
Received: February 6, 2024. Revised: March 8, 2024. 262

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.22

Conditional Preference Networks in Multiobjective Evolutionary Algorithms

Abdulaziz Alashaikh1*

1University of Jeddah, Saudi Arabia

Corresponding author’s Email: asalashaikh@uj.edu.sa

Abstract: Conditional Preference Networks (CP-nets) have emerged as a prominent and intuitive model for

representing condi-tional preferences within the AI community. However, the literature lacks a concrete investigation

on their applica-bility within Multiobjective Evolutionary Algorithms (MOEAs). Many optimization problems that are

tackled by MOEA have a room for conditional preferences on the decision space and thus reasoning about CP-nets in

MOEA is of great importance. In this work, we motivate the use of CP-nets within the MOEA framework and provide

a sim-ple yet powerful approach that can be augmented during the search to return solutions that are not only optimized

for the objectives but also preferred by the decision maker’s CPnet. Furthermore, we consider the case where the de-

cision maker has no clear idea about her preferences at the beginning of the search but willing to engage during the

search to answer simple comparison questions. Our experimental results show that it is possible to return solutions that

are both optimal and preferred even when the search starts with empty preference information. The obtained solution

space achieved at least 23% improvement in the average penalty score.

Keywords: Conditional preferences, CP-nets, Multiobjective, Evolutionary algorithms, Decision space.

1. Introduction

In Multiobjective Optimization Problems

(MOPs) [1, 2], it is quite common for the decision

maker (DM) to express preferences on the space of

possible solutions. Such preferences are issued with

the hope of returning something desirable to the DM.

Hence, taking preferences into account when solving

an optimization problem is a cornerstone for the

success of the approach. Evolutionary based

algorithms have become the de facto method to tackle

complex optimization problems. Historically,

preferences in evolutionary algorithms (EAs) have

been used mostly as means of reducing the size of the

final Pareto Set [3-5]. While this is indeed a valid

endeavor, in many problems preferences exist as part

of the problem itself and expressed naturally on the

decision space.

We focus on preferences as a notion that is

required to be tackled and considered within MOPs.

Many optimization problems have a room for

(possibly conditional) preferences and thus reasoning

about preferences during the search is of great

importance. Two major issues need to be addressed

when handling preferences in EAs. First, articulating

preferences need to assume minimum efforts from

the decision maker. Second, the set of returned

solutions need to be sensible to the issued preferences.

The first issue is mainly a representation (and

learning) issue. It depends largely on the problem

domain and decision maker abilities in specifying

preferences. It is however desirable to assume

preferences that are natural and simple to articulate.

So that the DM would not be involved in a lengthy

pro-cess. One of the well-known representation of

preferences is utility functions.

However, it is known that such functions re-quire

tedious effort from the DM to be articulated [6, 7].

Thus, a model that captures preferences from

relatively natural and easy statements is required. The

second issue requires efficient approaches that have

the ability to assess potential solutions during the

search and decide the most preferred solution given

the preference in-formation. This is mainly due to the

fact that optimizing a set of objectives (in the

objective space) alone is not enough. The returned

Received: February 6, 2024. Revised: March 8, 2024. 263

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.22

solutions (in the decision space) need to be desirable

as well by the decision maker.

In this paper, we consider a class of preferences

that is natural and easy to elicit from the DM. Such

preferences are based on comparative statements of

the form “I prefer z to z′ as a value for the attribute Z”

or “If Z is assigned a value z then I prefer W to be w′

more than w”. The latter is known as conditional

preference, and it asserts that the preference of W

depends on another at-tribute’s value (namely Z). In

particular, we con-sider the class of preferences that

is representable by Conditional Preference Networks

(CP-nets) [8]. CP-nets are intuitive graphical model

to rep-resent and reason with conditional qualitative

statements. Such statements were discussed by

Coello [9] to be prone to the curse of dimensionality

when the size of the solutions becomes big as the DM

would not be able to assess her preferences over large

number of alternatives. This is not an issue anymore

in compact models such as CP-nets. In fact, the size

of the CP-net (that the DM is required to supply) is

exponentially small-er than the number of solutions

it exhibits. CP-nets has been a subject of active

research by AI researchers for years, but their

utilization within evolutionary algorithms has not

been investigated yet. The paper main contributions

are: 1) We provide a simple and efficient method to

incorporate CP-nets on top of any evolutionary

algorithm. We also experimentally show that this

method preserves the Pareto dominance and solutions

diversity. 2) We discuss the scenario of interactively

learning CP-net during the search based on recent

advancements in the field and augment it within the

search. To the best of our knowledge, this is the first

attempt that proposes a general and domain-

independent approach to handle user’s preferences

represented by CP-nets in evolutionary algorithms.

The paper is organized as follows: a motivation

example showing conditional preferences on a simple

optimization problem is discussed in the next section.

Section III introduces the notion of preferential

dependencies as a key concept in CP nets. Formal

definition of CP-nets is presented in Section IV.

Section V outlines the proposed method to

incorporate CP-nets in EAs. This is followed by a

learning approach during the search in Section VI.

Experimental results are presented in Section VII.

Finally, conclusion re-marks and future work is

discussed in Section VIII.

2. Motivating example

Consider the famous 0-1 Knapsack problem. We

have a set of n items where each item xi has two

possible values 1 or 0 representing respectively

whether the item is included in the knapsack or not.

Furthermore, each item xi is associated with a value

ci > 0 and a weight ai > 0. A knapsack has capacity b

and our goal is to maximize the value of the items in

the knapsack.

max ∑ 𝑐𝑖𝑥𝑖

𝑛
𝑖=1 (1)

subject to ∑ 𝑎𝑖𝑥𝑖 ≤𝑛

𝑖=1 𝑏 (2)

Consider a traveler wants to pack her items. She

always prefers to have her jacket in the pack in case

some windchill. For the t-shirt, she prefers to have it

packed only if the jacket is packed. Lastly, she prefers

to have her jeans in the pack only when both the

jacket and the t-shirt are in the pack. From the above

information, we conclude that her preference on the

jacket is unconditional, it is always preferred to have

it packed. However, her preference for the t-shirt is

conditioned upon whether the jacket is packed or not.

Such statement shows that the preference of one

attribute (i.e., T-shirt) may depend on the values of

other attributes (i.e., Jacket) and they exist naturally

on the decision space. One can model such

preferences via CP-nets.

Informally, a CP-net is a directed graph where

vertices represent attributes of the domain (jacket, t-

shirt, and jeans) and every attribute has a set of

possible domains (0 or 1 in our example) and edges

represent preferential dependencies. Moreover, every

vertex is associated with a table showing the

preference function of the attribute. The CP-net that

corresponds to the above traveler scenario is captured

in Fig. 1. This CP-net has three attributes (or

variables) every variable is annotated with a

preference table. For instance, it is always preferred

to pack the jacket (1 ≻ 0 read as 1 is preferred to 0 as

a value). The preference for T-shirt depends on the

value of the Jacket. Thus, there is an edge from Jacket

to T-shirt and its preference is 1 ≻ 0 iff Jacket is

packed otherwise it is preferred not to pack the T-

shirt. In such case we say that Jacket is a parent of T-

shirt (similarly Jacket and T-shirt are parents for

Jeans).

Given the traveler CP-net, we can determine the

optimal (i.e., best) solution for this network. We

simply go top to bottom in a topological order

consistent with the graph and assigning every

variable to its best value given the parents values.

This procedure is known as sweep-forward in CP-

nets [8]. Therefore, (1, 1, 1) is the best solution for

the network. This is the best (i.e., most preferred)

solution if we neglect the underlying optimization

problem. Moreover, another important task is to

Received: February 6, 2024. Revised: March 8, 2024. 264

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.22

Figure. 1 The Traveler CP-net

Figure. 2 Traveler Induced graph

determine whether the CP-net has enough

information to prefer one solution over another. A

CP-net defines a strict partial order over the set

possible of solutions which determines whether one

solution dominates (or preferred to) another. The full

relation is defined as the transitive closure of this

partial order. Fig. 2 shows the induced relation of the

traveler network. Informally, a path from vertex x to

y means y dominates x, similarly y does not dominate

x in case there is no path from x to y in the graph. The

formal definitions will be introduced in Section IV.

In the case of optimization problems, one may

expect that many of the preferred solutions in the CP-

net are infeasible or having poor objective values.

This is indeed a possible scenario and a challenging

problem. We will discuss CP-nets within the realm of

MOEAs in Section V where we show one method to

return solutions that are not only optimal for the

optimization problem but also preferred by the

decision maker’s CP-net.

3. Preference relations and preferential

independencies

In the following, we introduce basic

terminologies and related concepts that would be

useful in the remaining of the paper. A binary relation

over a set of elements O is a subset of the cartesian

product O × O. For a given relation R, there are

certain properties that we wish R to satisfy. For

instance, R is called:

• Reflexive if and only if every element o ∈ O is

related to itself (i.e., (o, o) ∈ R).

• Irreflexive if and only if there exists no element o

that is related to itself i.e., (o, o) ∉ R

• Transitive if and only if for any three elements o,

o′, and o′′, if (o, o′) ∈ R and (o′, o′′) ∈ R then it is

the case that (o, o′′) ∈ R.

• Total if and only if for any pair of elements (o, o′)

it is the case that either (o, o′) ∈ R or (o′, o) ∈ R.

Definition 1. A preference ⪰ is a binary relation that

is reflexive and transitive.

⪰ is also called partial preorder. The interpretation of

o ⪰ o′ is that o is as good as o′. Moreover, more

precise conclusions can be derived from checking

how the two elements stand with regard to each other.

1) is strictly better than o′ (denoted as o ≻ o′) if o

⪰ o′ but o′ ⪰ o does not hold.

2) is indifferent to o′ (denoted as o ∼ o′) if both o

⪰ o′ and o′ ⪰ o hold.

3) is incomparable with o′ (denoted as o ⋈ o′) if

both o ⪰̸ o′ and o′ ⪰̸ o are true.

Furthermore, a total order ≻ ′ is called a linear

extension of ≻ if ≻′ is a total relation and for any two

elements o, o′ ∈ R where o ≻ o′ we have o ≻′ o′. We

work on problem domains of combinatorial nature. In

such domains, every possible outcome in O is an

assignment to a set of n attributes (or variables) V =

{vi}
n

i=1. Furthermore, every vi is associated with a set

of possible values Dvi of length m ≥ 2. For an

arbitrary subset Y = {Y1, Y2, . . . } ⊆ V , an

assignment y is an element of the cartesian product

DY1 × DY2 × . . . and we refer to them as OY and

remove Y from the subscript when Y = V . For a

specific assignment o ∈ O, we use the notation o[Y]

to refer the projection of o into the variables in Y.

Needless to say, the size of the possible outcomes, i.e.,

|O| is exponential in n. Therefore, one cannot easily

articulate a preference relation directly on the set of

outcomes. Thanks to preferential dependencies, it is

Received: February 6, 2024. Revised: March 8, 2024. 265

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.22

possible to define the preference relation ⪰ in a

succinct way if the given preferences exhibit some

certain structure. Assume A and B to be any two

mutual disjoint sets and ab is the result of

concatenating an arbitrary assignment a ∈ OA and b

∈ OB.

Definition 2 ([8]). A is said to be preferentially

independent from another set B iff ab ⪰ a′b ⟺ ab′

⪰ a′b′, for all a, a′ ∈ OA and b, b′ ∈ OB.

In essence, A is preferentially independent from

another set B in case the preference given to the set A

does not change no matter what B is. That is, knowing

Y’s values does not add anything new to the

preference relation defined on the set A. There is also

a more fine-grained conditional version of

preferential dependency stated as follows.

Definition 3 ([8]). Consider A, B and C to be disjoint

sets of V where A ∪ B ∪ C = V . We say that A is

independent from B conditioned on another set C iff

abc ⪰ a′bc ⟺ ab′c ⪰ a′b′c, for all a, a′ ∈ OA, b, b′

∈ OB and c ∈ OC.

We limit ourselves to work on strict (i.e.,

irreflexive and transitive) preference orders ≻. It is

well-known that given any partial preorder ⪰, we can

extract a strict order ≻ as follows: o strictly dominates

(or preferred to) o′ (o ≻ o′) if and only if o ⪰ o′ but

the other way is not true. Binary relations can be

visualized as directed graphs where strict orders such

as ≻ are acyclic due to the irreflexivity property.

4. Conditional preference networks (CP-

nets)

Informally, a CP-net is a collection of qualitative

preference statements having the form: x : y ≻ y′

which means the preference of the variable Y with

possible values y and y′ is conditioned upon the value

of another variable X. Specifically, when X = x, y is

preferred to y′. The preference holds only when x is

true. CP-nets have an appealing graphical structure to

represent the preferences over O in a compact way.

Formally, the construction of CP-net involves two

main steps:

• for every variable vi ∈ V , the user is asked to

choose “parent variables” Pa(vi) ⊆ V\vi that

affect the preference relation of vi.

• for every possible assignment u ∈ OPa(vi) of

Pa(vi), the user issues a total order ≻i
u over the

values of Dvi.

The total order ≻i
u is known to be the statement of vi

in the context of u. The set of all statements ≻i
u for all

u ∈ OPa(vi) is known as the conditional preference

table CPT(vi).

 (a) (b)

Figure. 3 An example of an acyclic CP-net with three

variables and the full induced relation: (a) The model and

(b) The full relation over all possible solutions (aka

induced graph)

Figure. 4 One objective vector can be mapped to several

decision vectors (solutions)

Definition 4 (CP-net [8]). A CP-net is defined as a

pair (G,C) where G is a directed graph (V, E) showing,

for every v ∈ V , an edge from v′ ∈ Pa(v) to v and C

is a set of CPTs for every variable in V.

Example 1. Fig. 3a shows a CP-net over V = {A, B,

C} with DA = {a, �̅�}, DB = {b, �̅�}, DC = {c, 𝑐̅}. Each

variable is annotated with its CPT. For variable A, the

user prefers a to �̅� unconditionally. For C, the

preference depends on the values of B, i.e., Pa(C) =

{B}. For instance, in the context of �̅�, 𝑐̅ is preferred

over

We can illustrate the semantics of the CP-nets in

terms of flips. A flip with respect to an outcome o

result in another new outcome o′ that is different from

o in exactly one variable value. The flip from o to o′

can be either an improving flip (the new value is

preferred to the old value) or worsening flip (the new

value is worse compared to the old one).

Formally, let u ∈ OPa(vi) be the parents values for

a variable vi ∈ V . Let ≻𝑢
𝑣𝑖= 𝑣1

𝑖 ≻ ⋯ ≻ 𝑣𝑚
𝑖 be the

preference order of vi where u is the context. Then,

going from vi
j to vi

k is an improving flip for vi

whenever k < j ≤ m.

Example 2. In Fig. 3a, (�̅��̅�𝑐, �̅�𝑏𝑐) is an improving

flip because we flipped the value of B to a more

preferred one. The main task in CP-nets is answering

dominance queries. Such queries involve arbitrary

two outcomes o and o′ and the question is does o

dominate o′ in the underlying CPnet? The answer is

yes if and only if there exists a sequence of improving

A B

C

b b̄a ā

b : c c̄

b̄ : c̄ c

(a) The model

ab̄̄c āb̄c āb̄c

ab̄c ab̄c ābc

abc

āb̄̄c

(b) The full relation over all possible solu-
tions (aka induced graph).

Fig. 3: An example of an acyclic CP-net with three variables and the full induced relation.

improving flips from āb̄̄c to ābc. Specifically (āb̄̄c, āb̄c, ābc)

is such a sequence of improving flips.

Definition 5 (Induced Graph [8]). The induced graph for a

particular CP-net N is defined as a directed graph G where

the set of vertices is O and an edge from x to y exists iff

(y, x) form an improving flip.

The full relation of the CP-net is shown in Figure 3b. The
transitive closure of this graph is what a CP-net induces. The
CP-net N enails a statement o o0 if and only if there exists
a path from o0 to o in this graph. Notice that representing
the whole induced graph by requires only keeping the CP-net
and its CPTs. This compact representation of CP-net is a one
major advantage when working in domains with very large
attributes. The complexity of answering dominance queries
depends on the CP-net graph and CPTs representation. For
trees (CP-nets with indegree at most one) it has shown to
be linear [10] but it is PSPACE-complete for the generalized
case of CP-nets [11].

V. REASON ING W ITH CONDITIONAL PREFERENCES IN
EVOLUTIONARY A LGORITHM S

CP-nets are rich in semantics. In this section, we outline
one possible way to augment preference information during
the search. The goal is to consult the preferences specified
on the decision space when searching for Pareto solutions.
DMs are rarely expert in technical aspects of the problem and
their preferences are usually expressed on the aspects related
to potential solutions i.e., over the decision space. During
the search, one objective vector could have many decision
vectors or images. See e.g., Figure 4 for an illustration.
Thus, one obvious way to augment and reason with CP-nets
within MOEA is to keep the non-dominated decision vectors
when the objective vector has more than one mapping.
In other words, we keep only the solutions that are non-
dominated by the underlying CP-net. This requires, for two
decision vectors x and y mapped to the same objective
vector F (x) = F (y) , determining whether x is better than
y according to the CP-net. Such dominance question is
known to be computationally hard in CP-nets and the exact
complexity is known only for a restricted sub-classes of CP-
nets [11].
Luckily, recent advancements in reasoning with CP-net

allow us to avoid dominance testing by creating a mapping

Decision Space Objective Space

Fig. 4: One objective vector can be mapped to several
decision vectors (solutions)

p : O ! N related to the CP-net where the dominance
relation can be answered in almost straightforward way i.e.,

if x dominates y then p(x) < p(y) where p(o) is the penalty
of o 2 O [12]. The mapping is based on two steps. First,
constructing a weight w(vi) for every variable vi 2 V given
the CP-net N . The weights represent roughly the importance
of vi within the CP-net graph. Higher up nodes in the graph
where many nodes depend on their values are known to
be more important to be satisfied compared to others [8].
Algorithm 1 shows the steps required to create the variables
weights. Second, given an outcome o, we create an indicator
do

v i
2 { 0, 1} for every variable vi , such that do

v i
= 0 iff the

value of vi in the solution o is the best value given its parent
values o[Pa(vi)]. The function p, or the penalty of o, is then
defined as follows [12]

p(o) =
X

v i 2 V

w(vi) · do
v i

Algorithm 1: Calculating variables weights as in
[12].

I nput : N , an acyclic CP-net
Output: the weight w(vi) for every variable vi 2 N

1 Let ⇡ be a reverse topological order for variables in
N for i = 1 to n do

2 if ⇡ (i) has no children in N then
3 w(⇡ (i)) 1
4 else
5 w(⇡ (i)) 1 +

P
⇡ (j)2 ch i l dr en (⇡ (i)) w(⇡ (j))

6 end
7 end

Figure 5 shows the penalty function and the variables
weights for the CP-net in Figure 3. For this small example, it

A B

C

b b̄a ā

b : c c̄

b̄ : c̄ c

(a) The model

ab̄̄c āb̄c āb̄c

ab̄c ab̄c ābc

abc

āb̄̄c

(b) The full relation over all possible solu-
tions (aka induced graph).

Fig. 3: An example of an acyclic CP-net with three variables and the full induced relation.

improving flips from āb̄̄c to ābc. Specifically (āb̄̄c, āb̄c, ābc)

is such a sequence of improving flips.

Definition 5 (Induced Graph [8]). The induced graph for a

particular CP-net N is defined as a directed graph G where

the set of vertices is O and an edge from x to y exists iff

(y, x) form an improving flip.

The full relation of the CP-net is shown in Figure 3b. The
transitive closure of this graph is what a CP-net induces. The
CP-net N enails a statement o o0 if and only if there exists
a path from o0 to o in this graph. Notice that representing
the whole induced graph by requires only keeping the CP-net
and its CPTs. This compact representation of CP-net is a one
major advantage when working in domains with very large
attributes. The complexity of answering dominance queries
depends on the CP-net graph and CPTs representation. For
trees (CP-nets with indegree at most one) it has shown to
be linear [10] but it is PSPACE-complete for the generalized
case of CP-nets [11].

V. REASON ING W ITH CONDITIONAL PREFERENCES IN
EVOLUTIONARY A LGORITHM S

CP-nets are rich in semantics. In this section, we outline
one possible way to augment preference information during
the search. The goal is to consult the preferences specified
on the decision space when searching for Pareto solutions.
DMs are rarely expert in technical aspects of the problem and
their preferences are usually expressed on the aspects related
to potential solutions i.e., over the decision space. During
the search, one objective vector could have many decision
vectors or images. See e.g., Figure 4 for an illustration.
Thus, one obvious way to augment and reason with CP-nets
within MOEA is to keep the non-dominated decision vectors
when the objective vector has more than one mapping.
In other words, we keep only the solutions that are non-
dominated by the underlying CP-net. This requires, for two
decision vectors x and y mapped to the same objective
vector F (x) = F (y) , determining whether x is better than
y according to the CP-net. Such dominance question is
known to be computationally hard in CP-nets and the exact
complexity is known only for a restricted sub-classes of CP-
nets [11].
Luckily, recent advancements in reasoning with CP-net

allow us to avoid dominance testing by creating a mapping

Decision Space Objective Space

Fig. 4: One objective vector can be mapped to several
decision vectors (solutions)

p : O ! N related to the CP-net where the dominance
relation can be answered in almost straightforward way i.e.,

if x dominates y then p(x) < p(y) where p(o) is the penalty
of o 2 O [12]. The mapping is based on two steps. First,
constructing a weight w(vi) for every variable vi 2 V given
the CP-net N . The weights represent roughly the importance
of vi within the CP-net graph. Higher up nodes in the graph
where many nodes depend on their values are known to
be more important to be satisfied compared to others [8].
Algorithm 1 shows the steps required to create the variables
weights. Second, given an outcome o, we create an indicator
do

v i
2 { 0, 1} for every variable vi , such that do

v i
= 0 iff the

value of vi in the solution o is the best value given its parent
values o[Pa(vi)]. The function p, or the penalty of o, is then
defined as follows [12]

p(o) =
X

v i 2 V

w(vi) · do
v i

Algorithm 1: Calculating variables weights as in
[12].

I nput : N , an acyclic CP-net
Output: the weight w(vi) for every variable vi 2 N

1 Let ⇡ be a reverse topological order for variables in
N for i = 1 to n do

2 if ⇡ (i) has no children in N then
3 w(⇡ (i)) 1
4 else
5 w(⇡ (i)) 1 +

P
⇡ (j)2 ch i l dr en (⇡ (i)) w(⇡ (j))

6 end
7 end

Figure 5 shows the penalty function and the variables
weights for the CP-net in Figure 3. For this small example, it

A B

C

b b̄a ā

b : c c̄

b̄ : c̄ c

(a) The model

ab̄̄c āb̄c āb̄c

ab̄c ab̄c ābc

abc

āb̄̄c

(b) The full relation over all possible solu-
tions (aka induced graph).

Fig. 3: An example of an acyclic CP-net with three variables and the full induced relation.

improving flips from āb̄̄c to ābc. Specifically (āb̄̄c, āb̄c, ābc)

is such a sequence of improving flips.

Definition 5 (Induced Graph [8]). The induced graph for a

particular CP-net N is defined as a directed graph G where

the set of vertices is O and an edge from x to y exists iff

(y, x) form an improving flip.

The full relation of the CP-net is shown in Figure 3b. The
transitive closure of this graph is what a CP-net induces. The
CP-netN enails a statement o o0 if and only if there exists
a path from o0 to o in this graph. Notice that representing
the whole induced graph by requires only keeping the CP-net
and its CPTs. This compact representation of CP-net is a one
major advantage when working in domains with very large
attributes. The complexity of answering dominance queries
depends on the CP-net graph and CPTs representation. For
trees (CP-nets with indegree at most one) it has shown to
be linear [10] but it is PSPACE-complete for the generalized
case of CP-nets [11].

V. REASON ING W ITH COND ITIONAL PREFERENCES IN
EVOLUTIONARY A LGORITHM S

CP-nets are rich in semantics. In this section, we outline
one possible way to augment preference information during
the search. The goal is to consult the preferences specified
on the decision space when searching for Pareto solutions.
DMs are rarely expert in technical aspects of the problem and
their preferences are usually expressed on the aspects related
to potential solutions i.e., over the decision space. During
the search, one objective vector could have many decision
vectors or images. See e.g., Figure 4 for an illustration.
Thus, one obvious way to augment and reason with CP-nets
within MOEA is to keep the non-dominated decision vectors
when the objective vector has more than one mapping.
In other words, we keep only the solutions that are non-
dominated by the underlying CP-net. This requires, for two
decision vectors x and y mapped to the same objective
vector F (x) = F (y) , determining whether x is better than
y according to the CP-net. Such dominance question is
known to be computationally hard in CP-nets and the exact
complexity is known only for a restricted sub-classes of CP-
nets [11].
Luckily, recent advancements in reasoning with CP-net
allow us to avoid dominance testing by creating a mapping

Decision Space Objective Space

Fig. 4: One objective vector can be mapped to several
decision vectors (solutions)

p : O ! N related to the CP-net where the dominance
relation can be answered in almost straightforward way i.e.,

if x dominates y then p(x) < p(y) where p(o) is the penalty
of o 2 O [12]. The mapping is based on two steps. First,
constructing a weight w(vi) for every variable vi 2 V given
the CP-net N . The weights represent roughly the importance
of vi within the CP-net graph. Higher up nodes in the graph
where many nodes depend on their values are known to
be more important to be satisfied compared to others [8].
Algorithm 1 shows the steps required to create the variables
weights. Second, given an outcome o, we create an indicator
do

v i
2 { 0, 1} for every variable vi , such that do

v i
= 0 iff the

value of vi in the solution o is the best value given its parent
values o[Pa(vi)]. The function p, or the penalty of o, is then
defined as follows [12]

p(o) =
X

v i 2 V

w(vi) · do
v i

Algorithm 1: Calculating variables weights as in
[12].

I nput : N , an acyclic CP-net
Output: the weight w(vi) for every variable vi 2 N

1 Let ⇡ be a reverse topological order for variables in
N for i = 1 to n do

2 if ⇡ (i) has no children in N then
3 w(⇡ (i)) 1
4 else
5 w(⇡ (i)) 1 +

P
⇡ (j)2 chi l dr en (⇡ (i)) w(⇡ (j))

6 end
7 end

Figure 5 shows the penalty function and the variables
weights for the CP-net in Figure 3. For this small example, it

Received: February 6, 2024. Revised: March 8, 2024. 266

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.22

flips (α1, α2, . . . , αk) such that α1 = o′ and αk = o and

every pair (αi , αi+1) in this sequence is an improving

flip for all i ∈ {1, . . . , n − 1}.

Example 3. Consider the network in Fig. 3a, we can

conclude that �̅�𝑏𝑐≻ �̅��̅�𝑐̅ as there exists a sequence of

improving flips from �̅��̅�𝑐̅ to �̅�𝑏𝑐 . Specifically

(�̅��̅�𝑐̅ , �̅�𝑏𝑐̅ , �̅�𝑏𝑐) is such a sequence of improving

flips.

Definition 5 (Induced Graph [8]). The induced graph

for a particular CP-net N is defined as a directed

graph G where the set of vertices is O and an edge

from x to y exists iff (y, x) form an improving flip.

The full relation of the CP-net is shown in Fig. 3b.

The transitive closure of this graph is what a CP-net

induces. The CP-net N entails a statement o ≻ o′ if and

only if there exists a path from o′ to o in this graph.

Notice that representing the whole induced graph by

requires only keeping the CP-net and its CPTs. This

compact representation of CP-net is a one major

advantage when working in domains with very large

attributes. The complexity of answering dominance

queries depends on the CP-net graph and CPTs

representation. For trees (CP-nets with indegree at

most one), it has shown to be linear [10] but it is

PSPACE-complete for the generalized case of CP-

nets [11].

5. Reasoning with conditional preferences in

evolutionary algorithms

CP-nets are rich in semantics. In this section, we

outline one possible way to augment preference

information during the search. The goal is to consult

the preferences specified on the decision space when

searching for Pareto solutions. DMs are rarely expert

in technical aspects of the problem and their

preferences are usually expressed on the aspects

related to potential solutions i.e., over the decision

space. During the search, one objective vector could

have many decision vectors or images. See e.g., Fig.

4 for an illustration. Thus, one obvious way to

augment and reason with CP-nets within MOEA is to

keep the non-dominated decision vectors when the

objective vector has more than one mapping. In other

words, we keep only the solutions that are

nondominated by the underlying CP-net. This

requires, for two decision vectors x and y mapped to

the same objective vector F(x) = F(y), determining

whether x is better than y according to the CP-net.

Such dominance question is known to be

computationally hard in CP-nets and the exact

complexity is known only for a restricted sub classes

of CP-nets [11].

Luckily, recent advancements in reasoning with

CP-net allow us to avoid dominance testing by

(a) (b).

Figure. 5 The weights and penalty values for CP-net in

Example 1: (a) The variables weights and (b) The penalty

for each possible solution

creating a mapping p : O → N related to the CP-net

where the dominance relation can be answered in

almost straightforward way i.e., if x dominates y then

p(x) < p(y) where p(o) is the penalty of o ∈ O [12].

The mapping is based on two steps. First,

constructing a weight w(vi) for every variable vi ∈ V

given the CP-net N. The weights represent roughly

the importance of vi within the CP-net graph. Higher

up nodes in the graph where many nodes depend on

their values are known to be more important to be

satisfied compared to others [8]. Algorithm 1 shows

the steps required to create the variables weights.

Second, given an outcome o, we create an indicator

𝑑𝑣𝑖
𝑜 ∈ {0, 1} for every variable vi , such that 𝑑𝑣𝑖

𝑜 = 0 iff

the value of vi in the solution o is the best value given

its parent values o[Pa(vi)]. The function p, or the

penalty of o, is then defined as follows [12].

𝑝(𝑜) = ∑ 𝑤(𝑣𝑖)𝑣𝑖∈𝑉 ⋅ 𝑑𝑣𝑖
𝑜 (3)

Fig. 5 shows the penalty function and the variables

weights for the CP-net in Fig. 3. For this small

example, it is evident that whenever p(x) < p(y) we

either have x ≻ y or x ⋈ y (see Corollary 1 in [12]).

Given this mapping of the CP-net relation, we present

a simple algorithm to integrate the CP-net within

MOEAs. Essentially, we consider penalty as an

objective (PaO) and use a basic non-dominated

sorting (ND) technique at the heart of the algorithm

(e.g., NSGA-II). Recall that, the penalty of a solution

indicates the DM decision space preferences and the

lower the penalty, the more preferred the solution.

However, simply adding the penalty score of each

solution as an additional objective would allow

solutions that are far from being optimal (in the

objective space sense) to appear in the Pareto Front

(PF), i.e., leads to weak PF approximation. For

example, if a problem has only a single solution with

penalty score zero, it will always appear in the PF

regardless of how bad its objective values. Ideally,

A B

C

21

1

(a) The variables weights.

ab̄̄c āb̄c āb̄c

ab̄c ab̄c ābc

abc

āb̄̄c

2 2 4

1 3 1

0

3

(b) The penalty for each possible solution.

Fig. 5: The weights and penalty values for CP-net in Example 1

Fig. 6: Interactive learning of the decision maker’s CP-net
by asking simple comparative questions. The system needs
to update his learned function after every query and chooses
the best next query. The main challenge is to construct a
sequence of questions (x1 , y1) , (x2 , y2) . . . (x r , yr) that is
minimum for arbitrary network.

Algor ithm 3: InteractiveSep Algorithm [14]

I nput : V , a set of binary variables
Output: a separable CP-net

1 for each vi 2 V do
2 find a swap example (x, y) of vi

3 call interactiveSep(x, y) .
4 end
1 Procedure interactiveSep(x, y)
33 Ask the DM “Does x dominate y”?
55 if ` (x ,y) = 1 then
6 CPT(vi) = x[vi] y[vi]
7 else
8 CPT(vi) = y[vi] x[vi]
9 end
1111 return CPT(vi)

for learning trees on swap examples. They devised an al-
gorithm to learn arbitrary binary trees with 2n + elog2 (n)
where e is the number of edges in the target tree CP-net.

Algorithm 4 shows the necessary steps to interactively
learn tree CP-nets. The FindParent procedure aims at find-
ing the parent for the current variable’s CPT. Basically, it is
a binary search procedure that takes as inputs two examples
on the same swapped variable v but shows conflict orders
on v values (known as a conflict pair in [14]). For further
information and formal proofs of the optimality for the
interactive learning algorithms, interested reader is referred
to the work of Alanazi et al. [14].

Following these strategies, there could be at most n

Algorithm 4: InteractiveTree Algorithm [14]

I nput : V , a set of variables
Output: a tree CP-net

1 foreach vi 2 V do
2 Let (x, y) and (x0, y0) be any two swap examples

of vi where x differs from x0 in all variables
except vi

3 Ask the DM “Does x dominate y?” and “Does x0

dominate y0?”
4 if ` (x ,y) = ` (x 0,y0) then
5 Pa(vi) = ; and

CPT(vi) = interactiveSep(x, y)
6 else
7 let P = V \ vi

8 vj FindParent(P, x, y, x0, y0)
9 Pa(vi) = vj

10 if ` (x ,y) = 1 then
11 CPT(vi) = x[vj] : x[vi] y[vi] and

x0[vj] : y[vi] x[vi]
12 else
13 CPT(vi) = x[vj] : y[vi] x[vi] and

x0[vj] : x[vi] y[vi]
14 end
15 end
16 end

interactive questions in the separable case and at most
2n + elog2 (n) in the tree case where e is the number of
edges in the target tree CP-net.

Again during the search, the swap examples (x, y) comes
handy thanks to the mutation operator. However, for the tree
case, one require examples with special requirements (i.e.,

for each variable we need to ask two questions (x, y) and
(x0, y0) where the hamming distance of x and x0 is n − 1
and they are swapped for the same variable vi).

Given the above learning strategies, one simple idea is
to learn the preference network fi rst (by applying interac-
tiveSep or interactiveTree) and then use the PaOc reasoning
method outlined in Section V. Another more interesting
approach is to interleave learning with the search. The
main idea is to progressively construct CPT s that affect the
evaluation of the current generation while ignoring those that
are irrelevant. Therefore, we base our evaluation on partial

A B

C

21

1

(a) The variables weights.

ab̄̄c āb̄c āb̄c

ab̄c ab̄c ābc

abc

āb̄̄c

2 2 4

1 3 1

0

3

(b) The penalty for each possible solution.

Fig. 5: The weights and penalty values for CP-net in Example 1

Fig. 6: Interactive learning of the decision maker’s CP-net
by asking simple comparative questions. The system needs
to update his learned function after every query and chooses
the best next query. The main challenge is to construct a
sequence of questions (x1 , y1) , (x2 , y2) . . . (xr , yr) that is
minimum for arbitrary network.

Algorithm 3: InteractiveSep Algorithm [14]

I nput : V , a set of binary variables
Output: a separable CP-net

1 for each vi 2 V do
2 find a swap example (x, y) of vi

3 call interactiveSep(x, y) .
4 end
1 Procedure interactiveSep(x, y)
33 Ask the DM “Does x dominate y”?
55 if ` (x ,y) = 1 then
6 CPT(vi) = x[vi] y[vi]
7 else
8 CPT(vi) = y[vi] x[vi]
9 end
1111 return CPT(vi)

for learning trees on swap examples. They devised an al-
gorithm to learn arbitrary binary trees with 2n + elog2 (n)
where e is the number of edges in the target tree CP-net.

Algorithm 4 shows the necessary steps to interactively
learn tree CP-nets. The FindParent procedure aims at find-
ing the parent for the current variable’s CPT. Basically, it is
a binary search procedure that takes as inputs two examples
on the same swapped variable v but shows conflict orders
on v values (known as a conflict pair in [14]). For further
information and formal proofs of the optimality for the
interactive learning algorithms, interested reader is referred
to the work of Alanazi et al. [14].

Following these strategies, there could be at most n

Algorithm 4: InteractiveTree Algorithm [14]

I nput : V , a set of variables
Output: a tree CP-net

1 foreach vi 2 V do
2 Let (x, y) and (x0, y0) be any two swap examples

of vi where x differs from x0 in all variables
except vi

3 Ask the DM “Does x dominate y?” and “Does x0

dominate y0?”
4 if ` (x ,y) = ` (x 0,y 0) then
5 Pa(vi) = ; and

CPT(vi) = interactiveSep(x, y)
6 else
7 let P = V \ vi

8 vj FindParent(P, x, y, x0, y0)
9 Pa(vi) = vj

10 if ` (x ,y) = 1 then
11 CPT(vi) = x[vj] : x[vi] y[vi] and

x0[vj] : y[vi] x[vi]
12 else
13 CPT(vi) = x[vj] : y[vi] x[vi] and

x0[vj] : x[vi] y[vi]
14 end
15 end
16 end

interactive questions in the separable case and at most
2n + elog2 (n) in the tree case where e is the number of
edges in the target tree CP-net.

Again during the search, the swap examples (x, y) comes
handy thanks to the mutation operator. However, for the tree
case, one require examples with special requirements (i.e.,

for each variable we need to ask two questions (x, y) and
(x0, y0) where the hamming distance of x and x0 is n − 1
and they are swapped for the same variable vi).

Given the above learning strategies, one simple idea is
to learn the preference network fi rst (by applying interac-
tiveSep or interactiveTree) and then use the PaOc reasoning
method outlined in Section V. Another more interesting
approach is to interleave learning with the search. The
main idea is to progressively construct CPTs that affect the
evaluation of the current generation while ignoring those that
are irrelevant. Therefore, we base our evaluation on partial

Received: February 6, 2024. Revised: March 8, 2024. 267

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.22

penalties should not deteriorate PF optimality nor

override the original objectives of the problem.

Rather, they should keep the solutions quality intact

to some extent but return solutions that are preferred

by the DM. For this reason, some bounds on using the

penalty score as objective are suggested to mitigate

this undesired behavior. For example, one can utilize

upper bounds on objective values to constrain the

search in the objective space. Alternatively, we

propose to use a penalty score conditioned upon the

goodness of the solution objective values. Algorithm

2 show the approach proposed in this work where we

incorporate the penalty as an additional objective

only when the objective values of the solution are

promising (less than the average of objective values

in current population). Thus, we term the approach

PaOc for constrained penalty as objective. Essentially,

PaOc is just a way of reforming the problem to handle

the CPnet information and can conveniently be run

on top of any MOEA.

Algorithm 1: Calculating variables weights as in

[12].

Input: N, an acyclic CP-net

Output: the weight w(vi) for every variable vi ∈ N

1 Let π be a reverse topological order for

variables in

N for i = 1 to n do

2 if π(i) has no children in N then

3 𝑤(𝜋(𝑖)) ← 1

4 else

5 𝑤(𝜋(𝑖)) ← 1 +

∑ 𝑤(𝜋(𝑗))

𝜋(𝑗)∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝜋(𝑖))

6 end

7 end

Algorithm 2: The PaOc algorithm

Input: a Multiobjective problem and a CP-net

Output: a Pareto Front Approximation

1 Intialize population P

2 Compute objective values

3 Compute p(o) for each o ∈ P

4 Let 𝑞 = ∑ 𝑓1(𝑠) +
𝑓2(𝑠)

|𝑃|𝑠∈𝑃

5 foreach o ∈ P do

6 if f1(o) + f2(o) < q then

7 f3(o) = p(o)

8 else

9 f3(o) = ∞

10 end

11 end

12 while termination criterion is not met do

13 Create offspring and apply 2-8

14 Rank (based on dominance or fitness)

15 Select solutions of the next population

16 end

6. Interactive learning of CP-nets in

evolutionary algorithms

So far, we have assumed the existence of a CP-

net before the search starts. It is not hard to see that

this assumption is unrealistic in many applications

where decision makers have vague idea on their

preferences especially at the beginning. Hence,

decision makers need to be involved periodically

during the search with the hope of revealing more

information about their preferences along the way. In

this section, we relax this assumption and provide an

interactive approach to learn CP-nets during the

search. One natural scenario is to provide the DM

with a pair of solutions (x, y) and ask whether x

dominates y (i.e., whether x is more preferred to her

than y). The answer is either “Yes” (x dominates y) or

“No” (x does not dominate y). Fig. 6 shows the

learning style in a graphical way.

The reason for choosing this learning paradigm is

the fact that its cognitive burden is minimal compared

to other learning styles. The users are expected to be

able to assess the preference relation between two

solutions instead of answering complex questions

such as ranking a large set of solutions. The main

challenge here, however, is learning the user’s CP-

net with minimum number of questions. We use

recent advancements in interactive learning of CP-

nets and employ optimal and near optimal learning

strategies that was proposed in [13], [14]. In other

words, the learning methods that we use here are

guaranteed to ask the DM a near-optimal number of

questions. We focus here on the two cases of

separables and trees over boolean variables to

simplify the presentation. The separable and tree CP-

nets represent respectively CP-nets whose graph has

indegree is at most zero or one. The CP-net in Fig. 1

is an example of a tree CP-net, while separables mean

all variables preferences are unconditional (i.e., no

edges in the graph). The general case of arbitrary

acyclic CP-nets on possibly non-binary variables has

been also discussed in [13], [14]. In what follows, we

assume the algorithm has access to the set of

variables V with binary domain Dvi = {0, 1} for any i

∈ {1, 2, . . . , n} and maximum parent size k ∈ {0, 1}

(0 for separables and 1 for trees). We learn the CP-

net by utilizing swap examples. An example is a pair

of solutions (x, y) that form a question “Is x better

than y?”. The example is called a swap if x and y

differ in exactly one variable (referred to as the

Received: February 6, 2024. Revised: March 8, 2024. 268

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.22

Figure. 6 Interactive learning of the decision maker’s CP-

net by asking simple comparative questions. The system

needs to update his learned function after every query and

chooses the best next query. The main challenge is to

construct a sequence of questions (x1, y1), (x2, y2) . . . (xr,

yr) that is minimum for arbitrary network

swapped variable). Let ℓ(x,y) ∈ {0, 1} be the answer

of the DM to a question such that ℓ(x,y) = 1 if x

dominates y and 0 otherwise. Due to our swap

assumption, answering “No” to the question means it

is indeed the case that y ≻ x i.e., ℓ(y,x) = 1. It is crucial

to remember that for an arbitrary pair of solutions x

and y, ℓ(x,y) = 0 does not necessarily mean y

dominates x (ℓ(y,x) = 1) as both solutions can be

incomparable.

A. Interactive Learning of Separables

As the DM has a separable CP-net in her mind,

we can learn CPT(vi) exactly by invoking the

interactiveSep(x, y) procedure described in

Algorithm 3, where (x, y) is an arbitrary swap

example and vi is the swapped variable. Notice that

swaps are naturally represented by a parent x and its

offspring y that resulted from mutating x in a single

bit. The learning stops as soon as we have created all

the CPTs.

B. Interactive Learning of Trees
When learning trees, [14] showed a near-optimal

strategy and proved that 2n is an information

theoretic lower bound for learning trees on swap

examples. They devised an algorithm to learn

arbitrary binary trees with 2n + elog2(n) where e is

the number of edges in the target tree CP-net.

Algorithm 4 shows the necessary steps to

interactively learn tree CP-nets. The FindParent

procedure aims at finding the parent for the current

variable’s CPT. Basically, it is a binary search

procedure that takes as inputs two examples on the

same swapped variable v but shows conflict orders on

v values (known as a conflict pair in [14]). For further

information and formal proofs of the optimality for

the interactive learning algorithms, interested reader

is referred to [14].

Following these strategies, there could be at most

n interactive questions in the separable case and at

most 2n + elog2(n) in the tree case where e is the

number of edges in the target tree CP-net. Again,

during the search, the swap examples (x, y) come

handy thanks to the mutation operator. However, for

the tree case, one requires examples with special

requirements (i.e., for each variable we need to ask

two questions (x, y) and (x′, y′) where the hamming

distance of x and x′ is n – 1 and they are swapped for

the same variable vi).

Algorithm 3: InteractiveSep Algorithm [14]

Input: V , a set of binary variables

Output: a separable CP-net

1 foreach vi ∈ V do

2 find a swap example (x,y) of vi

3 call interactiveSep(x, y)

4 end

1 Procedure interactiveSep(x,y)

2 Ask the DM “Does x dominates y”?

3 if ℓ(x,y) =1 then

4 CPT(vi) = x[vi] ≻ y[vi]

5 else

6 CPT(vi) = y[vi] ≻ x[vi]

7 end

8 return CPT(vi)

Algorithm 4: InteractiveTree Algorithm [14]

Input: V, a set of variables

Output: a tree CP-net

1 foreach vi ∈ V do

2 Let (x, y) and (x′, y′) be any two swap

examples of vi where x differs from x′ in all

variables except vi

3 Ask the DM “Does x dominates y”? and

“Does x′ dominates y′ ?”

4 if ℓ(x,y) = ℓ(x′,y′) then

2 Pa(vi) = ∅ and CPT(vi) =

interactiveSep(x, y)

3 else

4 let P = V \vi

5 vi ←FindParent(P, x, y, x′, y′)

6 Pa(vi) = vj

7 if ℓ(x,y) = 1 then

8 CPT(vi) = x[vj]: x[vi] ≻ y[vi]

and x′ [vj]: y[vi] ≻ x[vi]

9 else

10 CPT(vi) = x[vj]: y[vi] ≻ x[vi]

and x′ [vj]: x[vi] ≻ y[vi]

11 end

12 end

13 end

Algorithm 5: FindParent(P, x, y, x′, y′)

Input: a set of possible parents P ⊆ V \v and two

swaps (x, y) and (x′, y′) of v where ℓ(x,y) ≠ ℓ(x′,y′)

Output: The parent vj of the variable v

1 if |P| = = 1 then

Received: February 6, 2024. Revised: March 8, 2024. 269

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.22

2 return P

3 else

4 Let X and X′ be a partition over P with equal

size

5 Let s be an empty solution vector

6 foreach vi ∈ V\v do

7 if vi ∈ X then

8 s[vi] = x[vi]

9 else

10 s[vi] = x′ [vi]

11 end

12 Ask the DM “Does z dominates z′ ”?

where

 z = s ∪x[v] and z′ = s ∪ y[v]

13 if ℓ(x,y) ≠ ℓ(z, z′)

14 FindParent(X′, z, z′, x, y)

15 else

16 FindParent(X, z, z′, x′, y′)

17 end

18 end

19 end

Given the above learning strategies, one simple idea

is to learn the preference network first (by applying

interactiveSep or interactiveTree) and then use the

PaOc reasoning method outlined in Section 5.

Another more interesting approach is to interleave

learning with the search. The main idea is to

progressively construct CPTs that affect the

evaluation of the current generation while ignoring

those that are irrelevant. Therefore, we base our

evaluation on partial CP-net learned so far. Let S be

the set of solutions that will be used in environmental

selection. For any two solutions x and y that form a

swap example for a given vi ∈ V , we determine

CPT(vi) as outlined in the learning strategies. Other

variables can be assumed to have no CPT and of

weight zero. This partition the set of variables V into

two sets V′ and V′′ correspond respectively to

variables that have CPTs and those who doesn’t. In

the next generation S′, we do the same until V′′ = ∅

and CPT(vi) has been determined for every vi ∈ V .

Given the population nature of MOEA, it is likely that

we would be able to construct all the CPTs from few

generations. This is indeed the case as shown in the

experiments.

7. Experiments

In this section, we show the merit of our approach

in preserving dominance relation in the PF while

providing preferred solutions as captured by the CP-

net of the DM. We ran several experiments using the

settings shown in Table 1. For the CP-net generation,

we used the random generator in [15]. The generator

Table 1. Experiments settings

Benchm

ark

problem

Numbe

r of

Variabl

es

Number

of

Objectiv

es

Populati

on size

Number

of

Generati

ons

ZDT5

problem
50 2 N =100 100

MOK

problem

CP-net

example

s

Separable c0 Tree c1

CPnet–

n..c..d2
n: 5, 10, 20, 35 n: 5, 10, 20, 35

Algorith

ms used

• MOEA: any multiobjective

evolutionary algorithm. We have

adopted NSGA-II as a baseline.

• MOEA-PaO: a variant of Algorithm 2

but with fixing the value of q to ∞,

yielding a behavior similar to adding

the penalty as a pure objective.

• MOEA-PaOc: Algorithm 2.

Table 2. Penalty scores of the resulted PFs for each of the

three algorithms on the ZDT5 problem averaged over 7

runs

Algorithm
MOEA-PaO MOEA-PaOc MOEA

min Avg. max min Avg. max min Avg. max

n5c0 0.0 0.1 2.7 0.0 0.5 3.0 0.6 2.5 4.3

n5c1 0.0 0.3 8.3 0.0 2.4 10.0 0.7 8.3 14.3

n10c0 0.0 0.7 7.0 0.0 1.2 6.0 2.1 5.2 8.4

n10c1 0.0 1.1 11.6 0.0 2.9 13.0 2.7 10.8 17.4

n20c0 0.0 4.0 11.7 0.0 5.9 12.0 5.7 10.6 16.4

n20c1 0.0 7.6 30.4 2.0 25.4 45.0 14.4 40.3 68.0

n35c0 0.0 8.6 16.6 3.0 9.8 17.0 13.9 19.1 24.1

n35c1 0.4 27.5 92.7 6.0 47.9 113.0 46.9 97.3 148.4

requires three parameters, namely: the number of CP-

net variables n, maximum size on any parent set c,

and the variable domain size (fixed to 2, i.e., Boolean

variables).

As fo r t h e p rob lems , we con s ide r t he

minimization of two multiobjective problems: ZDT5

[16] and Multiobjective Knapsack (MOK) [17]. The

reason for choosing those two problems is because

their decision space is discrete, and the decision

variables are binary. For the variables that have no

preference (i.e., not part of the generated CP-net), we

assume they have no effect on the preferences of the

DM. We have used three algorithms as described in

the table. Two variants of the proposed algorithm are

considered along with a baseline algorithm; PaO

Received: February 6, 2024. Revised: March 8, 2024. 270

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.22

Table 3. Penalty scores of the resulted PFs for each of the

three algorithms on the MOK problem averaged over 7

runs

Algorithm
MOEA-PaO MOEA-PaOc MOEA

min Avg. max min Avg. max min Avg. max

n5c0 0.0 1.9 4.0 0.4 2.4 4.0 2.9 3.7 4.0

n5c1 0.0 5.2 10.0 0.0 5.4 10.0 5.1 9.1 10.0

n10c0 0.4 4.4 8.9 2.4 5.7 8.3 6.9 8.1 9.0

n10c1 0.6 7.0 14.3 3.6 10.1 14.1 11.7 13.3 14.3

n20c0 2.1 5.7 10.1 3.9 6.5 10.1 7.0 8.5 10.6

n20c1 2.4 28.1 76.6 6.3 30.9 62.3 50.3 76.6 81.3

n35c0 1.3 9.5 18.7 10.0 14.3 19.4 16.0 18.8 21.0

n35c1 8.3 56.3 140.7 29.0 79.7 143.4 20.1 130.7 144.6

considers penalty as a pure objective and PaOc that

considers penalty only for top ranked solutions

during next population selection phase.

Each experiment is repeated 7 times and results

are averaged. Tables 2 and 3 compare the penalty

score of the PF achieved by each algorithm in the two

problems. The results are shown in tuples which

stand for minimum, average, and maximum solution

penalty score. One can see from the results that both

PaO approaches maintain lower penalty score than

the baseline approach. This is clear for both minimum

and average values. At least 23% reduction on the

penalty score was achieved on averaged values. For

the maximum values, however, the differences are

narrower, and almost negligible for the MOK

problem, as both PaO algorithms PFs would have

non-dominated solutions with respect to objective

values (e.g., a Pareto optimal solution with respect to

objective values but not preferred by the DM and

therefore has large penalty score).

Our main concern is to find optimal solutions that

are also preferred as much as possible (i.e., having

low penalty). In general, the possibility of having a

low penalty solution is highly dependent on the

problem and the CP-net structure and how they are

aligned together. For example, using the PaO

algorithms, it was easier to find a zero penalty

solution in n5c1 than n5c0 for the MOK problem,

even though the former CP-net is likely to have more

complicated structure than the latter. In addition,

preferred solutions are even closer to true PF in the

n5c1 scenario in both algorithms.

Notice that low penalty solutions may appear in

the final set of the MOEA approach, but the

probability of having such a solution decreases as the

CP-net size increases and without proper guidance

during the search, it is unlikely that a blind MOEA

Figure. 7 The PaO algorithm with n10c1 CP-net on the

MOK problem

method will encounter low penalty solutions that are

also part of the PF. Indeed, it is apparent that PaO

outperforms PaOc in terms of penalty score. However,

in PaO there is no guarantee that preferred solutions

have good objective values. For example, Fig. 7

shows the Pareto optimal solutions of the MOK

problem with a random n10c1 CP-net and solved by

PaO. The solutions with lowest penalty scores are far

from true PF (to the upper right corner), whereas

solutions with lowest objective values have

comparatively larger penalties.

Figs. 8 and 9 show the results of PaOc on ZDT5

and MOK respectively compared to the true PF on

different instances of CP-nets. We approximated the

true PF of the MOK by basing our study on the

optimal solutions returned after 1000 generations.

For ZDT5, we adopted the explicit and exact true PF

of the problem. Clearly, the figures show that PaOc

is sufficient to provide optimal and preferred

solutions.

So far the obtained results assume CP-net

information is given a priori, hence we repeated the

same set of experiments while CP-net is not given in

advance but leaned interactively during the search.

Table 3 shows the number of generations required for

Algorithms 3 and 4 to learn the underlying CPnets

averaged over 10 runs. In this experiment, the

algorithm has access to the set of variables V that

form the CP-net N (initially empty). Whenever it

encounters a swap pair x and y of CPT(vi) not

included in N, it learns it and updates N. This stops

whenever there is no vi ∈ V with empty CPT. The

environmental selection in intermediate generations

is based on the learned so far network N and its

penalty function as described at the end of Section 6-

B. The results indicate that larger CP-nets may

require more generations in order to scan more

Received: February 6, 2024. Revised: March 8, 2024. 271

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.22

alternatives for a swap pair for each variable. In terms

of penalty scores and PF of the results, they are

similar to PaOc results in the previous experiment.

It remains to see how PaOc performs on the

diversity requirement. Fig. 10 shows the diversity of

PaOc compared to the baseline MOEA algorithm for

different CP-net instances. We computed diversity as

follows:

𝑑 = ∑ ∑
ℎ𝑑(𝑠𝑖,𝑠𝑗)

|𝑃|
𝑖−1
𝑗=1

|𝑃|
𝑖=1 (4)

where hd is the hamming distance between two

solution vectors si and sj and P is the current

population. This is known as the all-possible-pairs

diversity measure [18]. From the results, we can

safely conclude that PaOc is diverse to some extent.

8. Related work

A. CP-nets and Evolutionary Algorithms

Evolutionary and Genetic algorithms have been

successfully applied to different problems related to

CP-nets, most notably, the problem of learning the

structure of CP-net from data [19–21]. In [22],

separable CP-nets have been utilized to represent the

customer’s preferences when placing virtual

machines in cloud data centers. The placement

problem is essentially an optimization problem, and

the preferences were articulated apriori replacing the

crowding distance in NSGA-II for the last rank. Thus,

the solutions in the last rank were chosen solely based

on the given separable network.

Furthermore, a weighted approximation of the

CP-net has been suggested in [23] to augment

uncertain preferences in the objective space where

CP-net edges and nodes were associated with weights.

The aim of the work is to interactively adjust the

preference weights based on user’s interactions in the

personalized search domain.

However, all the aforementioned methods have

not considered the case of articulating conditional

preferences on the decision space and the problem of

interactively learning the exact CP-net model when

interacting with the user during the search.

B. Decision Space Preferences

Typically, MOPs do not produce a single optimal

solution. Instead, a set of equally good solutions

known as Pareto solution are obtained or generated.

Then the DM needs to select one final solution that

she finds interesting. This choice commonly requires

more involvement from the DM into the search

process in which she expresses her preferences over

the problem. Since then, researchers have

continuously worked on developing algorithms that

takes DM’s preferences into account and search the

desired area of the objective space [4, 5, 9, 24]. The

aim of these algorithms is to reduce the search space,

hence enable faster convergence, and satisfy DM’s

preferences. The preference information can take the

form of trade-offs between objectives, importance of

the objective functions (i.e., weights), preferred

region on the objective space, or a user defined

reference point ...etc. Alternatively, a utility function

can be employed to represent DM’s preferences in

which all criteria are aggregated into a single utility

function. Attributes on both decision and solution

space can also be involved, on which attributes from

one dimension are mapped onto the other dimension.

However, it is not an easy task to generate such a

representative function [25, 26].

In MOP, multiple solutions in the decision space

may correspond to the same point in the objective

space. When a DM chooses a Pareto solution with

specific objective values, he might be interested in

knowing if there are alternative solutions (pre-

images) corresponding to another solution with

similar objective values. Hence, having high

diversity of the solutions in the decision space might

be desirable. Notice that this is different from

traditional objective space diversity and ensuring the

latter does not necessarily imply solutions diversity

[27]. Recently, an increasing attention has been paid

to the diversity of the decision space in MOEA. The

authors in [27] proposed a CMA-ES niching

framework to the multi-criterion domain that

improve decision space diversity and demonstrated

that improving the diversity does not impact the

convergence and diversity of the objective space.

Through analyzing two real- world applications, the

authors in [28] demonstrated the need to integrate

special operators for diversifying solutions in the

decision space in order to improve algorithm

performance. An optimizer integrated into indicator-

based EA that optimizes the diversity of both spaces

was introduced in [29]. The algorithm allows the DM

to control trade-offs between the diversity of each

space. In a similar work, in [30, 31], a diversity

operator is integrated into a hypervolume-based

evolutionary algorithm. Furthermore, the work in

[32] analyzed the solution space diversity and

different crossover operators applied to instances of

the binary knapsack problem and solved using

different MOEA algorithms. Most notably, solution

diversity is attained when two-point crossover is used.

Also, NSGA-II and MSOPS evolve solutions with

better diversity in both spaces. In addition, another

research [33] showed that for some benchmarks

problems diversity can help improving the

performance of the solution. They proposed

Received: February 6, 2024. Revised: March 8, 2024. 272

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.22

MOEA/D with Enhanced Variable-Space Diversity

(MOEA/D-EVSD) to solve these problems with

higher quality solutions. Lastly, the work in [34]

proposed and algorithm, vNSGA-III, that performs

exploration in both spaces and improve the

distribution of solutions without degrading the

quality in the objective space.

However, all the previous approaches have not

adopted a formal and graphical model to represent

conditional preferences in the decision space.

Solution diversity in the decision space indicates that

multiple alternative designs, settings, options, or

choices with equivalent/comparable objective quality

may be available for the DM to choose from. While

there has been considerable effort in exploring and

exploiting diversity in decision space, yet, and to the

best of our knowledge, no work has studied the

incorporation of preferences represented as CP- nets

on evolutionary algorithms.

9. Conclusions and future work

CP-nets have emerged as a natural representation

for conditional preferences. This work addressed the

issue of incorporating CP-nets within evolutionary

algorithms, and proposed a method known as PaOc

to return solutions that are not only optimal with

respect to the objective values, but also preferred by

the user. We also considered the case where there is

no enough preference information apriori but the user

is willing to answer simple pairwise questions to

elicit the CP-net during the search. Our experimental

results showed that PaOc was indeed a good approach

for handling CP-nets within evolutionary algorithms.

The proposed algorithm has achieved lower penalty

scores in all tested instances compared to the baseline

MOEA algorithm (a minimum of 23% improvement

on average), without degrading the quality of the

solution space in terms of optimality. PaOc is

agnostic to the adopted strategy and can be used on

top of any evolutionary algorithm.

This work aimed mainly at introducing CP-net, as

an effective tool to represent and reason with

conditional qualitative preferences, to the

evolutionary algorithms community. However, much

remains to be done. First, our work focused on

discrete optimization problems. A further studies on

continuous optimization problems are needed.

Second, more complex integration methods for CP-

nets within MOEAs may be more efficient than our

PaOc method. Third, interactively learning CP-nets

without the swap examples assumption may render

the problem of interactive learning more interesting.

Lastly, while we have focused on the decision space

preferences, there is nothing limit the use CP-net on

the objective space. An interesting problem in this

direction is using CP-net as a selection strategy for

objectives in many objectives evolutionary

algorithms. In such scenario, one may adopt variants

of CP-net, such as Hierarchical CP-net [19], that are

capable of expressing preferences on attributes with

continuous domains or discretize the domain into a

finite set of values.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure. 8 The result of PaOc (red) compared to the true PF (blue) for ZDT5 after 100 generations: (a) n5c0, (b) n5c1, (c)

n10c0, (d) n10c1, (e) n20c0, (f) n20c1, (g) n35c0, and (h) n35c1

Received: February 6, 2024. Revised: March 8, 2024. 273

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.22

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure. 9 The result of PaOc (red) compared to the true PF (blue) of MOK after 100 generations: (a) n5c0, (b) n5c1, (c)

n10c0, (d) n10c1, (e) n20c0, (f) n20c1, (g) n35c0, and (h) n35c1

Table 4. Average number of generations required to learn the underlying CP-net

CP-net n5c0 n5c1 n10c0 n10c1 n20c0 n20c1 n35c0 n35c1

ZDT5 1 1 1 1 3.5 4.25 8.5 8.25

MOK 1 1 1 1 3.82 3.15 8.75 9.5

(a)

(b)

Figure. 10 Diversity Results: (a) MOK and (b) ZDT5

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] B. Chen, W. Zeng, Y. Lin, and D. Zhang, “A

new local search-based multiobjective

optimization algorithm”, IEEE Transactions on

Evolutionary Computation, Vol. 19, No. 1, pp.

50–73, 2015.

[2] M. Gong, F. Liu, W. Zhang, L. Jiao, and Q.

Zhang, “Interactive MOEA/D for multi-

objective decision making”, Genetic and

Evolutionary Computation Conference,

GECCO’11, No. 2, pp. 721–728, 2011.

Received: February 6, 2024. Revised: March 8, 2024. 274

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.22

[3] L. Li, Y. Wang, H. Trautmann, N. Jing, and M.

Emmerich, “Multiobjective evolutionary

algorithms based on target region preferences”,

Swarm and Evolutionary Computation, Vol. 40,

No. 5, pp. 196–215, 2018.

[4] S. Bechikh, M. Kessentini, L. B. Said, A. R.

Hurson, Ed. Elsevier, and K. Ghe ́dira, “Chapter

Four - Preference Incorporation in Evolutionary

Multiobjective Optimization: A Survey of the

State-of-the-Art”, Advances in Computers, ser.

Advances in Computers, Vol. 98, pp. 141–207,

2015.

[5] H. Wang, M. Olhofer, and Y. Jin, “A mini-

review on preference modeling and articulation

in multi-objective optimization: current status

and challenges”, Complex & Intelligent Systems,

Vol. 3, No. 4, pp. 233– 245, 2017.

[6] J. Lang and J. Mengin, “The complexity of

learning separable ceteris paribus preferences”,

In: Proc. of the 21st International Joint

Conference on Artificial Intelligence, Pasadena,

California, USA, pp. 848–853, 2009.

[7] R. Keeney and H. Raiffa, “Decisions with

multiple objectives: Preferences and value

tradeoffs. J. Wiley”, New York, 1976.

[8] C. Boutilier, R. I. Brafman, C. Domshlak, H. H.

Hoos, and D. Poole, “CP-nets: A tool for

representing and reasoning with conditional

ceteris paribus preference statements,” Journal

of Artificial Intelligence Research (JAIR), Vol.

21, pp. 135–191, 2004.

[9] C. Coello, “Handling preferences in

evolutionary multiobjective optimization: A

survey”, In: Proc. of the 2000 Congress on

Evolutionary Computation. CEC00

(Cat.No.00TH8512), Vol. 1, pp. 30–37, 2000.

[10] D. Bigot, H. Fargier, J. Mengin, and B. Zanuttini,

“Probabilistic conditional preference networks”,

In: Proc. of 29th Conference on Uncertainty in

Artificial Intelligence (UAI 2013), 2013.

[11] J. Goldsmith, J. Lang, M. Truszczynski, and N.

Wilson, “The computational complexity of

dominance and consistency in cp-nets”, J. Artif.

Intell. Res. (JAIR), Vol. 33, pp. 403–432, 2008.

[12] M. Li, Q. B. Vo, and R. Kowalczyk, “Efficient

heuristic approach to dominance testing in cp-

nets”, In: Proc. of the 10th International

Conference on Autonomous Agents and

Multiagent Systems - Volume 1, ser. AAMAS ’11.

Richland, SC: International Foundation for

Autonomous Agents and Multiagent Systems, pp.

353–360, 2011.

[13] E. Alanazi, M. Mouhoub, and S. Zilles, “The

complexity of learning acyclic cp-nets”, In: Proc.

of the Twenty-Fifth International Joint

Conference on Artificial Intelligence, IJCAI

2016, New York, NY, USA, pp. 1361–1367,

2016.

[14] E. Alanazi, M. Mouhoub, and S. Zille, “The

complexity of exact learning of acyclic

conditional preference networks from swap

examples”, Artificial Intelligence, Vol. 278, p.

103182, 2020.

[15] T. E. Allen, J. Goldsmith, H. E. Justice, N.

Mattei, and K. Raines, “Uniform random

generation and dominance testing for cp-nets”, J.

Artif. Int. Res., Vol. 59, No. 1, pp. 771–813,

2017.

[16] S. Huband, P. Hingston, L. Barone, and L. While,

“A review of multiobjective test problems and a

scalable test problem toolkit”, IEEE

Transactions on Evolutionary Computation, Vol.

10, No. 5, pp. 477–506, 2006.

[17] E. Zitzler and L. Thiele, “Multiobjective

evolutionary algorithms: a comparative case

study and the strength pareto approach”, IEEE

Transactions on Evolutionary Computation, Vol.

3, No. 4, pp. 257–271, 1999.

[18] M. Wineberg and F. Oppacher, “Metrics for

population comparisons in evolutionary

computation systems”, Intelligent systems and

control, 2003.

[19] M. Haqqani and X. Li, “An evolutionary

approach for learning conditional preference

networks from inconsistent examples”, In: Proc.

of International Conference on Advanced Data

Mining and Applications. Springer, pp. 502–515,

2017.

[20] M. Haqqani, H. Ashrafzadeh, X. Li, and X. Yu,

“Conditional preference learning for

personalized and context-aware journey

planning”, In: Proc. of International Conference

on Parallel Problem Solving from Nature.

Springer, pp. 451–463, 2018.

[21] S. de Amo, M. L. Bueno, G. Alves, and N. F. F.

da Silva, “Mining user contextual preferences”,

JIDM, Vol. 4, No. 1, pp. 37–46, 2013.

[22] A. S. Alashaikh and E. A. Alanazi,

“Incorporating ceteris paribus preferences in

multiobjective virtual machine placement”,

IEEE Access, Vol. 7, pp. 59 984–59 998, 2019.

[23] X. Sun, Y. Chen, L. Bao, and R. Xu, “Interactive

genetic algorithm with implicit uncertainty

evaluation for application in personalized

search”, In: Proc. of 2017 IEEE Symposium

Series on Computational Intelligence, pp. 1–8,

2017.

[24] J. Branke, “Consideration of partial user

preferences in evolutionary multiobjective

Received: February 6, 2024. Revised: March 8, 2024. 275

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.22

optimization”, in Multiobjective optimization.

Springer, pp. 157–178, 2008.

[25] K. Miettinen, Nonlinear Multiobjective

Optimization, ser. International Series in

Operations Research & Management Science.

Boston, MA: Springer US, Vol. 12, 1998.

[26] R. Battiti and A. Passerini, “Brain-computer

evolutionary multiobjective optimization: A

genetic algorithm adapting to the decision

maker”, IEEE Transactions on Evolutionary

Computation, Vol. 14, No. 5, pp. 671–687, 2010.

[27] O. M. Shir, M. Preuss, B. Naujoks, and M.

Emmerich, “Enhancing decision space diversity

in evolutionary multiobjective algorithms”,

Evolutionary Multi-Criterion Optimization, M.

Ehrgott, C. M. Fonseca, X. Gandibleux, J.-K.

Hao, and M. Sevaux, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 95–109, 2009.

[28] M. Preuss, C. Kausch, C. Bouvy, and F. Henrich,

“Decision space diversity can be essential for

solving multiobjective real-world problems”,

Multiple Criteria Decision Making for

Sustainable Energy and Transportation Systems,

M. Ehrgott, B. Naujoks, T. J. Stewart, and J.

Wallenius, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, pp. 367–377, 2010.

[29] T. Ulrich, J. Bader, and L. Thiele, “Defining and

Optimizing Indicator-Based Diversity Measures

in Multiobjective Search”, Parallel Problem

Solving from Nature, PPSN XI. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp.

707–717, 2010.

[30] T. Ulrich, J. Bader, and E. Zitzler, “Integrating

decision space diversity into hypervolume-

based multiobjective search”, In: Proc. of the

12th annual conference on Genetic and

evolutionary computation - GECCO ’10. New

York, New York, USA, p. 455, 2010.

[31] K. Tahernezhadiani, A. Hamzeh, and S.

Hashemi, “Towards enhancing solution space

diversity in multi-objective optimization: a

hypervolume- based approach”, International

Journal of Artificial Intelligence & Applications,

Vol. 3, No. 1, p. 65, 2012.

[32] H. Sato, H. Aguirre, and K. Tanaka, “Variable

space diversity, crossover and mutation in

MOEA solving many-objective knapsack

problems”, Annals of Mathematics and Artificial

Intelligence, Vol. 68, No. 4, pp. 197–224, 2013.

[33] J. C. Castillo, C. Segura, A. H. Aguirre, G.

Miranda, and C. Leo ́n, “A multi-objective

decomposition-based evolutionary algorithm

with enhanced variable space diversity control”,

In: Proc. of the Genetic and Evolutionary

Computation Conference Companion on -

GECCO ’17. New York, New York, USA, pp.

1565–1571, 2017.

[34] O. Cuate and O. Schütze, “Variation rate: An

alternative to maintain diversity in decision

space for multi-objective evolutionary

algorithms”, in Evolutionary Multi-Criterion

Optimization, K. Deb, E. Goodman, C. A. Coello

Coello, K. Klamroth, K. Miettinen, S.

Mostaghim, and P. Reed, Eds. Cham: Springer

International Publishing, pp. 203–215, 2019.

[35] D. Mindolin and J. Chomicki, “Hierarchical cp-

networks”, In: Proc. of the Third

Multidisciplinary Workshop on Advances in

Preference Handling (M-PREF), Vienna,

Austria, 2007.

