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Abstract: Conditional Preference Networks (CP-nets) have emerged as a prominent and intuitive model for 

representing condi-tional preferences within the AI community. However, the literature lacks a concrete investigation 

on their applica-bility within Multiobjective Evolutionary Algorithms (MOEAs). Many optimization problems that are 

tackled by MOEA have a room for conditional preferences on the decision space and thus reasoning about CP-nets in 

MOEA is of great importance. In this work, we motivate the use of CP-nets within the MOEA framework and provide 

a sim-ple yet powerful approach that can be augmented during the search to return solutions that are not only optimized 

for the objectives but also preferred by the decision maker’s CPnet. Furthermore, we consider the case where the de-

cision maker has no clear idea about her preferences at the beginning of the search but willing to engage during the 

search to answer simple comparison questions. Our experimental results show that it is possible to return solutions that 

are both optimal and preferred even when the search starts with empty preference information. The obtained solution 

space achieved at least 23% improvement in the average penalty score. 

Keywords: Conditional preferences, CP-nets, Multiobjective, Evolutionary algorithms, Decision space. 

 

 

1. Introduction 

In Multiobjective Optimization Problems 

(MOPs) [1, 2], it is quite common for the decision 

maker (DM) to express preferences on the space of 

possible solutions. Such preferences are issued with 

the hope of returning something desirable to the DM. 

Hence, taking preferences into account when solving 

an optimization problem is a cornerstone for the 

success of the approach. Evolutionary based 

algorithms have become the de facto method to tackle 

complex optimization problems. Historically, 

preferences in evolutionary algorithms (EAs) have 

been used mostly as means of reducing the size of the 

final Pareto Set [3-5]. While this is indeed a valid 

endeavor, in many problems preferences exist as part 

of the problem itself and expressed naturally on the 

decision space. 

We focus on preferences as a notion that is 

required to be tackled and considered within MOPs. 

Many optimization problems have a room for 

(possibly conditional) preferences and thus reasoning 

about preferences during the search is of great 

importance. Two major issues need to be addressed 

when handling preferences in EAs. First, articulating 

preferences need to assume minimum efforts from 

the decision maker. Second, the set of returned 

solutions need to be sensible to the issued preferences. 

The first issue is mainly a representation (and 

learning) issue. It depends largely on the problem 

domain and decision maker abilities in specifying 

preferences. It is however desirable to assume 

preferences that are natural and simple to articulate. 

So that the DM would not be involved in a lengthy 

pro-cess. One of the well-known representation of 

preferences is utility functions. 

However, it is known that such functions re-quire 

tedious effort from the DM to be articulated [6, 7]. 

Thus, a model that captures preferences from 

relatively natural and easy statements is required. The 

second issue requires efficient approaches that have 

the ability to assess potential solutions during the 

search and decide the most preferred solution given 

the preference in-formation. This is mainly due to the 

fact that optimizing a set of objectives (in the 

objective space) alone is not enough. The returned 
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solutions (in the decision space) need to be desirable 

as well by the decision maker.  

In this paper, we consider a class of preferences 

that is natural and easy to elicit from the DM. Such 

preferences are based on comparative statements of 

the form “I prefer z to z′ as a value for the attribute Z” 

or “If Z is assigned a value z then I prefer W to be w′ 

more than w”. The latter is known as conditional 

preference, and it asserts that the preference of W 

depends on another at-tribute’s value (namely Z). In 

particular, we con-sider the class of preferences that 

is representable by Conditional Preference Networks 

(CP-nets) [8]. CP-nets are intuitive graphical model 

to rep-resent and reason with conditional qualitative 

statements. Such statements were discussed by 

Coello [9] to be prone to the curse of dimensionality 

when the size of the solutions becomes big as the DM 

would not be able to assess her preferences over large 

number of alternatives. This is not an issue anymore 

in compact models such as CP-nets. In fact, the size 

of the CP-net (that the DM is required to supply) is 

exponentially small-er than the number of solutions 

it exhibits. CP-nets has been a subject of active 

research by AI researchers for years, but their 

utilization within evolutionary algorithms has not 

been investigated yet. The paper main contributions 

are: 1) We provide a simple and efficient method to 

incorporate CP-nets on top of any evolutionary 

algorithm. We also experimentally show that this 

method preserves the Pareto dominance and solutions 

diversity. 2) We discuss the scenario of interactively 

learning CP-net during the search based on recent 

advancements in the field and augment it within the 

search. To the best of our knowledge, this is the first 

attempt that proposes a general and domain-

independent approach to handle user’s preferences 

represented by CP-nets in evolutionary algorithms. 

The paper is organized as follows: a motivation 

example showing conditional preferences on a simple 

optimization problem is discussed in the next section. 

Section III introduces the notion of preferential 

dependencies as a key concept in CP nets. Formal 

definition of CP-nets is presented in Section IV. 

Section V outlines the proposed method to 

incorporate CP-nets in EAs. This is followed by a 

learning approach during the search in Section VI. 

Experimental results are presented in Section VII. 

Finally, conclusion re-marks and future work is 

discussed in Section VIII. 

2. Motivating example 

Consider the famous 0-1 Knapsack problem. We 

have a set of n items where each item xi has two 

possible values 1 or 0 representing respectively 

whether the item is included in the knapsack or not. 

Furthermore, each item xi is associated with a value 

ci > 0 and a weight ai > 0. A knapsack has capacity b 

and our goal is to maximize the value of the items in 

the knapsack. 

 
max ∑ 𝑐𝑖𝑥𝑖

𝑛
𝑖=1       (1) 

 
subject to ∑ 𝑎𝑖𝑥𝑖  ≤𝑛

𝑖=1 𝑏     (2) 
 
Consider a traveler wants to pack her items. She 

always prefers to have her jacket in the pack in case 

some windchill. For the t-shirt, she prefers to have it 

packed only if the jacket is packed. Lastly, she prefers 

to have her jeans in the pack only when both the 

jacket and the t-shirt are in the pack. From the above 

information, we conclude that her preference on the 

jacket is unconditional, it is always preferred to have 

it packed. However, her preference for the t-shirt is 

conditioned upon whether the jacket is packed or not. 

Such statement shows that the preference of one 

attribute (i.e., T-shirt) may depend on the values of 

other attributes (i.e., Jacket) and they exist naturally 

on the decision space. One can model such 

preferences via CP-nets. 

Informally, a CP-net is a directed graph where 

vertices represent attributes of the domain (jacket, t-

shirt, and jeans) and every attribute has a set of 

possible domains (0 or 1 in our example) and edges 

represent preferential dependencies. Moreover, every 

vertex is associated with a table showing the 

preference function of the attribute. The CP-net that 

corresponds to the above traveler scenario is captured 

in Fig. 1. This CP-net has three attributes (or 

variables) every variable is annotated with a 

preference table. For instance, it is always preferred 

to pack the jacket (1 ≻ 0 read as 1 is preferred to 0 as 

a value). The preference for T-shirt depends on the 

value of the Jacket. Thus, there is an edge from Jacket 

to T-shirt and its preference is 1 ≻ 0 iff Jacket is 

packed otherwise it is preferred not to pack the T-

shirt. In such case we say that Jacket is a parent of T-

shirt (similarly Jacket and T-shirt are parents for 

Jeans). 

Given the traveler CP-net, we can determine the 

optimal (i.e., best) solution for this network. We 

simply go top to bottom in a topological order 

consistent with the graph and assigning every 

variable to its best value given the parents values. 

This procedure is known as sweep-forward in CP-

nets [8]. Therefore, (1, 1, 1) is the best solution for 

the network. This is the best (i.e., most preferred) 

solution if we neglect the underlying optimization 

problem. Moreover, another important task is to  
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Figure. 1 The Traveler CP-net 

 

 

 
Figure. 2 Traveler Induced graph 

 

determine whether the CP-net has enough 

information to prefer one solution over another. A 

CP-net defines a strict partial order over the set 

possible of solutions which determines whether one 

solution dominates (or preferred to) another. The full 

relation is defined as the transitive closure of this 

partial order. Fig. 2 shows the induced relation of the 

traveler network. Informally, a path from vertex x to 

y means y dominates x, similarly y does not dominate 

x in case there is no path from x to y in the graph. The 

formal definitions will be introduced in Section IV. 

In the case of optimization problems, one may 

expect that many of the preferred solutions in the CP-

net are infeasible or having poor objective values. 

This is indeed a possible scenario and a challenging 

problem. We will discuss CP-nets within the realm of 

MOEAs in Section V where we show one method to 

return solutions that are not only optimal for the 

optimization problem but also preferred by the 

decision maker’s CP-net. 

3. Preference relations and preferential 

independencies 

In the following, we introduce basic 

terminologies and related concepts that would be 

useful in the remaining of the paper. A binary relation 

over a set of elements O is a subset of the cartesian 

product O × O. For a given relation R, there are 

certain properties that we wish R to satisfy. For 

instance, R is called: 

• Reflexive if and only if every element o ∈ O is 

related to itself (i.e., (o, o) ∈ R). 

• Irreflexive if and only if there exists no element o 

that is related to itself i.e., (o, o) ∉ R 

• Transitive if and only if for any three elements o, 

o′, and o′′, if (o, o′) ∈ R and (o′, o′′) ∈ R then it is 

the case that (o, o′′) ∈ R. 

• Total if and only if for any pair of elements (o, o′) 

it is the case that either (o, o′) ∈ R or (o′, o) ∈ R. 

Definition 1. A preference ⪰ is a binary relation that 

is reflexive and transitive. 

⪰ is also called partial preorder. The interpretation of 

o ⪰ o′ is that o is as good as o′. Moreover, more 

precise conclusions can be derived from checking 

how the two elements stand with regard to each other. 

1) is strictly better than o′ (denoted as o ≻ o′) if o 

⪰ o′ but o′ ⪰ o does not hold. 

2) is indifferent to o′ (denoted as o ∼ o′) if both o 

⪰ o′ and o′ ⪰ o hold. 

3) is incomparable with o′ (denoted as o ⋈ o′) if 

both o ⪰̸ o′ and o′ ⪰̸ o are true. 

Furthermore, a total order ≻ ′ is called a linear 

extension of ≻ if ≻′ is a total relation and for any two 

elements o, o′ ∈ R where o ≻ o′ we have o ≻′ o′. We 

work on problem domains of combinatorial nature. In 

such domains, every possible outcome in O is an 

assignment to a set of n attributes (or variables ) V = 

{vi}
n

i=1. Furthermore, every vi is associated with a set 

of possible values Dvi  of length m ≥ 2. For an 

arbitrary subset Y = {Y1, Y2, . . . } ⊆  V , an 

assignment y is an element of the cartesian product 

DY1 × DY2 × . . . and we refer to them as OY and 

remove Y from the subscript when Y = V . For a 

specific assignment o ∈ O, we use the notation o[Y ] 

to refer the projection of o into the variables in Y. 

Needless to say, the size of the possible outcomes, i.e., 

|O|  is exponential in n. Therefore, one cannot easily 

articulate a preference relation directly on the set of 

outcomes. Thanks to preferential dependencies, it is 
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possible to define the preference relation ⪰ in a 

succinct way if the given preferences exhibit some 

certain structure. Assume A and B to be any two 

mutual disjoint sets and ab is the result of 

concatenating an arbitrary assignment a ∈ OA and b 

∈ OB. 

Definition 2 ([8]). A is said to be preferentially 

independent from another set B iff  ab ⪰ a′b ⟺ ab′ 

⪰ a′b′, for all a, a′ ∈ OA and b, b′ ∈ OB. 

In essence, A is preferentially independent from 

another set B in case the preference given to the set A 

does not change no matter what B is. That is, knowing 

Y’s values does not add anything new to the 

preference relation defined on the set A. There is also 

a more fine-grained conditional version of 

preferential dependency stated as follows. 

Definition 3 ([8]). Consider A, B and C to be disjoint 

sets of V where A ∪ B ∪ C = V . We say that A is 

independent from B conditioned on another set C iff 

abc ⪰ a′bc ⟺ ab′c ⪰ a′b′c, for all a, a′ ∈ OA, b, b′ 

∈ OB and c ∈ OC. 

We limit ourselves to work on strict (i.e., 

irreflexive and transitive) preference orders ≻. It is 

well-known that given any partial preorder ⪰, we can 

extract a strict order ≻ as follows: o strictly dominates 

(or preferred to) o′ (o ≻ o′) if and only if o ⪰ o′ but 

the other way is not true. Binary relations can be 

visualized as directed graphs where strict orders such 

as ≻ are acyclic due to the irreflexivity property. 

4. Conditional preference networks (CP-

nets) 

Informally, a CP-net is a collection of qualitative 

preference statements having the form: x : y ≻  y′ 

which means the preference of the variable Y with 

possible values y and y′ is conditioned upon the value 

of another variable X. Specifically, when X = x, y is 

preferred to y′. The preference holds only when x is 

true. CP-nets have an appealing graphical structure to 

represent the preferences over O in a compact way. 

Formally, the construction of CP-net involves two 

main steps: 

• for every variable vi ∈ V , the user is asked to 

choose “parent variables” Pa(vi) ⊆  V\vi that 

affect the preference relation of vi. 

• for every possible assignment u ∈  OPa(vi) of 

Pa(vi), the user issues a total order ≻i
u over the 

values of Dvi. 

The total order ≻i
u is known to be the statement of vi 

in the context of u. The set of all statements ≻i
u for all 

u ∈ OPa(vi) is known as the conditional preference 

table CPT(vi). 

    
  (a)            (b) 

Figure. 3 An example of an acyclic CP-net with three 

variables and the full induced relation: (a) The model and 

(b) The full relation over all possible solutions (aka 

induced graph) 

 

 

 
Figure. 4 One objective vector can be mapped to several 

decision vectors (solutions) 

 

Definition 4 (CP-net [8]). A CP-net is defined as a 

pair (G,C) where G is a directed graph (V, E) showing, 

for every v ∈ V , an edge from v′ ∈ Pa(v) to v and C 

is a set of CPTs for every variable in V. 

Example 1. Fig. 3a shows a CP-net over V = {A, B, 

C} with DA = {a, �̅�}, DB = {b, �̅�}, DC = {c, 𝑐̅}. Each 

variable is annotated with its CPT. For variable A, the 

user prefers a to �̅�  unconditionally. For C, the 

preference depends on the values of B, i.e., Pa(C) = 

{B}. For instance, in the context of �̅�, 𝑐̅ is preferred 

over  

We can illustrate the semantics of the CP-nets in 

terms of flips. A flip with respect to an outcome o 

result in another new outcome o′ that is different from 

o in exactly one variable value. The flip from o to o′ 

can be either an improving flip (the new value is 

preferred to the old value) or worsening flip (the new 

value is worse compared to the old one). 

Formally, let u ∈ OPa(vi) be the parents values for 

a variable vi ∈ V . Let ≻𝑢
𝑣𝑖= 𝑣1

𝑖 ≻ ⋯ ≻ 𝑣𝑚
𝑖  be the 

preference order of vi where u is the context. Then, 

going from vi
j to vi

k is an improving flip for vi 

whenever k < j ≤ m. 

Example 2. In Fig. 3a, (�̅��̅�𝑐, �̅�𝑏𝑐) is an improving 

flip because we flipped the value of B to a more 

preferred one. The main task in CP-nets is answering 

dominance queries. Such queries involve arbitrary 

two outcomes o and o′ and the question is does o 

dominate o′ in the underlying CPnet? The answer is 

yes if and only if there exists a sequence of improving 

A B

C

b b̄a ā

b : c c̄

b̄ : c̄ c

(a) The model

ab̄̄c āb̄c āb̄c

ab̄c ab̄c ābc

abc

āb̄̄c

(b) The full relation over all possible solu-
tions (aka induced graph).

Fig. 3: An example of an acyclic CP-net with three variables and the full induced relation.

improving flips from āb̄̄c to ābc. Specifically (āb̄̄c, āb̄c, ābc)

is such a sequence of improving flips.

Definition 5 (Induced Graph [8]). The induced graph for a

particular CP-net N is defined as a directed graph G where

the set of vertices is O and an edge from x to y exists iff

(y, x) form an improving flip.

The full relation of the CP-net is shown in Figure 3b. The
transitive closure of this graph is what a CP-net induces. The
CP-net N enails a statement o o0 if and only if there exists
a path from o0 to o in this graph. Notice that representing
the whole induced graph by requires only keeping the CP-net
and its CPTs. This compact representation of CP-net is a one
major advantage when working in domains with very large
attributes. The complexity of answering dominance queries
depends on the CP-net graph and CPTs representation. For
trees (CP-nets with indegree at most one) it has shown to
be linear [10] but it is PSPACE-complete for the generalized
case of CP-nets [11].

V. REASON ING W ITH CONDITIONAL PREFERENCES IN
EVOLUTIONARY A LGORITHM S

CP-nets are rich in semantics. In this section, we outline
one possible way to augment preference information during
the search. The goal is to consult the preferences specified
on the decision space when searching for Pareto solutions.
DMs are rarely expert in technical aspects of the problem and
their preferences are usually expressed on the aspects related
to potential solutions i.e., over the decision space. During
the search, one objective vector could have many decision
vectors or images. See e.g., Figure 4 for an illustration.
Thus, one obvious way to augment and reason with CP-nets
within MOEA is to keep the non-dominated decision vectors
when the objective vector has more than one mapping.
In other words, we keep only the solutions that are non-
dominated by the underlying CP-net. This requires, for two
decision vectors x and y mapped to the same objective
vector F (x) = F (y) , determining whether x is better than
y according to the CP-net. Such dominance question is
known to be computationally hard in CP-nets and the exact
complexity is known only for a restricted sub-classes of CP-
nets [11].
Luckily, recent advancements in reasoning with CP-net

allow us to avoid dominance testing by creating a mapping

Decision Space Objective Space

Fig. 4: One objective vector can be mapped to several
decision vectors (solutions)

p : O ! N related to the CP-net where the dominance
relation can be answered in almost straightforward way i.e.,

if x dominates y then p(x) < p(y) where p(o) is the penalty
of o 2 O [12]. The mapping is based on two steps. First,
constructing a weight w(vi ) for every variable vi 2 V given
the CP-net N . The weights represent roughly the importance
of vi within the CP-net graph. Higher up nodes in the graph
where many nodes depend on their values are known to
be more important to be satisfied compared to others [8].
Algorithm 1 shows the steps required to create the variables
weights. Second, given an outcome o, we create an indicator
do

v i
2 { 0, 1} for every variable vi , such that do

v i
= 0 iff the

value of vi in the solution o is the best value given its parent
values o[Pa(vi )]. The function p, or the penalty of o, is then
defined as follows [12]

p(o) =
X

v i 2 V

w(vi ) · do
v i

Algorithm 1: Calculating variables weights as in
[12].

I nput : N , an acyclic CP-net
Output: the weight w(vi ) for every variable vi 2 N

1 Let ⇡ be a reverse topological order for variables in
N for i = 1 to n do

2 if ⇡ ( i ) has no children in N then
3 w(⇡ ( i ))  1
4 else
5 w(⇡ ( i ))  1 +

P
⇡ ( j )2 ch i l dr en ( ⇡ ( i ) ) w(⇡ ( j ))

6 end
7 end

Figure 5 shows the penalty function and the variables
weights for the CP-net in Figure 3. For this small example, it
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b̄ : c̄ c
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ab̄̄c āb̄c āb̄c
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abc

āb̄̄c

(b) The full relation over all possible solu-
tions (aka induced graph).
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y according to the CP-net. Such dominance question is
known to be computationally hard in CP-nets and the exact
complexity is known only for a restricted sub-classes of CP-
nets [11].
Luckily, recent advancements in reasoning with CP-net
allow us to avoid dominance testing by creating a mapping

Decision Space Objective Space

Fig. 4: One objective vector can be mapped to several
decision vectors (solutions)

p : O ! N related to the CP-net where the dominance
relation can be answered in almost straightforward way i.e.,

if x dominates y then p(x) < p(y) where p(o) is the penalty
of o 2 O [12]. The mapping is based on two steps. First,
constructing a weight w(vi ) for every variable vi 2 V given
the CP-net N . The weights represent roughly the importance
of vi within the CP-net graph. Higher up nodes in the graph
where many nodes depend on their values are known to
be more important to be satisfied compared to others [8].
Algorithm 1 shows the steps required to create the variables
weights. Second, given an outcome o, we create an indicator
do

v i
2 { 0, 1} for every variable vi , such that do

v i
= 0 iff the

value of vi in the solution o is the best value given its parent
values o[Pa(vi )]. The function p, or the penalty of o, is then
defined as follows [12]

p(o) =
X

v i 2 V

w(vi ) · do
v i

Algorithm 1: Calculating variables weights as in
[12].

I nput : N , an acyclic CP-net
Output: the weight w(vi ) for every variable vi 2 N

1 Let ⇡ be a reverse topological order for variables in
N for i = 1 to n do

2 if ⇡ ( i ) has no children in N then
3 w(⇡ ( i ))  1
4 else
5 w(⇡ ( i ))  1 +

P
⇡ ( j )2 chi l dr en ( ⇡ ( i ) ) w(⇡ ( j ))

6 end
7 end

Figure 5 shows the penalty function and the variables
weights for the CP-net in Figure 3. For this small example, it
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flips (α1, α2, . . . , αk) such that α1 = o′ and  αk = o and 

every pair (αi , αi+1) in this sequence is an improving 

flip for all i ∈ {1, . . . , n − 1}. 

Example 3. Consider the network in Fig. 3a, we can 

conclude that  �̅�𝑏𝑐≻ �̅��̅�𝑐̅ as there exists a sequence of 

improving flips from �̅��̅�𝑐̅  to �̅�𝑏𝑐 . Specifically 

(�̅��̅�𝑐̅ , �̅�𝑏𝑐̅ , �̅�𝑏𝑐 ) is such a sequence of improving 

flips. 

Definition 5 (Induced Graph [8]). The induced graph 

for a particular CP-net N is defined as a directed 

graph G where the set of vertices is O and an edge 

from x to y exists iff (y, x) form an improving flip. 

The full relation of the CP-net is shown in Fig. 3b. 

The transitive closure of this graph is what a CP-net 

induces. The CP-net N entails a statement o ≻ o′ if and 

only if there exists a path from o′ to o in this graph. 

Notice that representing the whole induced graph by 

requires only keeping the CP-net and its CPTs. This 

compact representation of CP-net is a one major 

advantage when working in domains with very large 

attributes. The complexity of answering dominance 

queries depends on the CP-net graph and CPTs 

representation. For trees (CP-nets with indegree at 

most one), it has shown to be linear [10] but it is 

PSPACE-complete for the generalized case of CP-

nets [11]. 

5. Reasoning with conditional preferences in 

evolutionary algorithms 

CP-nets are rich in semantics. In this section, we 

outline one possible way to augment preference 

information during the search. The goal is to consult 

the preferences specified on the decision space when 

searching for Pareto solutions. DMs are rarely expert 

in technical aspects of the problem and their 

preferences are usually expressed on the aspects 

related to potential solutions i.e., over the decision 

space. During the search, one objective vector could 

have many decision vectors or images. See e.g., Fig. 

4 for an illustration. Thus, one obvious way to 

augment and reason with CP-nets within MOEA is to 

keep the non-dominated decision vectors when the 

objective vector has more than one mapping. In other 

words, we keep only the solutions that are 

nondominated by the underlying CP-net. This 

requires, for two decision vectors x and y mapped to 

the same objective vector F(x) = F(y), determining 

whether x is better than y according to the CP-net. 

Such dominance question is known to be 

computationally hard in CP-nets and the exact 

complexity is known only for a restricted sub classes 

of CP-nets [11]. 

Luckily, recent advancements in reasoning with 

CP-net allow us to avoid dominance testing by  

  
(a)                                            (b). 

Figure. 5 The weights and penalty values for CP-net in 

Example 1: (a) The variables weights and (b) The penalty 

for each possible solution 

 

creating a mapping p : O → N related to the CP-net 

where the dominance relation can be answered in 

almost straightforward way i.e., if x dominates y then 

p(x) < p(y) where p(o) is the penalty of o ∈ O [12]. 

The mapping is based on two steps. First, 

constructing a weight w(vi) for every variable vi ∈ V 

given the CP-net N. The weights represent roughly 

the importance of vi within the CP-net graph. Higher 

up nodes in the graph where many nodes depend on 

their values are known to be more important to be 

satisfied compared to others [8]. Algorithm 1 shows 

the steps required to create the variables weights. 

Second, given an outcome o, we create an indicator 

𝑑𝑣𝑖
𝑜 ∈ {0, 1} for every variable vi , such that 𝑑𝑣𝑖

𝑜  = 0 iff 

the value of vi in the solution o is the best value given 

its parent values o[Pa(vi)]. The function p, or the 

penalty of o, is then defined as follows [12]. 

 

𝑝(𝑜) = ∑ 𝑤(𝑣𝑖)𝑣𝑖∈𝑉 ⋅ 𝑑𝑣𝑖
𝑜      (3) 

 

Fig. 5 shows the penalty function and the variables 

weights for the CP-net in Fig. 3. For this small 

example, it is evident that whenever p(x) < p(y) we 

either have x ≻ y or x ⋈ y (see Corollary 1 in [12]). 

Given this mapping of the CP-net relation, we present 

a simple algorithm to integrate the CP-net within 

MOEAs. Essentially, we consider penalty as an 

objective (PaO) and use a basic non-dominated 

sorting (ND) technique at the heart of the algorithm 

(e.g., NSGA-II). Recall that, the penalty of a solution 

indicates the DM decision space preferences and the 

lower the penalty, the more preferred the solution. 

However, simply adding the penalty score of each 

solution as an additional objective would allow 

solutions that are far from being optimal (in the 

objective space sense) to appear in the Pareto Front 

(PF), i.e., leads to weak PF approximation. For 

example, if a problem has only a single solution with 

penalty score zero, it will always appear in the PF 

regardless of how bad its objective values. Ideally, 
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Fig. 5: The weights and penalty values for CP-net in Example 1

Fig. 6: Interactive learning of the decision maker’s CP-net
by asking simple comparative questions. The system needs
to update his learned function after every query and chooses
the best next query. The main challenge is to construct a
sequence of questions (x1 , y1 ) , (x2 , y2 ) . . . (x r , yr ) that is
minimum for arbitrary network.

Algor ithm 3: InteractiveSep Algorithm [14]

I nput : V , a set of binary variables
Output: a separable CP-net

1 for each vi 2 V do
2 find a swap example (x, y) of vi

3 call interactiveSep(x, y) .
4 end
1 Procedure interactiveSep(x, y)
33 Ask the DM “Does x dominate y”?
55 if ` (x ,y ) = 1 then
6 CPT(vi ) = x[vi ] y[vi ]
7 else
8 CPT(vi ) = y[vi ] x[vi ]
9 end
1111 return CPT(vi )

for learning trees on swap examples. They devised an al-
gorithm to learn arbitrary binary trees with 2n + elog2 (n)
where e is the number of edges in the target tree CP-net.

Algorithm 4 shows the necessary steps to interactively
learn tree CP-nets. The FindParent procedure aims at find-
ing the parent for the current variable’s CPT. Basically, it is
a binary search procedure that takes as inputs two examples
on the same swapped variable v but shows conflict orders
on v values (known as a conflict pair in [14]). For further
information and formal proofs of the optimality for the
interactive learning algorithms, interested reader is referred
to the work of Alanazi et al. [14].

Following these strategies, there could be at most n

Algorithm 4: InteractiveTree Algorithm [14]

I nput : V , a set of variables
Output: a tree CP-net

1 foreach vi 2 V do
2 Let (x, y) and (x0, y0) be any two swap examples

of vi where x differs from x0 in all variables
except vi

3 Ask the DM “Does x dominate y?” and “Does x0

dominate y0?”
4 if ` (x ,y ) = ` ( x 0,y0) then
5 Pa(vi ) = ; and

CPT(vi ) = interactiveSep(x, y)
6 else
7 let P = V \ vi

8 vj  FindParent(P, x, y, x0, y0)
9 Pa(vi ) = vj

10 if ` (x ,y ) = 1 then
11 CPT(vi ) = x[vj ] : x[vi ] y[vi ] and

x0[vj ] : y[vi ] x[vi ]
12 else
13 CPT(vi ) = x[vj ] : y[vi ] x[vi ] and

x0[vj ] : x[vi ] y[vi ]
14 end
15 end
16 end

interactive questions in the separable case and at most
2n + elog2 (n) in the tree case where e is the number of
edges in the target tree CP-net.

Again during the search, the swap examples (x, y) comes
handy thanks to the mutation operator. However, for the tree
case, one require examples with special requirements (i.e.,

for each variable we need to ask two questions (x, y) and
(x0, y0) where the hamming distance of x and x0 is n − 1
and they are swapped for the same variable vi ).

Given the above learning strategies, one simple idea is
to learn the preference network fi rst (by applying interac-
tiveSep or interactiveTree) and then use the PaOc reasoning
method outlined in Section V. Another more interesting
approach is to interleave learning with the search. The
main idea is to progressively construct CPT s that affect the
evaluation of the current generation while ignoring those that
are irrelevant. Therefore, we base our evaluation on partial
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by asking simple comparative questions. The system needs
to update his learned function after every query and chooses
the best next query. The main challenge is to construct a
sequence of questions (x1 , y1 ) , (x2 , y2 ) . . . (xr , yr ) that is
minimum for arbitrary network.

Algorithm 3: InteractiveSep Algorithm [14]

I nput : V , a set of binary variables
Output: a separable CP-net

1 for each vi 2 V do
2 find a swap example (x, y) of vi

3 call interactiveSep(x, y) .
4 end
1 Procedure interactiveSep(x, y)
33 Ask the DM “Does x dominate y”?
55 if ` (x ,y ) = 1 then
6 CPT(vi ) = x[vi ] y[vi ]
7 else
8 CPT(vi ) = y[vi ] x[vi ]
9 end
1111 return CPT(vi )

for learning trees on swap examples. They devised an al-
gorithm to learn arbitrary binary trees with 2n + elog2 (n)
where e is the number of edges in the target tree CP-net.

Algorithm 4 shows the necessary steps to interactively
learn tree CP-nets. The FindParent procedure aims at find-
ing the parent for the current variable’s CPT. Basically, it is
a binary search procedure that takes as inputs two examples
on the same swapped variable v but shows conflict orders
on v values (known as a conflict pair in [14]). For further
information and formal proofs of the optimality for the
interactive learning algorithms, interested reader is referred
to the work of Alanazi et al. [14].

Following these strategies, there could be at most n

Algorithm 4: InteractiveTree Algorithm [14]

I nput : V , a set of variables
Output: a tree CP-net

1 foreach vi 2 V do
2 Let (x, y) and (x0, y0) be any two swap examples

of vi where x differs from x0 in all variables
except vi

3 Ask the DM “Does x dominate y?” and “Does x0

dominate y0?”
4 if ` ( x ,y ) = ` ( x 0,y 0) then
5 Pa(vi ) = ; and

CPT(vi ) = interactiveSep(x, y)
6 else
7 let P = V \ vi

8 vj  FindParent(P, x, y, x0, y0)
9 Pa(vi ) = vj

10 if ` (x ,y ) = 1 then
11 CPT(vi ) = x[vj ] : x[vi ] y[vi ] and

x0[vj ] : y[vi ] x[vi ]
12 else
13 CPT(vi ) = x[vj ] : y[vi ] x[vi ] and

x0[vj ] : x[vi ] y[vi ]
14 end
15 end
16 end

interactive questions in the separable case and at most
2n + elog2 (n) in the tree case where e is the number of
edges in the target tree CP-net.

Again during the search, the swap examples (x, y) comes
handy thanks to the mutation operator. However, for the tree
case, one require examples with special requirements (i.e.,

for each variable we need to ask two questions (x, y) and
(x0, y0) where the hamming distance of x and x0 is n − 1
and they are swapped for the same variable vi ).

Given the above learning strategies, one simple idea is
to learn the preference network fi rst (by applying interac-
tiveSep or interactiveTree) and then use the PaOc reasoning
method outlined in Section V. Another more interesting
approach is to interleave learning with the search. The
main idea is to progressively construct CPTs that affect the
evaluation of the current generation while ignoring those that
are irrelevant. Therefore, we base our evaluation on partial
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penalties should not deteriorate PF optimality nor 

override the original objectives of the problem. 

Rather, they should keep the solutions quality intact 

to some extent but return solutions that are preferred 

by the DM. For this reason, some bounds on using the 

penalty score as objective are suggested to mitigate 

this undesired behavior. For example, one can utilize 

upper bounds on objective values to constrain the 

search in the objective space. Alternatively, we 

propose to use a penalty score conditioned upon the 

goodness of the solution objective values. Algorithm 

2 show the approach proposed in this work where we 

incorporate the penalty as an additional objective 

only when the objective values of the solution are 

promising (less than the average of objective values 

in current population). Thus, we term the approach 

PaOc for constrained penalty as objective. Essentially, 

PaOc is just a way of reforming the problem to handle 

the CPnet information and can conveniently be run 

on top of any MOEA. 
 

Algorithm 1: Calculating variables weights as in 

[12]. 

Input: N, an acyclic CP-net 

Output: the weight w(vi) for every variable vi ∈ N 

1 Let π be a reverse topological order for 

variables in 

N for i = 1 to n do 

2      if π(i) has no children in N then 

3           𝑤(𝜋(𝑖)) ← 1 

4      else 

5           𝑤(𝜋(𝑖)) ← 1 + 

∑ 𝑤(𝜋(𝑗))

𝜋(𝑗)∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝜋(𝑖))

 

6      end 

7 end 

 

Algorithm 2: The PaOc algorithm 

Input: a Multiobjective problem and a CP-net  

Output: a Pareto Front Approximation  

1 Intialize population P 

2 Compute objective values 

3 Compute p(o) for each o ∈ P 

4 Let 𝑞 = ∑ 𝑓1(𝑠) +
𝑓2(𝑠)

|𝑃|𝑠∈𝑃  

5 foreach o ∈ P do 

6      if f1(o) + f2(o) <  q   then 

7           f3(o) = p(o) 

8      else 

9           f3(o) = ∞ 

10      end 

11 end 

12 while termination criterion is not met do 

13     Create offspring and apply 2-8 

14     Rank (based on dominance or fitness) 

15 Select solutions of the next population 

16 end 

6. Interactive learning of CP-nets in 

evolutionary algorithms 

So far, we have assumed the existence of a CP-

net before the search starts. It is not hard to see that 

this assumption is unrealistic in many applications 

where decision makers have vague idea on their 

preferences especially at the beginning. Hence, 

decision makers need to be involved periodically 

during the search with the hope of revealing more 

information about their preferences along the way. In 

this section, we relax this assumption and provide an 

interactive approach to learn CP-nets during the 

search. One natural scenario is to provide the DM 

with a pair of solutions (x, y) and ask whether x 

dominates y (i.e., whether x is more preferred to her 

than y). The answer is either “Yes” (x dominates y) or 

“No” (x does not dominate y). Fig. 6 shows the 

learning style in a graphical way. 

The reason for choosing this learning paradigm is 

the fact that its cognitive burden is minimal compared 

to other learning styles. The users are expected to be 

able to assess the preference relation between two 

solutions instead of answering complex questions 

such as ranking a large set of solutions. The main 

challenge here, however, is learning the user’s CP-

net with minimum number of questions. We use 

recent advancements in interactive learning of CP-

nets and employ optimal and near optimal learning 

strategies that was proposed in [13], [14]. In other 

words, the learning methods that we use here are 

guaranteed to ask the DM a near-optimal number of 

questions. We focus here on the two cases of 

separables and trees over boolean variables to 

simplify the presentation. The separable and tree CP-

nets represent respectively CP-nets whose graph has 

indegree is at most zero or one. The CP-net in Fig. 1 

is an example of a tree CP-net, while separables mean 

all variables preferences are unconditional (i.e., no 

edges in the graph). The general case of arbitrary 

acyclic CP-nets on possibly non-binary variables has 

been also discussed in [13], [14]. In what follows, we 

assume the algorithm has access to the set of 

variables V with binary domain Dvi = {0, 1} for any i 

∈ {1, 2, . . . , n} and maximum parent size k ∈ {0, 1} 

(0 for separables and 1 for trees). We learn the CP-

net by utilizing swap examples. An example is a pair 

of solutions (x, y) that form a question “Is x better 

than y?”. The example is called a swap if x and y 

differ in exactly one variable (referred to as the  
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Figure. 6 Interactive learning of the decision maker’s CP-

net by asking simple comparative questions. The system 

needs to update his learned function after every query and 

chooses the best next query. The main challenge is to 

construct a sequence of questions (x1, y1), (x2, y2) . . . (xr, 

yr) that is minimum for arbitrary network 

 

swapped variable). Let ℓ(x,y) ∈ {0, 1} be the answer 

of the DM to a question such that ℓ(x,y) = 1 if x 

dominates y and 0 otherwise. Due to our swap 

assumption, answering “No” to the question means it 

is indeed the case that y ≻ x i.e., ℓ(y,x) = 1. It is crucial 

to remember that for an arbitrary pair of solutions x 

and y, ℓ(x,y) = 0 does not necessarily mean y 

dominates x (ℓ(y,x) = 1) as both solutions can be 

incomparable. 

A. Interactive Learning of Separables 

As the DM has a separable CP-net in her mind, 

we can learn CPT(vi) exactly by invoking the 

interactiveSep(x, y) procedure described in 

Algorithm 3, where (x, y) is an arbitrary swap 

example and vi is the swapped variable. Notice that 

swaps are naturally represented by a parent x and its 

offspring y that resulted from mutating x in a single 

bit. The learning stops as soon as we have created all 

the CPTs. 

B. Interactive Learning of Trees 
When learning trees, [14] showed a near-optimal 

strategy and proved that 2n is an information 

theoretic lower bound for learning trees on swap 

examples. They devised an algorithm to learn 

arbitrary binary trees with 2n + elog2(n) where e is 

the number of edges in the target tree CP-net. 

Algorithm 4 shows the necessary steps to 

interactively learn tree CP-nets. The FindParent 

procedure aims at finding the parent for the current 

variable’s CPT. Basically, it is a binary search 

procedure that takes as inputs two examples on the 

same swapped variable v but shows conflict orders on 

v values (known as a conflict pair in [14]). For further 

information and formal proofs of the optimality for 

the interactive learning algorithms, interested reader 

is referred to [14]. 

Following these strategies, there could be at most 

n interactive questions in the separable case and at 

most 2n + elog2(n) in the tree case where e is the 

number of edges in the target tree CP-net. Again, 

during the search, the swap examples (x, y) come 

handy thanks to the mutation operator. However, for 

the tree case, one requires examples with special 

requirements (i.e., for each variable we need to ask 

two questions (x, y) and (x′, y′) where the hamming 

distance of x and x′ is n – 1 and they are swapped for 

the same variable vi). 

 

Algorithm 3: InteractiveSep Algorithm [14] 

Input: V , a set of binary variables  

Output: a separable CP-net  

1 foreach vi ∈ V do 

2      find a swap example (x,y) of vi   

3      call interactiveSep(x, y) 

4 end 

1 Procedure interactiveSep(x,y)  

2      Ask the DM “Does x dominates y”? 

3      if ℓ(x,y) =1 then 

4           CPT(vi) = x[vi] ≻ y[vi] 

5     else 

6     CPT(vi) = y[vi] ≻ x[vi] 

7     end 

8     return CPT(vi) 

 

Algorithm 4: InteractiveTree Algorithm [14] 

Input: V, a set of variables 

Output: a tree CP-net  

1 foreach vi ∈ V do 

2      Let (x, y) and (x′, y′) be any two swap 

examples of vi where x differs from x′ in all 

variables except vi   

3      Ask the DM “Does x dominates y”? and 

“Does x′ dominates y′ ?” 

4      if ℓ(x,y) = ℓ(x′,y′) then 

2          Pa(vi) = ∅ and CPT(vi) = 

interactiveSep(x, y) 

3      else 

4          let P = V \vi 

5          vi  ←FindParent(P, x, y, x′, y′ ) 

6         Pa(vi) = vj  

7         if ℓ(x,y) = 1 then 

8             CPT(vi) = x[vj]: x[vi] ≻ y[vi]                             

and x′ [vj]: y[vi] ≻ x[vi] 

9         else 

10           CPT(vi) = x[vj]: y[vi] ≻ x[vi]                              

and x′ [vj]: x[vi] ≻ y[vi] 

11       end 

12    end 

13 end 

 

Algorithm 5: FindParent(P, x, y, x′, y′ ) 

Input: a set of possible parents P ⊆ V \v and two 

swaps (x, y) and (x′, y′) of v where ℓ(x,y) ≠ ℓ(x′,y′) 

Output: The parent vj of the variable v 

1 if |P| = = 1 then 
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2      return P  

3 else 

4      Let X and X′ be a partition over P with equal 

size  

5      Let s be an empty solution vector 

6      foreach vi ∈ V\v do  

7         if vi ∈ X then 

8             s[vi] = x[vi] 

9         else 

10           s[vi] = x′ [vi] 

11       end 

12       Ask the DM “Does z dominates z′ ”?  

where  

          z = s ∪x[v] and z′ = s ∪ y[v] 

13       if  ℓ(x,y) ≠ ℓ(z, z′) 

14             FindParent(X′, z, z′, x, y ) 

15       else 

16            FindParent(X, z, z′, x′, y′ ) 

17       end 

18    end 

19 end 

 

Given the above learning strategies, one simple idea 

is to learn the preference network first (by applying 

interactiveSep or interactiveTree) and then use the 

PaOc reasoning method outlined in Section 5. 

Another more interesting approach is to interleave 

learning with the search. The main idea is to 

progressively construct CPTs that affect the 

evaluation of the current generation while ignoring 

those that are irrelevant. Therefore, we base our 

evaluation on partial CP-net learned so far. Let S be 

the set of solutions that will be used in environmental 

selection. For any two solutions x and y that form a 

swap example for a given vi ∈ V , we determine 

CPT(vi) as outlined in the learning strategies. Other 

variables can be assumed to have no CPT and of 

weight zero. This partition the set of variables V into 

two sets V′ and V′′ correspond respectively to 

variables that have CPTs and those who doesn’t. In 

the next generation S′, we do the same until V′′ = ∅ 

and CPT(vi) has been determined for every vi ∈ V . 

Given the population nature of MOEA, it is likely that 

we would be able to construct all the CPTs from few 

generations. This is indeed the case as shown in the 

experiments. 

7. Experiments 

In this section, we show the merit of our approach 

in preserving dominance relation in the PF while 

providing preferred solutions as captured by the CP-

net of the DM. We ran several experiments using the 

settings shown in Table 1. For the CP-net generation, 

we used the random generator in [15]. The generator  

Table 1. Experiments settings 

Benchm

ark 

problem 

Numbe

r of 

Variabl

es 

Number 

of 

Objectiv

es 

Populati

on size 

Number 

of 

Generati

ons 

ZDT5 

problem 
50 2 N =100 100 

MOK 

problem 

CP-net 

example

s 

Separable c0 Tree c1 

CPnet–

n..c..d2 
n: 5, 10, 20, 35 n: 5, 10, 20, 35 

Algorith

ms used 

• MOEA: any multiobjective 

evolutionary algorithm. We have 

adopted NSGA-II as a baseline. 

• MOEA-PaO: a variant of Algorithm 2 

but with fixing the value of q to ∞, 

yielding a behavior similar to adding 

the penalty as a pure objective. 

• MOEA-PaOc: Algorithm 2. 

 

Table 2. Penalty scores of the resulted PFs for each of the 

three algorithms on the ZDT5 problem averaged over 7 

runs 

Algorithm 
MOEA-PaO MOEA-PaOc MOEA 

min Avg. max min Avg. max min Avg. max 

n5c0 0.0 0.1 2.7 0.0 0.5 3.0 0.6 2.5 4.3 

n5c1 0.0 0.3 8.3 0.0 2.4 10.0 0.7 8.3 14.3 

n10c0 0.0 0.7 7.0 0.0 1.2 6.0 2.1 5.2 8.4 

n10c1 0.0 1.1 11.6 0.0 2.9 13.0 2.7 10.8 17.4 

n20c0 0.0 4.0 11.7 0.0 5.9 12.0 5.7 10.6 16.4 

n20c1 0.0 7.6 30.4 2.0 25.4 45.0 14.4 40.3 68.0 

n35c0 0.0 8.6 16.6 3.0 9.8 17.0 13.9 19.1 24.1 

n35c1 0.4 27.5 92.7 6.0 47.9 113.0 46.9 97.3 148.4 

 

requires three parameters, namely: the number of CP-

net variables n, maximum size on any parent set c, 

and the variable domain size (fixed to 2, i.e., Boolean 

variables).  

As  fo r  t h e  p rob lems ,  we  con s ide r  t he 

minimization of two multiobjective problems: ZDT5 

[16] and Multiobjective Knapsack (MOK) [17]. The 

reason for choosing those two problems is because 

their decision space is discrete, and the decision 

variables are binary. For the variables that have no 

preference (i.e., not part of the generated CP-net), we 

assume they have no effect on the preferences of the 

DM. We have used three algorithms as described in 

the table. Two variants of the proposed algorithm are 

considered along with a baseline algorithm; PaO  
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Table 3. Penalty scores of the resulted PFs for each of the 

three algorithms on the MOK problem averaged over 7 

runs 

Algorithm 
MOEA-PaO MOEA-PaOc MOEA 

min Avg. max min Avg. max min Avg. max 

n5c0 0.0 1.9 4.0 0.4 2.4 4.0 2.9 3.7 4.0 

n5c1 0.0 5.2 10.0 0.0 5.4 10.0 5.1 9.1 10.0 

n10c0 0.4 4.4 8.9 2.4 5.7 8.3 6.9 8.1 9.0 

n10c1 0.6 7.0 14.3 3.6 10.1 14.1 11.7 13.3 14.3 

n20c0 2.1 5.7 10.1 3.9 6.5 10.1 7.0 8.5 10.6 

n20c1 2.4 28.1 76.6 6.3 30.9 62.3 50.3 76.6 81.3 

n35c0 1.3 9.5 18.7 10.0 14.3 19.4 16.0 18.8 21.0 

n35c1 8.3 56.3 140.7 29.0 79.7 143.4 20.1 130.7 144.6 

 

considers penalty as a pure objective and PaOc that 

considers penalty only for top ranked solutions 

during next population selection phase. 

Each experiment is repeated 7 times and results 

are averaged. Tables 2 and 3 compare the penalty 

score of the PF achieved by each algorithm in the two 

problems. The results are shown in tuples which 

stand for minimum, average, and maximum solution 

penalty score. One can see from the results that both 

PaO approaches maintain lower penalty score than 

the baseline approach. This is clear for both minimum 

and average values. At least 23% reduction on the 

penalty score was achieved on averaged values. For 

the maximum values, however, the differences are 

narrower, and almost negligible for the MOK 

problem, as both PaO algorithms PFs would have 

non-dominated solutions with respect to objective 

values (e.g., a Pareto optimal solution with respect to 

objective values but not preferred by the DM and 

therefore has large penalty score). 

Our main concern is to find optimal solutions that 

are also preferred as much as possible (i.e., having 

low penalty). In general, the possibility of having a 

low penalty solution is highly dependent on the 

problem and the CP-net structure and how they are 

aligned together. For example, using the PaO 

algorithms, it was easier to find a zero penalty 

solution in n5c1 than n5c0 for the MOK problem, 

even though the former CP-net is likely to have more 

complicated structure than the latter. In addition, 

preferred solutions are even closer to true PF in the 

n5c1 scenario in both algorithms. 

Notice that low penalty solutions may appear in 

the final set of the MOEA approach, but the 

probability of having such a solution decreases as the 

CP-net size increases and without proper guidance 

during the search, it is unlikely that a blind MOEA  

 
Figure. 7 The PaO algorithm with n10c1 CP-net on the 

MOK problem 

 

method will encounter low penalty solutions that are 

also part of the PF. Indeed, it is apparent that PaO 

outperforms PaOc in terms of penalty score. However, 

in PaO there is no guarantee that preferred solutions 

have good objective values. For example, Fig. 7 

shows the Pareto optimal solutions of the MOK 

problem with a random n10c1 CP-net and solved by 

PaO. The solutions with lowest penalty scores are far 

from true PF (to the upper right corner), whereas 

solutions with lowest objective values have 

comparatively larger penalties. 

Figs. 8 and 9 show the results of PaOc on ZDT5 

and MOK respectively compared to the true PF on 

different instances of CP-nets. We approximated the 

true PF of the MOK by basing our study on the 

optimal solutions returned after 1000 generations. 

For ZDT5, we adopted the explicit and exact true PF 

of the problem. Clearly, the figures show that PaOc 

is sufficient to provide optimal and preferred 

solutions. 

So far the obtained results assume CP-net 

information is given a priori, hence we repeated the 

same set of experiments while CP-net is not given in 

advance but leaned interactively during the search. 

Table 3 shows the number of generations required for 

Algorithms 3 and 4 to learn the underlying CPnets 

averaged over 10 runs. In this experiment, the 

algorithm has access to the set of variables V that 

form the CP-net N (initially empty). Whenever it 

encounters a swap pair x and y of CPT(vi) not 

included in N, it learns it and updates N. This stops 

whenever there is no vi ∈ V with empty CPT. The 

environmental selection in intermediate generations 

is based on the learned so far network N and its 

penalty function as described at the end of Section 6-

B. The results indicate that larger CP-nets may 

require more generations in order to scan more 
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alternatives for a swap pair for each variable. In terms 

of penalty scores and PF of the results, they are 

similar to PaOc results in the previous experiment. 

It remains to see how PaOc performs on the 

diversity requirement. Fig. 10 shows the diversity of 

PaOc compared to the baseline MOEA algorithm for 

different CP-net instances. We computed diversity as 

follows: 

 

𝑑 = ∑ ∑
ℎ𝑑(𝑠𝑖,𝑠𝑗)

|𝑃|
𝑖−1
𝑗=1

|𝑃|
𝑖=1     (4) 

 

where hd is the hamming distance between two 

solution vectors si and sj and P is the current 

population. This is known as the all-possible-pairs 

diversity measure [18]. From the results, we can 

safely conclude that PaOc is diverse to some extent. 

8. Related work 

A. CP-nets and Evolutionary Algorithms 

Evolutionary and Genetic algorithms have been 

successfully applied to different problems related to 

CP-nets, most notably, the problem of learning the 

structure of CP-net from data [19–21]. In [22], 

separable CP-nets have been utilized to represent the 

customer’s preferences when placing virtual 

machines in cloud data centers. The placement 

problem is essentially an optimization problem, and 

the preferences were articulated apriori replacing the 

crowding distance in NSGA-II for the last rank. Thus, 

the solutions in the last rank were chosen solely based 

on the given separable network.  

Furthermore, a weighted approximation of the 

CP-net has been suggested in [23] to augment 

uncertain preferences in the objective space where 

CP-net edges and nodes were associated with weights. 

The aim of the work is to interactively adjust the 

preference weights based on user’s interactions in the 

personalized search domain.  

However, all the aforementioned methods have 

not considered the case of articulating conditional 

preferences on the decision space and the problem of 

interactively learning the exact CP-net model when 

interacting with the user during the search.  

B. Decision Space Preferences 

Typically, MOPs do not produce a single optimal 

solution. Instead, a set of equally good solutions 

known as Pareto solution are obtained or generated. 

Then the DM needs to select one final solution that 

she finds interesting. This choice commonly requires 

more involvement from the DM into the search 

process in which she expresses her preferences over 

the problem. Since then, researchers have 

continuously worked on developing algorithms that 

takes DM’s preferences into account and search the 

desired area of the objective space [4, 5, 9, 24]. The 

aim of these algorithms is to reduce the search space, 

hence enable faster convergence, and satisfy DM’s 

preferences. The preference information can take the 

form of trade-offs between objectives, importance of 

the objective functions (i.e., weights), preferred 

region on the objective space, or a user defined 

reference point ...etc. Alternatively, a utility function 

can be employed to represent DM’s preferences in 

which all criteria are aggregated into a single utility 

function. Attributes on both decision and solution 

space can also be involved, on which attributes from 

one dimension are mapped onto the other dimension. 

However, it is not an easy task to generate such a 

representative function [25, 26].  

In MOP, multiple solutions in the decision space 

may correspond to the same point in the objective 

space. When a DM chooses a Pareto solution with 

specific objective values, he might be interested in 

knowing if there are alternative solutions (pre-

images) corresponding to another solution with 

similar objective values. Hence, having high 

diversity of the solutions in the decision space might 

be desirable. Notice that this is different from 

traditional objective space diversity and ensuring the 

latter does not necessarily imply solutions diversity 

[27]. Recently, an increasing attention has been paid 

to the diversity of the decision space in MOEA. The 

authors in [27] proposed a CMA-ES niching 

framework to the multi-criterion domain that 

improve decision space diversity and demonstrated 

that improving the diversity does not impact the 

convergence and diversity of the objective space. 

Through analyzing two real- world applications, the 

authors in [28] demonstrated the need to integrate 

special operators for diversifying solutions in the 

decision space in order to improve algorithm 

performance. An optimizer integrated into indicator-

based EA that optimizes the diversity of both spaces 

was introduced in [29]. The algorithm allows the DM 

to control trade-offs between the diversity of each 

space. In a similar work, in [30, 31], a diversity 

operator is integrated into a hypervolume-based 

evolutionary algorithm. Furthermore, the work in 

[32] analyzed the solution space diversity and 

different crossover operators applied to instances of 

the binary knapsack problem and solved using 

different MOEA algorithms. Most notably, solution 

diversity is attained when two-point crossover is used. 

Also, NSGA-II and MSOPS evolve solutions with 

better diversity in both spaces. In addition, another 

research [33] showed that for some benchmarks 

problems diversity can help improving the 

performance of the solution. They proposed 
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MOEA/D with Enhanced Variable-Space Diversity 

(MOEA/D-EVSD) to solve these problems with 

higher quality solutions. Lastly, the work in [34] 

proposed and algorithm, vNSGA-III, that performs 

exploration in both spaces and improve the 

distribution of solutions without degrading the 

quality in the objective space.  

However, all the previous approaches have not 

adopted a formal and graphical model to represent 

conditional preferences in the decision space. 

Solution diversity in the decision space indicates that 

multiple alternative designs, settings, options, or 

choices with equivalent/comparable objective quality 

may be available for the DM to choose from. While 

there has been considerable effort in exploring and 

exploiting diversity in decision space, yet, and to the 

best of our knowledge, no work has studied the 

incorporation of preferences represented as CP- nets 

on evolutionary algorithms. 

9. Conclusions and future work 

CP-nets have emerged as a natural representation 

for conditional preferences. This work addressed the 

issue of incorporating CP-nets within evolutionary 

algorithms, and proposed a method known as PaOc 

to return solutions that are not only optimal with 

respect to the objective values, but also preferred by 

the user. We also considered the case where there is 

no enough preference information apriori but the user 

is willing to answer simple pairwise questions to 

elicit the CP-net during the search. Our experimental 

results showed that PaOc was indeed a good approach 

for handling CP-nets within evolutionary algorithms. 

The proposed algorithm has achieved lower penalty 

scores in all tested instances compared to the baseline 

MOEA algorithm (a minimum of 23% improvement 

on average), without degrading the quality of the 

solution space in terms of optimality. PaOc is 

agnostic to the adopted strategy and can be used on 

top of any evolutionary algorithm. 

This work aimed mainly at introducing CP-net, as 

an effective tool to represent and reason with 

conditional qualitative preferences, to the 

evolutionary algorithms community. However, much 

remains to be done. First, our work focused on 

discrete optimization problems. A further studies on 

continuous optimization problems are needed. 

Second, more complex integration methods for CP-

nets within MOEAs may be more efficient than our 

PaOc method. Third, interactively learning CP-nets 

without the swap examples assumption may render 

the problem of interactive learning more interesting. 

Lastly, while we have focused on the decision space 

preferences, there is nothing limit the use CP-net on 

the objective space. An interesting problem in this 

direction is using CP-net as a selection strategy for 

objectives in many objectives evolutionary 

algorithms. In such scenario, one may adopt variants 

of CP-net, such as Hierarchical CP-net [19], that are 

capable of expressing preferences on attributes with 

continuous domains or discretize the domain into a 

finite set of values. 
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Figure. 8 The result of PaOc (red) compared to the true PF (blue) for ZDT5 after 100 generations: (a) n5c0, (b) n5c1, (c) 

n10c0, (d) n10c1, (e) n20c0, (f) n20c1, (g) n35c0, and (h) n35c1 
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Figure. 9 The result of PaOc (red) compared to the true PF (blue) of MOK after 100 generations: (a) n5c0, (b) n5c1, (c) 

n10c0, (d) n10c1, (e) n20c0, (f) n20c1, (g) n35c0, and (h) n35c1 

 

 
Table 4. Average number of generations required to learn the underlying CP-net 

CP-net n5c0 n5c1 n10c0 n10c1 n20c0 n20c1 n35c0 n35c1 

ZDT5 1 1 1 1 3.5 4.25 8.5 8.25 

MOK 1 1 1 1 3.82 3.15 8.75 9.5 

 

 

 
(a) 

 
(b) 

Figure. 10 Diversity Results: (a) MOK and (b) ZDT5 
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