works 

Swarm intelligence has been utilized as a baseline 

or framework for the development of many recent 

metaheuristics. Nowadays, more metaheuristics are 

developed based on swarm intelligence rather than 

other approaches, such as evolutionary systems, 

neighborhood search, and so on. The swarm 

intelligence can be easily acknowledged by the 

existence of a population where each member is 

active and autonomous in performing searches. 

Swarm intelligence is also easily acknowledged by 

the existence of the guided search where the 

searching is represented by the motion toward or 

away from certain references. These references can 

be the finest member, any other member, the worst 

member, the mean of some finer members, and so on. 

This guided search becomes the sole search in some 

swarm-based metaheuristics or the primary search in 

some other swarm-based metaheuristics which are 

also enriched with other searches like the 

neighborhood search. 
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Table 1. The mechanics of shortcoming metaheuristics and the theoretical test used in their first introduction 

No Metaheuristics References Sequential 

Steps 

Use Case 

1 OOBO [24] a random permutation member 1 23 classic functions, CEC 

2017, 4 design problems 

2 KOA [10] a randomly chosen better member 2 CEC 2011, CEC 2017, 4 

design problems 

3 LEO [22] a randomly chosen member from a group consisting 

of all finer members and the finest member; a 

randomly chosen other member 

3 23 classic functions; CEC 

2017; 4 design problems 

4 TIA [25] all other members 1 23 classic functions 

5 WaOA [14] the finest member, a randomly chosen another 

member 

3 23 classic functions, CEC 

2015, CEC 2017, 4 

design problems 

6 LOA [11] a randomly chosen another member 1 CEC 2017, CEC 2011, 4 

design problems 

7 GAO [13] a randomly chosen better member using a normal 

distribution 

2 CEC 2011, CEC 2017, 

CEC 2019 

8 ALO [26] the finest member, balance mixture between the 

finest member and a randomly chosen member, 

balance mixture between two randomly chosen 

member 

3 23 classic functions 

9 SABO [27] all members 1 23 classic functions, CEC 

2017,  

10 FISA [28] mean of all finer members plus the finest member, 

mean of all worse members plus the worst member 

1 CEC 2005, CEC 2014, 4 

design problems 

11 this work the finest member, balance mixture between the 

finest member and a random solution within space, 

means of all finer members plus the finest member, 

balance mixture between the mean of all finer 

members plus the finest member and a random 

solution within space 

2 23 classic functions, 

economic load dispatch 

problem 

 

In recent years, many swarm-based 

metaheuristics have been developed by multiple 

searches rather than relying on only a single search. 

This multiple search approach is adopted due to the 

imperfect of any search so that the weakness of a 

search should be covered by another search. 

Moreover, a search may be suitable for certain 

conditions but performs mediocre in other 

circumstances. For example, Komodo mlipir 

algorithm (KMA) enriches the guided search with the 

crossover with the finest quality swarm member for 

the moderate quality swarm members [29]. This 

multiple-search approach can be conducted 

sequentially and performed by all swarm members, 

or it can be performed stochastically. Another option 

is to split the population so that the same search is 

performed by swarm members within the same group 

while the other swarm members perform different 

searches as seen in KMA [29] or COA [15]. 

In many studies proposing new metaheuristics, 

certain assessment is performed to investigate the 

performance of the proposed method. Several sets of 

mathematical functions like 23 classic functions or 

IEEE CEC series are often utilized to represent the 

theoretical use cases. This theoretical optimization 

use case has become the primary use case in many 

studies proposing new metaheuristics. Meanwhile, 

the practical use case is also found in some studies 

where four design problems in mechanical 

engineering can be found in many studies associated 

with Dehghani, Mirjalili, or Braik, such as chameleon 

swarm algorithm (CSA) [30], OOBO [24], geometric 

mean optimizer (GMO) [31], Geyser Inspired 

Algorithm (GEA) [32], and so on. 

A summary of some recent metaheuristics is 

exhibited in Table 1. All metaheuristics in Table 1 

were first introduced in 2023. All of them are swarm-

based metaheuristics. The information in Table 1 

includes the references used during the guided search, 

the number of sequential steps, and the use case 

utilized during the assessment. The information on 

the proposed method is written in the last row to 

provide a clear positioning of the proposed method 

compared to the existing ones. 

Based on this explanation, there are some spaces 

to conduct a study in proposing a new metaheuristic. 

First, iteration can be utilized to determine the 

strategy for searching rather than to determine the 
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acceptance of worse solutions as in SA or the local 

search space as in NGO [19], WaOA [14], COA [15], 

and so on. Second, there are various practical 

problems besides the common four design problems 

in mechanical engineering that can be used to assess 

the performance of a new metaheuristic in its first 

introduction. In this case, the economic load dispatch 

problem as an optimization problem in the energy 

sector is rare to find in many studies introducing a 

new metaheuristic. 

3. Model 

3.1 Stochastic shaking algorithm 

In a swarm intelligence-based metaheuristic, each 

member of the swarm functions independently as an 

autonomous tracker, autonomously pursuing 

improvements. This paradigm is also implemented in 

the Stochastic Shaking Algorithm (SSA). While SSA 

is fundamentally a swarm intelligence approach, it 

incorporates controlled mutation influenced by the 

iteration. The likelihood of mutation is initially high 

during the early iterations, gradually decreasing 

linearly over subsequent iterations. Notably, the 

mutation is applied to the reference used in the guided 

search rather than to the individual swarm members. 

SSA employs two references in general. The first 

reference is the finest member of the swarm, a 

common practice in existing metaheuristics for 

effective exploitation. The second reference is the 

mean or average of a selection of superior members, 

combined with the finest member. This dual-

reference strategy is designed to guide swarm 

members towards areas where superior members are 

concentrated, enhancing exploration and 

convergence capabilities. 

The novel strategy is introduced by mixing the 

two references with a random solution within space. 

This strategy is designed to improve the exploration 

capability as moving toward the finest member or the 

mean of better members plus the finest member 

cannot guarantee improvement escaping from the 

local optimal. In this context, the main reference is 

mixed with a randomly generated solution within the 

space in a balanced portion.  

This fundamental concept is then transformed 

into a searching strategy of SSA. In SSA, there are 

two sequential steps performed by each swarm 

member in every iteration. The finest swarm member 

becomes the primary reference in the first step while 

the mean of finer members plus the finest member 

becomes the primary reference in the second step. 

The secondary reference is  determined 

stochastically. The balance mixture between the 

Table 2. Notations used in stochastic shaking algorithm 

Notation Description 

a index of the swarm member 

b index for the dimension 

f objective function 

ru real uniform random [0, 1] 

ri integer uniform random [1, 2] 

t iteration 

tmax maximum iteration 

x swarm member 

X swarm 

xl lower boundary of the space 

xu upper boundary of the space 

xmean mean of finer members plus the finest 

member 

Xpool a set consisting of all finer members plus 

the finest member 

xfst the finest member 

xr the reference 

xc the seed 

 

finest member and a random solution may become 

the secondary reference in the first step while the 

balance mixture between the mean of better members 

plus the finest member and a randomly generated 

solution may become the secondary reference in the 

second step. The determination of choosing the 

secondary reference is based on the threshold 

constructed from the iteration divided by the 

maximum iteration. The secondary reference is 

chosen whether the primary reference or the balance 

mixed reference. 

The stringent acceptance rule is applied in SSA. 

There are two offspring generated in every step. The 

first offspring is produced by the guided search 

toward the primary reference while the second 

offspring is produced by the guided search toward the 

secondary reference. The better offspring becomes 

the final seed to be compared with the current value 

of the swarm member.  

The formalization of SSA is presented in 

algorithm 1 and Eqs. (1)-(16). Algorithm 1 

encapsulates the comprehensive formalization of the 

entire SSA process. Meanwhile, Eqs. (1)-(16) 

explicates the formulation for each distinct step. 

Table 2 provides a detailed presentation of the 

notations employed in the formalization of SSA, 

ensuring clarity and precision in understanding the 

algorithmic processes. 

 

Algorithm 1: stochastic shaking algorithm 

1 begin 

2  for a=1 : n(X) 

3   initialize xa using Eq. (1) 
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4   update xfinest using Eq. (2) 

5  end 

6  for t=1 : tmax 

7   for a=1 : n(X) 

8    perform 1st search using Eqs. (3)-(8) 

9    update xfinest using Eq. (2) 

10    perform 2nd search using Eqs. (9)-(16) 

11    update xfinest using Eq. (2) 

12   end 

13  end 

14 End 

15 return xfinest 

 

As with any metaheuristic, there are two stages in 

SSA: initialization and iteration. In algorithm 1, 

initialization is presented from line 2 to line 5. 

Meanwhile, iteration is presented from line 6 to line 

13. There are two processes conducted in the 

initialization which are generating an initial solution 

for each swarm member and the updating of the finest 

member. Meanwhile, the two guided searches are 

conducted during iteration. The finest member is 

updated each time a search is performed. The finest 

member becomes the final solution, and it becomes 

the output of the algorithm. 

The mathematical formulation in the iteration is 

presented in Eqs. (1) and (2). Eq. (1) shows that the 

initial solution for each member is uniformly 

distributed within the space. Eq. (2) presents the 

stringent acceptance rule in the updating of the finest 

member.   

 

𝑥𝑎,𝑏 = 𝑥𝑙,𝑏 + 𝑟𝑢(𝑥𝑢,𝑏 − 𝑥𝑙,𝑏)    (1) 

 

𝑥𝑓𝑖𝑛𝑒𝑠𝑡′ = {
𝑥𝑎 , 𝑓(𝑥𝑎) < 𝑓(𝑥𝑏)

𝑥𝑓𝑠𝑡 , 𝑒𝑙𝑠𝑒
    (2) 

 

The first search is formalized using Eqs. (3)-(8). 

Eq. (3) shows that the finest member becomes the 

primary reference in the first search. Eq. (4) 

formulates the first seed in the first search from the 

motion toward the finest member. Eq. (5) formulates 

the secondary reference in the second search which 

may be the finest member or the balanced mixture 

between the finest member and a random solution 

within space. Eq. (6) formulates the second seed in 

the first search. Eq. (7) formulates the selection for 

the final seed in the first search. Eq. (8) formulates 

the stringent acceptance rule in the first search.  

 

𝑥𝑟11,𝑎,𝑏 = 𝑥𝑓𝑠𝑡,𝑏      (3) 

 

𝑥𝑐11,𝑎,𝑏 = 𝑥𝑎,𝑏 + 𝑟𝑢(𝑥𝑟11,𝑎,𝑏 − 𝑟𝑖𝑥𝑎,𝑏)   (4) 

 

𝑥𝑟12,𝑎,𝑏 = {
𝑥𝑓𝑠𝑡,𝑏 , 𝑟𝑢 >

𝑡

𝑡𝑚𝑎𝑥

𝑥𝑓𝑠𝑡,𝑏+𝑥𝑙,𝑏+𝑟𝑢(𝑥𝑢,𝑏−𝑥𝑙,𝑏)

2
, 𝑒𝑙𝑠𝑒

   (5) 

 

𝑥𝑐12,𝑎,𝑏 = 𝑥𝑎,𝑏 + 𝑟𝑢(𝑥𝑟12,𝑎,𝑏 − 𝑟𝑖𝑥𝑎,𝑏)   (6) 

 

𝑥𝑐1,𝑎 = {
𝑥𝑐11,𝑎, 𝑓(𝑥𝑐11,𝑎) < 𝑓(𝑥𝑐12,𝑎)

𝑥𝑐12,𝑎, 𝑒𝑙𝑠𝑒
   (7) 

 

𝑥𝑎
′ = {

𝑥𝑐1,𝑎, 𝑓(𝑥𝑐1,𝑎) < 𝑓(𝑥𝑎)

𝑥𝑎 , 𝑒𝑙𝑠𝑒
    (8) 

 

The second search is formulated using Eqs. (9)-

(16). Eq. (9) formulates the pool consisting of all 

finer members plus the finest member. Eq. (10) 

formulates the mean member based on the average of 

all members within the pool. Eq. (11) shows that the 

mean member becomes the primary reference in the 

second search. Eq. (12) shows that the motion toward 

this primary reference generates the first seed for the 

second search. Eq. (13) shows that the secondary 

reference can be the mean member or the balanced 

mixture between the mean member and a random 

solution within space. Eq. (14) states that the second 

seed is generated through the motion toward the 

secondary reference. Eq. (15) shows the selection for 

the final seed in the second search. Eq. (16) shows the 

stringent acceptance rule in the second search. 

 

𝑋𝑝𝑜𝑜𝑙,𝑎 = {𝑥 ∈ 𝑋, 𝑓(𝑥) < 𝑓(𝑥𝑎) ∪ 𝑥𝑓𝑠𝑡}   (9) 

 

𝑥𝑚𝑒𝑎𝑛,𝑎,𝑏 =
∑ 𝑥𝑝𝑜𝑜𝑙,𝑎,𝑏

𝑛(𝑋𝑝𝑜𝑜𝑙,𝑎)
               (10) 

 

𝑥𝑟21,𝑎,𝑏 = 𝑥𝑚𝑒𝑎𝑛,𝑏                (11) 

 

𝑥𝑐21,𝑎,𝑏 = 𝑥𝑎,𝑏 + 𝑟𝑢(𝑥𝑟21,𝑎,𝑏 − 𝑟𝑖𝑥𝑎,𝑏)           (12) 

 

𝑥𝑟22,𝑎,𝑏 = {
𝑥𝑚𝑒𝑎𝑛,𝑏 , 𝑟𝑢 >

𝑡

𝑡𝑚𝑎𝑥

𝑥𝑚𝑒𝑎𝑛,𝑏+𝑥𝑙,𝑏+𝑟𝑢(𝑥𝑢,𝑏−𝑥𝑙,𝑏)

2
, 𝑒𝑙𝑠𝑒

      (13) 

 

𝑥𝑐22,𝑎,𝑏 = 𝑥𝑎,𝑏 + 𝑟𝑢(𝑥𝑟22,𝑎,𝑏 − 𝑟𝑖𝑥𝑎,𝑏)             (14) 

 

𝑥𝑐2,𝑎 = {
𝑥𝑐21,𝑎, 𝑓(𝑥𝑐21,𝑎) < 𝑓(𝑥𝑐22,𝑎)

𝑥𝑐22,𝑎, 𝑒𝑙𝑠𝑒
             (15) 

 

𝑥𝑎
′ = {

𝑥𝑐2,𝑎, 𝑓(𝑥𝑐2,𝑎) < 𝑓(𝑥𝑎)

𝑥𝑎 , 𝑒𝑙𝑠𝑒
              (16) 

 

The computational complexity of SSA can be 

investigated through the number of loops involved in 
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the process. Based on algorithm1, the computational 

complexity during the initialization and iteration is 

different. Meanwhile, in all processes, there is an 

additional loop which is the loop for the whole 

dimension in generating a new solution or seed. The 

computational complexity during the initialization 

can be presented as O(n(X).d). Meanwhile, the 

computational complexity during the iteration can be 

presented as O(4tmax.n(X).d). Term four represents 

two searches where each search consists of two sub-

searches: the primary one and the secondary one. 

3.2 Economic load dispatch problem 

The economic load dispatch problem is 

conceptualized as an optimization challenge, 

involving a defined set of generators. Each generator 

can generate power within a specified minimum to 

maximum power range. The overall power output is 

the aggregate of the power generated by individual 

generators, and this output must satisfy the prevailing 

power demand. During operation, each generator 

incurs a cost, typically represented by a quadratic 

function. The primary objective of the economic load 

dispatch problem is to minimize the total fuel cost by 

appropriately adjusting the power output of each 

generator within its specified range [17]. In this 

context, the cost is treated as a soft constraint, while 

the power range serves as a hard constraint. The 

mathematical formulation of the economic load 

dispatch problem is detailed in Eqs. (17)-(23), as 

outlined in [17]. 

 

𝐺 = {𝑔1, 𝑔2, 𝑔3, … , 𝑔𝑛(𝐺)}               (17) 

 

𝑝𝑚𝑖𝑛,𝑖 ≤ 𝑝𝑖 ≤ 𝑝𝑚𝑎𝑥,𝑖               (18) 

 

𝑝𝑡𝑜𝑡 = ∑ 𝑝𝑖𝑛(𝐺)                 (19) 

 

𝑝𝑡𝑜𝑡 = 𝑝𝑑                 (20) 

 

𝑐𝑡𝑜𝑡 = ∑ 𝑐𝑖𝑛(𝐺)                 (21) 

 

𝑐𝑖 = 𝛼 + 𝛽𝑝𝑖 + 𝛾𝑝𝑖
2                (22) 

 

The explanation of Eqs. (17)-(22) is as follows. 

Eq. (17) states that the system consists of a certain 

number of generators where g represents the 

generator. Eq. (18) states that the power of each 

generator (pi) should be within the range of its 

minimum pmin and maximum pmax values. The total 

power of the system ptot is the accumulation of the 

power of all generators as stated in Eq. (19). This total 

power should meet the demand pd as stated in Eq. (20). 

Meanwhile, the total cost ctot is the accumulation of 

cost produced by all generators as stated in Eq. (21) 

where ci is the cost produced by generator i. Eq. (22) 

presents the cost function of each generator where α, 

β, and γ are the constants. 

4. Simulation and result 

This research undertakes two distinct assessments. 

In the initial assessment, the Stochastic Shaking 

Algorithm (SSA) is tasked with addressing 

theoretical problems, utilizing a set of 23 classic 

functions as representative examples. This segment 

aims to evaluate SSA’s performance in theoretical 

scenarios. In the subsequent assessment, SSA is 

tested in addressing the economic load dispatch 

problem, a practical and real-world challenge within 

the energy sector. This second assessment seeks to 

assess SSA’s efficacy in tackling practical problems, 

showcasing its applicability beyond theoretical 

scenarios. 

Five recent swarm-based metaheuristics are 

chosen as contenders for SSA. These contenders are 

OOBO, KOA, LEO, TIA, and WaOA. All the 

metaheuristics under consideration were introduced 

for the first time in 2023, marking them as novel 

methodologies. These contenders are consistently 

evaluated across both assessments conducted in this 

study. In each assessment, a uniform swarm size of 5 

and a maximum iteration limit of 20 are applied. 

The selection of the 23 classic functions for 

evaluation is deliberate, aiming to encompass diverse 

scenarios. This set comprises seven high-dimension 

unimodal functions (HDU), six high-dimension 

multimodal functions (HDM), and ten fixed-

dimension multimodal functions (FDM). The 

functions present a spectrum of spatial characteristics, 

ranging from narrow to expansive, and terrain 

features, varying from smooth to undulating. Specific 

functions within this set exhibit flat terrains 

interspersed with small, steep holes, posing 

challenges for locating the global optimal solution. A 

detailed description of these 23 classic functions is 

available in Table 3. 

The result of the first assessment is presented in 

Tables 4 to 7. Table 4 exhibits the assessment result 

for HDU. Table 5 exhibits the assessment result for 

HDM. Table 6 exhibits the assessment result for 

FDM. Table 7 summarizes the superiority of SSA 

compared to its contenders. Meanwhile, the 

convergence chart is presented in Fig. 1. 

Table 4 illustrates that the Stochastic Shaking 

Algorithm (SSA) excels particularly in addressing 

high-dimensional functions, emerging as the top 

performer in five instances (f1, f2, f3, f4, and f7).  
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f21 f22 f23 legend 

Figure. 1 Convergence curve 
 

Notably, SSA secures the second-best position in 

solving f5 and the third-best in handling f6. 

Furthermore, SSA demonstrates the capability to 

identify the global optimal solution for two functions 

(f1 and f2). It is noteworthy that the performance 

variation among contenders in addressing high-

dimensional unimodal (HDU) functions is substantial. 

However, it is reassuring that the performance gap 

between SSA and the best-performing algorithm, 

when SSA is not the top performer, remains 

comparatively narrow. This suggests that SSA 

maintains competitiveness even in scenarios where it 

may not outperform others. 

Tabl e  5  shows  tha t  SSA mainta ins  i t s 

competitiveness in addressing high-dimensional 

multimodal functions. SSA excels as the best 

performer, successfully identifying the global 

optimal solution in two functions ( f9 and f10). 

Additionally, SSA secures the second-best position 

in f13, the third-best in f11, and the fifth-best in both f8  
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Table 3. A detailed description of the set of 23 functions 

No Function Model Dim Space Target 

1 Sphere ∑ 𝑥𝑖
2𝑑

𝑖=1   40 [-100, 100] 0 

2 Schwefel 2.22 ∑ |𝑥𝑖|
𝑑
𝑖=1 + ∏ |𝑥𝑖|

𝑑
𝑖=1   40 [-100, 100] 0 

3 Schwefel 1.2 ∑ (∑ 𝑥𝑗
𝑖
𝑗=1 )

2𝑑
𝑖=1   40 [-100, 100] 0 

4 Schwefel 2.21 max{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑑}  40 [-100, 100] 0 

5 Rosenbrock ∑ (100(𝑥𝑖+1 + 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2)𝑑−1

𝑖=1   40 [-30, 30] 0 

6 Step ∑ (𝑥𝑖 + 0.5)2𝑑−1
𝑖=1   40 [-100, 100] 0 

7 Quartic ∑ 𝑖𝑑
𝑖=1 𝑥𝑖

4 + 𝑟𝑎𝑛𝑑𝑜𝑚 [0,1]  40 [-1.28, 1.28] 0 

8 Schwefel ∑ −𝑥𝑖 sin(√|𝑥𝑖|)𝑑
𝑖=1   40 [-500, 500] -1.2569x104 

9 Ratsrigin 10𝑑 + ∑ (𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖))𝑑

𝑖=1   40 [-5.12, 5.12] 0 

10 Ackley 
−20 ⋅ 𝑒𝑥𝑝 (−0.2 ⋅ √

1

𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1 ) −

𝑒𝑥𝑝 (
1

𝑑
∑ cos 2𝜋𝑥𝑖

𝑑
𝑖=1 ) + 20 + 𝑒𝑥𝑝(1)  

40 

[-32, 32] 0 

11 Griewank 
1

4000
∑ 𝑥𝑖

2𝑑
𝑖=1 − ∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝑑

𝑖=1 +1 40 [-600, 600] 0 

12 Penalized 

𝜋

𝑑
{10 sin(𝜋𝑦1) + ∑ ((𝑦𝑖 − 1)2(1 +𝑑−1

𝑖=1

10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1))) + (𝑦𝑑 − 1)2} + ∑ 𝑢(𝑥𝑖 , 10,100,4)𝑑
𝑖=1   

40 

[-50, 50] 0 

13 Penalized 2 

0.1 {𝑠𝑖𝑛2(3𝜋𝑥1) + ∑ ((𝑥𝑖 − 1)2(1 +𝑑−1
𝑖=1

𝑠𝑖𝑛2(3𝜋𝑥𝑖+1))) + (𝑥𝑑 − 1)2(1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑑))} +

∑ 𝑢(𝑥𝑖 , 5,100,4)𝑑
𝑖=1   

40 

[-50, 50] 0 

14 
Shekel 
Foxholes (

1

500
+ ∑

1

𝑗+∑ (𝑥𝑖−𝑎𝑖𝑗)
62

𝑖=1

25
𝑗=1 )

−1

  2 [-65, 65] 1 

15 Kowalik ∑ (𝑎𝑖 −
𝑥1(𝑏𝑖

2+𝑏𝑖𝑥2)

𝑏𝑖
2+𝑏𝑖𝑥3+𝑥4

)
2

11
𝑖=1   4 [-5, 5] 0.0003 

16 
Six Hump 
Camel 

4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4  2 [-5, 5] -1.0316 

17 Branin (𝑥2 −
5.1

4𝜋2 𝑥1
2 +

5

𝜋
𝑥1 − 6)

2

+ 10 (1 −
1

8𝜋
) cos(𝑥1) + 10  2 [-5, 5] 0.398 

18 
Goldstein-
Price 

(1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 +

6𝑥1𝑥2 + 3𝑥2
2)). (30 + (2𝑥1 − 3𝑥2)2(18 − 32𝑥1 +

12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2

2))  

2 [-2, 2] 3 

19 Hartman 3 − ∑ (𝑐𝑖𝑒𝑥𝑝 (− ∑ (𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

)𝑑
𝑗=1 ))4

𝑖=1   3 [1, 3] -3.86 

20 Hartman 6 − ∑ (𝑐𝑖𝑒𝑥𝑝 (− ∑ (𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

)𝑑
𝑗=1 ))4

𝑖=1   
6 

[0, 1] -3.32 

21 Shekel 5 − ∑ (∑ (𝑥𝑗 − 𝑐𝑗𝑖)
2

+ 𝛽𝑖
𝑑
𝑗=1 )

−1
5
𝑖=1   

4 [0, 10] -10.1532 

22 Shekel 7 − ∑ (∑ (𝑥𝑗 − 𝑐𝑗𝑖)
2

+ 𝛽𝑖
𝑑
𝑗=1 )

−1
7
𝑖=1   

4 [0, 10] -10.4028 

23 Shekel 10 − ∑ (∑ (𝑥𝑗 − 𝑐𝑗𝑖)
2

+ 𝛽𝑖
𝑑
𝑗=1 )

−1
10
𝑖=1    

4 [0, 10] -10.5363 
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Table 4. Fitness score comparison in solving high-dimension unimodal functions 

F Parameter OOBO [24] KOA [10] LEO [22] TIA [25] WaOA [14] SSA 

1 mean 1.5906x102 0.4278 0.0005 0.0026 0.0027 0.0000 

std deviation 1.0811x102 0.2828 0.0006 0.0012 0.0020 0.0000 

mean rank 6 5 2 3 4 1 

2 mean 0.0293 0.0000 0.0000 2.7875x1040 0.0000 0.0000 

std deviation 0.1309 0.0000 0.0000 1.2466x1041 0.0000 0.0000 

mean rank 5 1 1 6 1 1 

3 mean 2.9615x104 7.0976x103 1.4671x102 1.2824x102 1.2287x102 1.1979 

std deviation 1.6145x104 6.6043x103 1.8780x102 2.7856x102 2.2463x102 2.5564 

mean rank 6 5 4 3 2 1 

4 mean 2.9574x101 1.2553 0.0468 0.0747 0.1113 0.0002 

std deviation 3.0435x101 0.6516 0.0270 0.0231 0.0841 0.0001 

mean rank 6 5 2 3 4 1 

5 mean 1.0552x104 4.6218x101 3.8957x101 3.8939x101 3.8981x101 3.8944x101 

std deviation 1.3173x104 7.6122 0.0238 0.0557 0.1022 0.0275 

mean rank 6 5 3 1 4 2 

6 mean 2.1907x102 8.9857 9.2202 7.1436 8.1679 8.3415 

std deviation 1.7580x102 0.7629 0.8336 0.5768 0.4009 0.4114 

mean rank 6 4 5 1 2 3 

7 mean 0.1041 0.0451 0.0186 0.0282 0.0209 0.0103 

std deviation 0.0491 0.0309 0.0092 0.0227 0.0109 0.0074 

mean rank 6 5 2 4 3 1 

 

 
Table 5. Fitness score comparison in solving high-dimension multimodal functions 

F Parameter OOBO [24] KOA [10] LEO [22] TIA [25] WaOA [14] SSA 

8 mean -2.6930x103 -3.3212x103 -3.8118x103 -1.8465x103 -3.4249x103 -2.4801x103 

std deviation 3.8423x102 5.1787x102 5.6328x102 3.3977x102 6.1347x102 5.1069x102 

mean rank 4 3 1 6 2 5 

9 mean 2.4260x102 1.7896x101 2.4827x101 0.0213 0.3565 0.0000 

std deviation 5.3199x101 3.3120x101 5.8181x101 0.0282 1.0715 0.0000 

mean rank 6 4 5 2 3 1 

10 mean 4.0124 0.2649 0.0033 0.0102 0.9200 0.0000 

std deviation 1.3043 0.3028 0.0022 0.0022 4.1594 0.0000 

mean rank 6 4 2 3 5 1 

11 mean 2.7589 0.1618 0.0019 0.0013 0.0204 0.0145 

std deviation 1.5013 0.1789 0.0046 0.0022 0.0458 0.4797 

mean rank 6 5 2 1 4 3 

12 mean 3.6814 1.0647 1.0026 0.8061 0.8894 1.0716 

std deviation 1.2777 0.1592 0.1471 0.1230 0.1787 0.1378 

mean rank 6 4 3 1 2 5 

13 mean 4.1189x101 3.5582 3.1121 3.1389 1.9832 3.0391 

std deviation 8.8187x101 0.1858 0.0683 0.1417 0.4465 0.0708 

mean rank 6 5 3 4 1 2 

 

 

and f12. Like the observations in the first set of 

functions, the performance gap between SSA and the 

best-performing algorithm in f8, f11, f12, and f13 

remains narrow. This indicates that SSA remains 

competitive even when it does not secure the top 

position in these specific functions. 

Table 6 shows the fierce competition among 

contenders in solving the fixed-dimension 

multimodal functions. In general, the performance 

gap between the best performer and the worst 

performer is very narrow. SSA becomes the best 

performer in solving f19. SSA becomes the second 

best in three functions (f14, f21, f22), third best in four 

functions (f16, f18, f20, f23), fourth best in f15, and fifth 

best in f17. 

Table 7 shows that SSA is very competitive or 

superior enough compared to its contenders. SSA is 

better than OOBO, KOA, LEO, TIA, and WaOA in 

21, 13, 11, 16, and 14 functions. Among the group of 

functions, SSA is superior in solving high - 
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Table 6. Fitness score comparison in solving fixed dimension multimodal functions 

F Parameter OOBO [24] KOA [10] LEO [22] TIA [25] WaOA [14] SSA 

14 mean 1.6547x101 9.9056 6.6511 1.0213x101 8.6932 6.6793 

std deviation 2.0361x101 3.7968 3.9255 3.5836 4.0645 3.0860 

mean rank 6 4 1 5 3 2 

15 mean 0.0165 0.0058 0.0039 0.0027 0.0014 0.0042 

std deviation 0.0134 0.0077 0.0007 0.0052 0.0012 0.0134 

mean rank 6 5 3 2 1 4 

16 mean -1.0126 -1.0235 -1.0298 -1.0043 -1.0308 -1.0294 

std deviation 0.0296 0.0120 0.0047 0.0486 0.0022 0.0042 

mean rank 5 4 2 6 1 3 

17 mean 0.6231 0.4034 0.3995 4.3802 0.3986 0.4450 

std deviation 0.6839 0.0071 0.0032 5.8361 0.0010 0.0818 

mean rank 6 3 2 4 1 5 

18 mean 1.2674x101 4.3255 6.3861 1.9642x101 3.0419x101 6.7833 

std deviation 1.2397x101 5.5036 1.6219x101 2.3282x101 3.0567x101 9.2027 

mean rank 4 1 2 5 6 3 

19 mean -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 

std deviation 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

mean rank 1 1 1 1 1 1 

20 mean -2.3071 -3.0536 -3.1582 -2.3200 -2.9928 -3.0116 

std deviation 0.4629 0.1264 0.1067 0.4982 0.1939 0.3038 

mean rank 6 2 1 5 4 3 

21 mean -1.1377 -4.2817 -2.9922 -2.2747 -2.1969 -4.1468 

std deviation 0.6270 1.5344 1.3533 1.4584 0.9962 1.7498 

mean rank 6 1 3 4 5 2 

22 mean -1.3504 -4.2240 -3.3315 -2.4322 -3.0662 -3.9907 

std deviation 0.4858 1.7837 1.2539 1.5683 1.1347 2.3736 

mean rank 6 1 3 5 4 2 

23 mean -1.5473 -3.9090 -3.2812 -2.5250 -3.0662 -3.2610 

std deviation 0.9755 1.3105 0.9552 1.1793 1.1347 0.9356 

mean rank 6 1 2 5 4 3 

 

 
Table 7. Group-based superiority of SSA 

Group Number of Functions Where SSA is 

Better 

OOBO 

[24] 

KOA 

[10] 

LEO 

[22] 

TIA 

[25] 

WaOA 

[14] 

1 7 6 6 5 5 

2 5 4 3 4 3 

3 9 3 2 7 6 

Total 21 13 11 16 14 

 

dimensional unimodal functions. Meanwhile, SSA is 

less superior in solving fixed-dimension multimodal 

functions. Overall, SSA is superior to OOBO in all 

groups of functions. On the other hand, LEO is the 

most difficult contender to beat although SSA is 

slightly superior to LEO. 

In the second assessment, SSA is challenged to 

solve the economic load dispatch problem where the 

system consists of 13 generators. These generators 

can be split into three groups {g1 to g3, g4 to g9, g10 to 

g13}. The total demand is 1800 MW. The detailed 

description of the system is presented in Table 8 

based on [1]. Table 8 presents the constants for the 

cost and the power range of each generator. The result 

is presented in Table 9. 

Table 9 shows that the performance gap between 

the best performer and the worst performer in solving 

the economic load dispatch problem is very narrow. 

 
Table 8. Constants of 13 Generators 

Gen. α β γ 
pmin 

(MW) 

pmax 

(MW) 

1 550 8.1 0.00028 0 680 

2 309 8.1 0.00056 0 360 

3 307 8.1 0.00056 0 360 

4 240 7.74 0.00324 60 180 

5 240 7.74 0.00324 60 180 

6 240 7.74 0.00324 60 180 

7 240 7.74 0.00324 60 180 

8 240 7.74 0.00324 60 180 

9 240 7.74 0.00324 60 180 

10 126 8.6 0.00284 40 120 

11 126 8.6 0.00284 40 120 

12 126 8.6 0.00284 55 120 

13 126 8.6 0.00284 55 120 
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Table 9. Total fuel cost 

No Metaheuristic 
Total Fuel Cost 

(USD/hour) 

1 OOBO [24] 17,962 

2 KOA [10] 17,941 

3 LEO [22] 17,939 

4 TIA [25] 17,951 

5 WaOA [14] 17,940 

6 SSA 17,942 

 

The range is less than one percent of the average total 

fuel cost. LEO becomes the best performer while 

OOBO becomes the worst performer. SSA is in the 

fourth rank. 

5. Discussion 

In the broader context, the outcomes from both 

assessments underscore the intense competition 

among contemporary swarm-based metaheuristics, 

particularly emphasizing the rivalry between the 

proposed Stochastic Shaking Algorithm (SSA) and 

the five competing methods. SSA emerges as the top 

performer in eight functions, with five of them 

belonging to the high-dimensional unimodal category. 

Notably, SSA exclusively claims the top position in 

six functions. In contrast, the Language Education 

Optimization (LEO), identified as the most 

formidable metaheuristic to surpass, secures the sole 

best-performer status in only three functions. The 

performance disparity between the best and worst 

performers is notably wide in addressing high-

dimensional unimodal functions. Conversely, this 

gap narrows considerably when tackling fixed-

dimension multimodal functions. These findings 

substantiate the principles of the No Free Lunch 

(NFL) theory. 

Fiercer competition occurs in solving the 

economic load dispatch problem where the range 

between the best and worst results is very narrow 

compared to the average result. By drawing back to 

the previous study [1], fierce competition also occurs. 

By comparing the result in this paper and in [1], all 

six metaheuristics in this current experiment perform 

better than the metaheuristics in the previous work. 

The worst result in this current work is provided by 

OOBO where the total fuel cost is 17,962 USD/hour. 

On the other hand, the best result in the previous work 

is 17,963 USD/hour [1]. 

The very narrow performance gap in the 

economic load dispatch problem can be analysed by 

investigating the cost function, especially the 

constants (α, β, γ) and the power range. In general, 

this cost function can be split into three parts: the 

constant part, the linear part, and the quadratic part. 

Based on the relation between the constants and the 

range, it is shown that the linear part has the most 

significant portion in generating cost while the 

quadratic part has the least significant portion 

because the value of γ is very small compared to the 

value of β. The multiplication of the quadratic power 

range and γ is relatively very small compared to the 

multiplication of β and the median value of the power 

range of the related generator. It means that the 

quadratic part in the cost function can be ignored. 

Then, the cost function is constructed mainly by the 

constant and linear parts. This circumstance makes 

this economic load dispatch problem easy to solve. In 

a more common perspective, the constant part can be 

seen as the fixed cost while the linear part can be seen 

as the variable cost. 

Further investigation can be conducted by 

checking the range of values of α and β. In general, 

the range of β is small among 13 generators. The 

smallest value is 7.74 and the highest value is 8.6. 

This condition makes the gradient of the cost function 

almost similar. Moreover, the range of α in eight 

generators (g2 to g9) is also small compared to the 

value of α. In general, the first generator (g1) 

becomes the key determinant of the total cost as it has 

the highest α and highest maximum power. 

The main limitation in this work can be drawn 

back to the various use cases, whether they are 

theoretical or practical. In this work, the set of 23 

classic functions is chosen as the theoretical use case. 

On the other hand, there are other sets of theoretical 

use cases, for example the CEC series. The classic 

functions can be seen as the unconstrained problems 

while the CEC series are the constrained problems. 

Both classic functions and CEC series have limited 

solution space in each of the dimension. But each 

function in CEC series is also enriched with other 

constrains whether equality or inequality ones. In the 

real world, most of optimization problems are 

constrained problems. Although the constrained 

theoretical or standard functions like CEC series is 

not used in this work, this gap is filled with the 

economic load dispatch problem that represents the 

constrained practical problem. As previously 

explained, in ELD problem, there is equality 

constraint where the total power should meet the 

demand. In the practical area, there are several 

standard ELD problem like IEEE bus system, such as 

IEEE-30, IEEE-57, or IEEE-118 bus system. 

Moreover, it is impossible to accommodate to 

many standard assessment use cases in a single paper. 

Many recent studies proposing new metaheuristics 

still use the set of 23 classic functions as the sole 

standard use case. This scenario can be found in many 

studies that propose Archery Algorithm (AA) [33], 

Coronavirus Herd Immunity Optimizer (CHIO) [34], 
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KMA [29], Golden Jackal Optimization (GJO) [35], 

and so on. In general, the main objective of standard 

assessment is to evaluate the exploitation and 

exploration capabilities of the proposed metaheuristic. 

In this context, the set of 23 classic functions is 

enough and acceptable. 

These findings can be used as a baseline and 

motivation for further studies. In the economic 

dispatch problems, other practical use cases can be 

used for more comprehensive analysis, for example, 

the Java-Bali electricity system in Indonesia. Besides 

the single objective of minimizing total fuel cost, 

other objective functions can be proposed, for 

example by introducing the environmental cost. 

Moreover, it will be challenging to implement SSA 

in other power systems with more various resources, 

especially the greener and renewable ones, such as 

wind, ocean wave, hydro, and so on, where the cost 

structure is different. 

6. Conclusion 

This research paper has introduced and 

thoroughly examined the stochastic shaking 

algorithm (SSA), covering its conceptualization, 

formulation, and assessment. The evaluation results 

indicate that SSA excels in addressing the set of 23 

classic functions and exhibits competitiveness in 

tackling the economic load dispatch problem. In 

comparison to alternative metaheuristics—OOBO, 

KOA, LEO, TIA, and WaOA—SSA outperforms 

them in 21, 13, 11, 16, and 14 functions, respectively, 

out of the total 23 functions. In the theoretical 

assessment, LEO emerges as the most challenging 

contender to surpass, while OOBO is identified as the 

least challenging. Meanwhile, the second assessment 

witnesses the fierce competition, with a remarkably 

narrow performance gap between the best and worst 

performers. 

Numerous avenues for future studies are 

identified. Firstly, a more extensive analysis could be 

undertaken by subjecting SSA to address additional 

theoretical problems, such as those presented in the 

IEEE CEC series. Secondly, SSA could be applied to 

solve various optimization problems within the 

energy sector, including power flow problems or 

battery storage problems. Lastly, further exploration 

can involve combining or modifying SSA to enhance 

its overall performance. 
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