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Abstract: This work proposes an intelligent method that uses an adaptive auto-tuned proportional-integral-derivative 

(PID) controller to track and regulate the blood glucose level of diabetic patients. The suggested controller seeks to 

provide the optimal insulin control action, which is in charge of swiftly, precisely, and accurately managing the blood 

glucose level. To train this controller, two meta-heuristic techniques are employed. The first technique is the particle 

swarm optimization (PSO), which has been widely used in both data estimation and training because of its quick 

computing speed, while the second one is an intrusion detection technique called grey wolf optimization (GWO), 

which was created to categorize data and effectively find multiple intrusions. The mean square error performance 

index is used in the two distinct meta-heuristic algorithm types to determine and optimize the optimal or nearly optimal 

gain parameters of the adaptive PID controller. The results of the MATLAB simulations for three different patients 

demonstrated the efficacy and resilience of the proposed control algorithm in tracking the dynamic behaviour of the 

diabetic patients' blood glucose levels by minimizing overshoot in the transient state to zero value, maintaining the 

steady-state blood glucose level in the normal physiological level of (60-120) mg/dl. These characteristics were 

particularly evident when we added a meal as a disturbance effect. Moreover, the comparison results showed that the 

proposed PID-GWO and PID-PSO algorithms enhanced the time (96 and 88) minutes to reach the blood glucose level 

at a normal physiological level by 4% and 12%, respectively, when compared to the fractional order PID and fuzzy 

logic control algorithms that the blood glucose level reached at a normal physiological level at 100  minutes and 

improved the time by 20% and 27%, respectively, when compared to the type-2 fuzzy control algorithm that the blood 

glucose level reached at a normal level at 120  minutes. In particular, the blood glucose level was kept at the desired 

normal physiological level without any oscillation. 

Keywords: Blood glucose level, Type-1 diabetic patient, Adaptive PID controller, Particle swarm optimization, Grey 

wolf optimization. 

 

 

1. Introduction 

Millions of individuals across the world suffer 

from diabetes, which is a chronic metabolic illness 

[1]. Particularly, patients with diabetes can be 

classified as having either type 1 or type 2, where the 

body cannot adequately use the insulin that it 

generates and requires insulin injections to survive 

[2]. In this regard, complications of all kinds can 

include renal failure, heart attacks, strokes, 

amputations of legs, eyesight loss, and damage to 

nerves [3]. In addition, uncontrolled diabetes during 

pregnancy raises the possibility of fetal mortality. 

Accordingly, numerous organizations have 

proclaimed this illness a worldwide pandemic and 

projected that by 2030, where the yearly cost of 

managing diabetes and its complications will rise 

from 171 million in 2000 to 366 million [4]. 

Therefore, it is imperative to precisely, quickly, and 

affordably monitor and regulate those patients' blood 

glucose levels. Specifically, patients with type 1 

diabetes mellitus (T1DM) are being studied in great 

detail by experts. As a result, a great deal of study has 

gone into creating several mathematical models of 

glucose and insulin that, to some extent, accurately 

represent the physiological behaviour of the human 
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body. To this end, the most important model was the 

Bergman minimal model, and there are other glucose-

insulin models, such as those in [4, 5]. Moreover, 

many types of insulin controllers were developed in 

the artificial pancreas to keep the patient’s blood 

glucose level at a normal level of 80 mg/dl. For 

instance, the authors in [6] proposed a complex-order 

PID controller for enhanced blood glucose level in a 

T1D patient model and used a fractional-order PID 

controller to improve the blood glucose tracking error 

and regulate the blood glucose of the patient. 

However, the drawbacks of these controllers are 

tuning the control parameters using numerical 

optimization and the initial values depending on the 

designer’s experience. In addition, in [7], the authors 

presented a digital PID controller for the blood 

glucose level of diabetic patients with a linear 

Bergman model. They used the Ziegler-Nichols (Z-

N) tuning method to find the control parameters, 

which led to an overshoot in the response of the blood 

glucose of the patient because the Z-N tuning method 

is not suitable for exploring and exploiting the global 

extreme solution of the problem. Furthermore, the 

authors in [8] employed the fractional order PID 

controller and the fuzzy logic controller for 

regulating the blood glucose level of a T1D patient, 

and they used many types of meta-heuristic 

algorithms for tuning the control gain parameters of 

the FOPID. However, the limitation of this work is 

that these controllers have been built for the linear 

Bergman model and only for one patient, and they 

used only five rules for the membership function, 

with a try-and-error method to obtain the gain in the 

input-output fuzzy logic controller. Therefore, the 

controller generates a fast and non-optimal value of 

the insulin control action that leads to an overshoot in 

the response of the blood glucose level. In [9], the 

researchers described the design and implementation 

of a digital PID controller based on the Xilinx system 

generator for regulating the blood glucose level of the 

T1D patient with a PSO algorithm to tune the gain 

parameters in continuous time, and not in discrete 

time with a small search space. These different values 

of the control gain parameters lead to obtaining 

different responses with high overshoot, especially in 

the digital PID controller. In addition, the authors in 

[10, 11] exploited the type-2 fuzzy controller for 

tracking and stabilizing the blood glucose level in 

T1D patients. On the other hand, a radial basis 

function neural network was utilized in [12] as an 

intelligent controller for an automated insulin 

delivery system for a virtual patient model to monitor 

and control the blood glucose level within days. In 

another work, the authors in [13] illustrated the 

estimation of the T1D patient model based on a 

UVA/Padova metabolic simulator and designed 

control algorithms using an intelligent predictive 

control model with linear and nonlinear controllers to 

regulate the blood glucose level for the linear third-

order patient model. In [14], the authors proposed a 

model predictive controller using a Laguerre function 

and a linearized structure for the T1DM patient with 

an insulin pump to build an artificial pancreas system 

that automates insulin and stabilizes the blood 

glucose level for the patient. Moreover, the author in 

[15] designed a physiological system using an 

observer-based back-stepping controller for an 

intravenous glucose tolerance test model of a T1DM 

patient with an extended Bergman model to estimate 

the insulin concentration and the plasma level. These 

estimations are then applied as feedback to the 

controller to keep the patient’s blood glucose at a 

normal physiological level. In this work, the problem 

definition is that the type-1 diabetes mellitus (T1DM) 

patient has a challenging disorder that essentially 

involves the regulation of the blood glucose levels to 

avoid hyperglycemia as well as hypoglycemia. 

Moreover, determining the quantity of the insulin-

infusion level is essential to regulate and stabilize the 

blood glucose level to the normal physiological level 

within the minimum amount of time possible. 

Specifically, the main objective of this research is to 

determine the fast and optimal insulin-infusion 

control action value in order to enhance the 

performance of the blood glucose level in the patient 

model in terms of regulation and stabilization of the 

blood glucose at the normal physiological level by 

implementing the proposed off-line adaptive PID 

controller using two meta-heuristic methods. In 

particular, the main contribution of this research is to 

find and tune the optimal or near-optimal control gain 

parameters of the adaptive PID controller to obtain 

the fast and optimal value of the insulin-infusion 

control action that will be injected into the nonlinear 

Bergman model of the T1DM patients to quickly 

track and stabilize the patient’s blood glucose level 

and keep it at a normal physiological level within 

suitable time to avoid the hyperglycemia and 

hypoglycemia states.  

The structure of this paper is as follows: The 

nonlinear mathematical model of the Bergman 

Minimal Model is presented in section 2. The control 

mechanism using the optimization algorithms is 

explained in section 3. The results of the simulation 

are presented in section 4. In section 5, the main 

conclusions from this work are provided. 
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Table 1. The parameters’ values of the Bergman model 

[8, 10, 17, 18]. 

Third 

Patient 

Second 

Patient 

First 

Patient 
Normal 

Parameters 

Units 

0 0 0 0.031 P1(1/min) 

0.014 0.007 0.011 0.012 P2(1/min) 

9.94-6 2.16-6 5.3-6 4.92-6 P3(mUL-

1/min2) 

0.281 0.246 0.26 0.265 n(min-1) 

70 70 70 70 Gb(mg/dl) 

7 7 7 7 Ib(mU/min) 

210 220 230 280 G0(mg/dl) 

60 55 50 364.8 I0(mU/min) 

2. Patient bergman minimal model 

In general, the link between the distant insulin 

compartment level I(t) in mU/dL and the plasma 

glucose compartment level G(t) in mg/dl is described 

by the Bergman glucose insulin minimum model, 

which is based on nonlinear ordinary differential 

equations. It was believed that insulin, a hormone, 

and blood glucose were housed in two distinct 

compartments and interacted with one another. In this 

context, several studies examined how insulin is 

distributed and blood glucose is controlled using the 

Bergman glucose-insulin basic model, which lacks 

the biological complexity observed in [16]. This 

model can be described as follows [8 and 17]: 

 

𝐺̇(𝑡) = −𝑃1[𝐺(𝑡) − 𝐺𝑏] − 𝑋(𝑡)𝐺(𝑡) + 𝑑(𝑡)     (1) 

 

𝑋̇(𝑡) = −𝑃2𝑋(𝑡) + 𝑃3[𝐼(𝑡) − 𝐼𝑏]                           (2)  

 

𝐼(̇𝑡) = −𝑛[𝐼(𝑡) − 𝐼𝑏] + 𝑌[𝐺(𝑡) − ℎ]+ 𝑡 + 𝑢(𝑡)   (3) 

 

Since diabetic patients cannot manage their 

blood sugar levels 𝑌[𝐺(𝑡) − ℎ]+ 𝑡 =0, this factor 

will not be taken into account when determining 

the transfer function; instead, a given parameter 

will be determined on the presumption of a 

steady state condition. Consequently, 

 

𝐼(𝑡)̇ = −𝑛[𝐼(𝑡) − 𝐼𝑏] + 𝑢(𝑡)                        (4) 

 

Where the definitions and units of the equations 

parameters are shown below:  

 

Equations 

Parameters 
Definitions with units 

G(t) 
The blood glucose concentration 

variable mg/dl 

X(t) 
The effect of active insulin in the remote 

compartment variable mU/L 

I(t) 
The blood-insulin concentration variable 

mU/dl 

d(t) 
The meal disturbance input variable 

mg/dl 

u(t) 
The manipulated insulin-infusion rate 

variable mU/dl 

Gb The basal blood glucose concentration 

Ib The basal blood-insulin concentration 

n 
The first-order decay rate of plasma 

insulin 

h 

The threshold value of glucose above 

which the pancreatic β-cells release 

insulin 

Y 

The rate of the pancreatic β-cells’ release 

of insulin after the glucose injection with 

glucose concentration 

P1 The glucose effectiveness factor (1/min) 

P2 The delay in insulin actions (1/min) 

P3 The patient parameter mUL-1/min2) 

 

Table 1 shows the parameters of the Bergman model 

equations that describe normal, first, second, and 

third patients as follows [8, 10, 17, 18]. 

3. Adaptive PID controller design 

Fig. 1 illustrates the structure and methods of the 

blood glucose level PID controller and presents the 

suggested meta-heuristic technique, which is suitable 

for exploring and exploiting the global extreme 

solution to find and tune the gain control parameters 

of the PID controller.  

According to Eq. (5) [19], the discrete PID 

controller is defined as follows: 

 

𝐼𝑛𝑠𝑢𝑙𝑖𝑛(𝑘) = 𝐼𝑛𝑠𝑢𝑙𝑖𝑛(𝑘 − 1) + 𝐾𝑝(𝐸𝑟𝑟𝑜𝑟(𝑘) −
 𝐸𝑟𝑟𝑜𝑟(𝑘 − 1)) + 𝐾𝑖(𝐸𝑟𝑟𝑜𝑟(𝑘)) +
𝐾𝑑(𝐸𝑟𝑟𝑜𝑟(𝑘) − 2𝐸𝑟𝑟𝑜𝑟(𝑘 − 1) + 𝐸𝑟𝑟𝑜𝑟(𝑘 − 2))  

  (5) 

 

The error signal between the desired and the actual 

blood glucose levels is the input for the adaptive 

blood glucose level PID controller. The insulin-

infusion level, which serves as the control action and 

regulates the patient's blood glucose levels, is the 

output of the PID controller. The control gain 

parameters of the PID controller (kp, ki, and kd) can 

be found and tuned by the off-line (PSO and GWO) 

algorithms in order to obtain the optimal or near-

optimal insulin control action for the nonlinear  
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Figure 1. The diagram of the proposed adaptive PID controller for the blood glucose level 

 

Bergman model to keep the blood glucose level in the 

normal state to avoid the hyperglycemia and 

hypoglycemia states.  

3.1 Gain tuning control algorithms 

In recent decades, many meta-heuristic methods 

have been proposed and developed to find optimal or 

near-optimal parameters. In this work, two meta-

heuristic methods will be exploited, including the 

PSO and the GWO algorithms. As the cost function, 

the mean square error of each solution in both 

optimization algorithms is calculated using Eq. (6) 

[20]: 

 

𝑀𝑆𝐸 =
1

𝑃
∑ ((𝐷𝑒𝑠𝑖𝑟𝑒𝑑(𝑖) − 𝐴𝑐𝑡𝑢𝑎𝑙(𝑖)) 2)𝑃

𝑖     (6) 

 

3.1.1. The PSO algorithm 

The PSO method belongs to the population-based 

evolutionary algorithms, which draw inspiration 

from studies on swarms, including fish schools and 

bird flocks [21]. The PSO algorithm makes an effort 

to mimic the common communication mechanism 

that emerges during the gathering, feeding, and 

movement of individuals within such swarms [21]. 

Specifically, for high-dimensional, multiple-

optimum, nonlinear, and non-differentiable 

optimization problems, the PSO is a trustworthy 

meta-heuristic method [22]. A few more advantages 

of the PSO are its excellent processing efficiency, 

constant convergence properties, and relatively easy 

implementation [23]. More specifically, the PSO 

process is started with a set of (N) randomly chosen 

particles. As every particle in the group symbolizes a 

point that moves across a (D)-dimensional search 

space, the positions of the particles indicate multiple 

potential sets of unknown parameters that need to be 

idealized. The rate at which the particle's location 

changes is determined by its velocity, while its fitness 

or quality measure is determined by its position inside 

the search space. The vector (Xparticle𝑖) = {𝑥particle,𝑖1, 𝑥 

particle,𝑖2, …, 𝑥 particle,𝑖J}, where (i) is the particle's index 

and (J) is its parameter, represents the location, while 

the vector (𝑉particle,𝑖) = {𝑣 particle,𝑖1, 𝑣 particle,𝑖2, …, 𝑣 

particle,𝑖J}, which is limited within the range of 

𝑉𝑚𝑎𝑥particle = {𝑣𝑚𝑎𝑥particle,1, 𝑣𝑚𝑎𝑥particle,2, …, 𝑣𝑚𝑎𝑥 

particle,J}, represents the velocity. The velocity is 

forced to its proper value if it is beyond certain limits. 

The ith particle can seek its local optimal place by 

altering its velocity in this manner. Based on its own 

flight expertise, each particle modifies its trajectory 

toward a particular place and disseminates collective 

knowledge among the particles. Each particle has an 

iteration that varies its speed from one location to 

another, and it retains the best position it has found 

thus far in the vector L_bestparticle,i = {L_bestparticle,i1, 

L_bestparticle,i2, …, L_bestparticle,iJ}. The best global 

particle or solution up to this point is represented by 

the global best position, which is then kept in the 

vector G_bestparticle = {G_bestparticle,1, G_bestparticle,2, 

…, G_bestparticle,J} among all the best individual 

locations of particles. Each iteration modifies each 

particle's location and velocity in accordance with 

Eqs. (7) and (8), and the parameters’ definitions are 

shown in Table 2 [19-22]. 

 

𝑣𝑖,𝑘+1 = 𝑤𝑖,𝑘𝑣𝑖,𝑘 + 𝑐1𝑟1(𝐿_𝑏𝑒𝑠𝑡particle,𝑖,𝑘 −

𝑥particle,𝑖,𝑘) + 𝑐2𝑟2(𝐺_𝑏𝑒𝑠𝑡particle,𝑘 − 𝑥particle𝑖,𝑘)   

(7) 

 

𝑥𝑖,𝑘+1 = 𝑥𝑖,𝑘 + 𝑣𝑖,𝑘+1                      (8) 

 

By swarming the particles (kp, ki, and kd) toward the 

best correct solution found in the previous iterations,  
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Table 2. Parameters’ definition of the PSO 

Symbols Definition 

wi,k Inertia weight of the ith particle at 

iteration k 

vi, k Particle speed at iteration k 

c1 ,c2 Acceleration constants ( (c1+c2)<4) 

r1,r2 Random values between (0,1) 

Lbest,k Reflects the best local position 

Gbest,k Reflects the best global position 

xi,k The current position of the ith particle 

at iteration k 

 

 

the aim is to effectively search the result space, 

eventually converge on a single minimum blood 

glucose level error solution, and discover better 

solutions along the way based on the PID controller. 

The fundamental procedures of the PSO algorithm 

for finding and tuning the parameters of the PID 

controller are described in Fig. 2. 

3.1.2. The GWO algorithm 

An intelligent algorithm based on grey wolf 

predation is called the GWO algorithm. Like other 

smart algorithms, the prey points to the best answer, 

and each grey wolf's position points to a workable 

one. When attempting to find the optimal solution, 

grey wolves are ranked based on the value of their 

fitness function [23]. It is possible to construct 

hierarchical commands with three distinct types of 

grey wolf groups. The leader group, or the alpha (α) 

group, consists of grey wolves with the greatest 

fitness function value. Making decisions on hunting, 

waking hours, sleeping locations, and other matters 

falls within the purview of the alphas. Strangely, the 

alpha has to be the best pack manager, even if they 

are not the strongest member of the group. Because 

they support the alpha in decision-making and pack 

activities, the beta (β) group, which is the second 

echelon of leadership, is often referred to as co-

leaders. They are followed by the delta (Δ ) groups. 

The position of the likely prey is closer to the wolves 

α, β, and Δ [24]. One unique aspect of GWO is the 

hierarchy of gray wolves during predation. In order 

to maximize efficiency, three main hunting stages are 

carried out, namely searching for the prey, encircling 

the prey, and attacking the prey. Gray wolves are 

guided by α groups to encircle their victim; β and Δ 

groups attack the prey; and finally, the prey is 

captured. This procedure leads to excellent 

convergence performance for the method, which 

lacks specific search parameters, is easy to construct, 

and has few parameters [25].  

 
Figure. 2 The flowchart of the off-line PID-PSO control 

algorithm. 

A predetermined number of grey wolves are used 

at the start of the procedure, and their locations are 

chosen at random. The following mathematical 

equations [26] dictate how each group in the pack 

will encircle one another [27]: 

 

𝐷 = |𝐶 × 𝑋𝑝(𝑖𝑡𝑒𝑟) − 𝑋(𝑖𝑡𝑒𝑟)|                         (9) 

 

𝑋(𝑖𝑡𝑒𝑟 + 1) = |𝑋𝑝(𝑖𝑡𝑒𝑟) − 𝐴 × 𝐷|                (10) 

 

where the distance between the grey wolf individual 

and its prey is represented by Eq. (9). The gray wolf's 

Initialize PSO parameters 

ITMax, N, Popsize, w, c1=c2=1.49, r1=r2=(0-1), 

G_best=inf, L_best=inf 

Create a random population of particles {kp, ki, 

kd} 

MSE calculate the current Lbest Eq. 

(6) 

L_best=the current 

Lbest 

Do 

nothing 

G_best=(L_best)min 

Update velocity using Eq. (7) 

Update position using Eq. (8) 

Iter= iter 

+1 

Obtain the best gain control 

parameters of the PID controller 

End 

If  

N<number of 

population? 
n=n+

1 

If 

Iter<ITMax 

Start 

If 

the current (MSE) 

L_best<L_best(previo

us) 

N 

Y 

Y 

Y 

N 

N 
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position update formula is found in Eq. (10), where 

iter denotes the current iteration, A and C are 

coefficient vectors, and Xp and X are the prey's and 

the grey wolf's respective position vectors [24]. The 

following are the formulae used to calculate A and C: 

 

𝐴 = 2𝑎 × 𝑟1 − 𝑎               (11) 

 

𝑎 = 2 × (1 − 𝐼𝑡𝑀𝑎𝑥)                (12) 

 

𝐶 = 2 × 𝑟2                 (13) 

 

It is represented by the convergence factor, where r1 

and r2 are random vectors selected at random within 

the interval (0,1). ItMax is the total number of iterations. 

As stated by the following equations [23-27], the prey 

position Xp (iter + 1) update is determined by 

averaging the locations of grey wolves α, β, and Δ 

(the three temporarily ideal solutions), while the 

others are discarded for position update: 

 

𝑋𝑝(𝑖𝑡𝑒𝑟 + 1) =
𝑋1+𝑋2+𝑋3

3
                 (14) 

 

Where: 

 
𝑋1(𝑖𝑡𝑒𝑟) = 𝑋𝛼(𝑖𝑡𝑒𝑟) − 𝐴1 × 𝐷𝛼

𝑋2(𝑖𝑡𝑒𝑟) = 𝑋𝛽(𝑖𝑡𝑒𝑟) − 𝐴2 × 𝐷𝛽

𝑋3(𝑖𝑡𝑒𝑟) = 𝑋∆(𝑖𝑡𝑒𝑟) − 𝐴3 × 𝐷∆

}          (15) 

 

And: 

 
𝐷𝛼 = |𝐶1 × 𝑋𝛼(𝑖𝑡𝑒𝑟) − 𝑋(𝑖𝑡𝑒𝑟)|

𝐷𝛽 = |𝐶2 × 𝑋𝛽(𝑖𝑡𝑒𝑟) − 𝑋(𝑖𝑡𝑒𝑟)|

𝐷∆ = |𝐶3 × 𝑋∆(𝑖𝑡𝑒𝑟) − 𝑋(𝑖𝑡𝑒𝑟)|

}          (16) 

 

The distances between α, β, and Δ and other 

individuals are represented by Dα, Dβ, and DΔ in Eq. 

(16), respectively, and the random vectors C1, C2, and 

C3 describe the ultimate positions of individuals. In 

addition, Eq. (13) specifies their starting and ending 

positions. The grey wolf attacks to end the hunt when 

the victim finally stops moving [23-27]. The basic 

approach to developing a process model is to 

progressively lower the value of an, which lowers the 

range of A's fluctuations. In other words, during the 

iterative process, the equivalent value of A varies in 

the interval (-𝑎, 𝑏) in a manner similar to how the 

value of a drops linearly in the interval [2, 0]. The 

fundamental procedures of the GWO algorithm for 

finding and tuning the parameters of the PID 

controller are described in Fig. 3. 

 
Figure. 3 The flowchart of the off-line PID-GWO 

control algorithm  

 

Initialize GWO parameters 

ITMax, N, Agentssize, α, β, Δ, αscore==inf, βscore=inf, 

Δscore=inf, r1=r2=(0-1) 

Create a random population of agents {kp, ki, kd} 

Calculate MSE for each 

Agent {kp, ki, kd}  

N=N+1 

Start 

If  

N<number of 

Agents? 

Y 

N 

Calculate (a) and N=1 

Calculate 

A1, A2, A3, C1, C2, C3 

 

Update position {kp, ki. Kd } using Eq. 

(14)  

If 

Iter<ITMax 

Check minimum αscore=, βscore, Δscore based on 

MSE  

Calculate 

Dα, Dβ, DΔ 

If  

N<number of 

Agents? 

Y 
N=N+1 

N 

Convergence carve= αscore  

Iter= 

iter+1, N=1 

Y 

N 

Obtain the best gain control parameters of the 

PID controller based on α agent 

End 
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Figure. 4 The behaviour of a normal person and different 

types of patients in an open loop with hyperglycemia and 

hypoglycemia levels 

 

4. Simulation results 

Using the numerical fourth-order Runge Kutta 

(4RK) method based on the MATLAB package with 

a one-minute sampling time, we implemented the 

proposed off-line adaptive insulin-infusion PID 

controller with two meta-heuristics (PSO and GWO) 

methods for the nonlinear Bergman model. In 

particular, normal and different types of patients were 

considered in order to improve the performance of the 

blood glucose level of diabetic patients. Fig. 4 

demonstrates how the blood glucose level performs 

as an open loop for a healthy individual as well as for 

three distinct categories of diabetic patients who are 

dependent on the glucose starting levels (G0) of 280, 

230, 220, and 210) mg/dl, respectively. 

Since the healthy person curve shows a normal 

glucose level dropping from a high value to the 

physiological level, or the normal glucose level 

(between the upper level of 120 mg/dl and the lower 

level of 60 mg/dl), consuming high blood sugar is not 

harmful. On the other hand, the glucose value is 

exceedingly high and well beyond the physiological 

range, putting the patient in danger mode with 

hyperglycemia (250 mg/dl) and hypoglycemia (40 

mg/dl). The blood glucose level in the patient's model 

started high, decreased very slowly, and would never 

return to the normal state. Therefore, we examined 

the efficacy and performance of the adaptive PID 

controller using the off-line method for tuning the 

parameters based on GWO and PSO. In this regard, 

the suggested adaptive PID controller settings for the 

search space areas are displayed for each patient in 

Table 3, which is suitable for exploring and 

exploiting the global extreme solution to find and 

tune the gain control parameters of the PID controller. 

The response of the suggested closed-loop 

adaptive insulin-infusion PID-GWO controller is 

shown in Fig. 5. 

 

Table 3. The suggested regions of the control parameters' 

search spaces for each patient. 

Kp Ki Kd 

-0.5 to +0.5 -1 to +1 -10 to +10 

 

 
Figure. 5 The glucose level response for each patient's 

closed loop PID-GWO controller 
 

 

To demonstrate the efficacy of the insulin-infusion 

control action, a meal disturbance effect was added 

for a period of time equal to 10 minutes for all 

patients. Specifically, the proposed meal disturbance 

value is equal to 20 mg/dL. The proposed controller 

enhances the patients' glucose level response as 

follows: the glucose level of the first patient, 

indicated by the blue color line, is shown to be 

stabilized by the insulin action, as it decreases from 

230 mg/dl to 120 mg/dl (the upper normal 

physiological level) and stays there for 96 minutes. 

On the other hand, the second patient’s glucose level 

is reduced from 220 mg/dl to 120 mg/dl, which is the 

upper normal physiological level, and it stabilizes 

there after 84 minutes, where the second patient is 

shown by the cyan color line. The third patient’s 

glucose level is finally reduced from 210 mg/dl to 

120 mg/dl, or the upper normal physiological level, 

and stabilized there for 65 minutes, where the third 

patient is shown by the green color line. It is worth 

noticing that the blood glucose levels for the first and 

the second patients did not reach an exact value of 80 

mg/dL at steady state at 300 minutes. However, they 

are still at the normal physiological level. 

The best-proposed values of the GWO algorithm 

in terms of the agent number are 5 and the maximum 

iteration is 50, which leads to generating the best 

PID-GWO controller parameters for the first patient, 

the second patient, and the third patient models, as 

displayed in Table 4. For each patient model, the 

proposed controller is in charge of producing optimal 

or near-optimal insulin control action, which lowers 

the blood glucose levels and maintains them within 

an acceptable range. 
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Table 4. The PID-GWO controller parameters optimal 

values for three patient classes 

Type of patients Kp Ki Kd 

The First Patient -0.0079 0.2155 2.3557 

The Second 

Patient 
0.0007 0.0525 -9.0112 

The Third Patient 0.0338 0.2394 2.6836 

 

 
Figure. 6 The convergence curve performance of the 

closed loop PID-GWO controller for the three patients 
 

 
Figure. 7 The insulin PID-GWO controller's output 

response 

 

Fig. 6 shows the response of the best alpha 

convergence for the three patients in order to obtain 

the best control gain parameters of the PID-GWO 

controller. 
Fig. 7 shows the output response of the insulin 

PID-GWO controller when the blood glucose level 

suddenly increases during the first 10 minutes. For 

the three patients, the PID-GWO quickly and 

optimally calculates the insulin action value to 

monitor the abrupt rise in blood glucose levels. For 

the first patient, the second patient, and the third 

patient, the maximal values of the insulin control 

action are 450 mU/min, 250 mU/min, and 150 

mU/min, respectively. 

The remote insulin level for all patients is shown 

in Fig. 8, which represents the insulin level in the 

entire body. 

 
Figure. 8 The remote insulin level for all patients 

 

 
Figure. 9 The plasma insulin level for all patients 

 
Table 5. The proposed parameters’ definition of the PSO. 

Symbols Value 

W 0.739 

N 50 

Particle weights 

Kp, ki, kd 
3 

c1,c2 1.39, 1.39 

r1,r2 Random value between (0,1) 

ItMax 50 

 

The plasma insulin level for all patients is shown 

in Fig. 9, which represents the fast spread of the 

plasma insulin level throughout the body during 300 

minutes. 

The best-proposed PSO values for the PID 

controller parameters are shown in Table 5, and the 

best values of the PID control parameters for the first 

patient, the second patient, and the third patient 

models are displayed in Table 6. In particular, the 

particle swarm optimization (PSO) technique has 

quick computing speed. For each patient, the 

controller is in charge of producing optimal or near-

optimal insulin control action, which lowers the 

blood glucose levels and maintains them within an 

acceptable range. 

Fig. 10 illustrates the response of the proposed 

closed-loop adaptive insulin-infusion PID-PSO 

controller. When adding a meal disturbance effect at 

a time equal to 10 minutes for all patient cases, the 

suggested controller improves the patients' response  
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Table 6. The PID-PSO controller parameters optimal 

values for the three patient classes. 

Type of patients Kp Ki Kd 

The First Patient 
  

0.0153     
0.6164     3.8567 

The Second 

Patient 
0.0031    0.6466     3.1336 

The Third Patient 0.0512     0.4622     3.3123 

 

 
Figure. 10 The glucose level response for each patient's 

closed loop PID-PSO controller 

 
to glucose by raising the effectiveness of the insulin-

infusion control action. Specifically, the proposed 

meal disturbance value equals 20 mg/dL. The first 

patient's glucose level, represented by the blue color 

line, drops from 230 mg/dl to 120 mg/dl (the upper 

normal physiological level) and remains there for 88 

minutes, demonstrating that the insulin action has 

stabilized the glucose level. After 75 minutes, the 

second patient's glucose level stabilizes at 120 mg/dl, 

which is the upper normal physiological level, after 

being dropped from 220 mg/dl. The second patient is 

shown by the cyan color line. The third patient is 

indicated by the green color line. The third patient's 

glucose level was eventually lowered from 210 mg/dl 

to 120 mg/dl, or the upper normal physiological level, 

and it stabilized there for 56 minutes. The blood 

glucose level for all patients reached an exact value 

of 80 mg/dL at steady state after 300 minutes. 

Fig. 11 shows the output response of the insulin 

PID-PSO controller when the blood glucose level 

suddenly increases during the first 10 minutes. For 

the three patients, the PID-PSO quickly and 

optimally calculates the insulin action value to 

monitor the abrupt rise in blood glucose levels. For 

the first patient, the second patient, and the third 

patient, the maximal levels of the insulin control 

action are 225 mU/min, 50 mU/min, and 333 mU/min, 

respectively. 

As demonstrated in Table 7, we compared the 

simulation results of the suggested off-line adaptive  

 

 
Figure. 11 The insulin PID-PSO controller's output 

response. 

 

Table 7. Simulation results comparing the suggested 

controller to other designs. 

Type of 

control 

algorithm 

Tuning 

algorithm 

Steady- State 

Error 

Overshoot 

OS(%) 

Time to reach 

normal 

physyological 

level 

The proposed 

algorithms 

enhance the 

time to reach 

the blood 

glucose level at 

a normal 

physiological 

level (%) 

Fractional 

order PID 

and Fuzzy 

logic 

controllers 

[8] 

GA, ACO, 

BAT, IWO 

No oscillation 

Ess=0 

OS=20% 

T=100 min 

4% when using 

GWO 

12% when 

using PSO 

Type-2 

Fuzzy 

controller 

[10] 

Try and 

error 

Small 

oscillation 

Ess=0 

OS=0 

T=120 min 

20% when 

using GWO 

27% when 

using PSO 

The 

proposed 

PID-GWO 

GWO 

No oscillation 

Ess=0 

OS=0 

T=96 min 

 

The 

proposed 

PID-PSO 

PSO 

No oscillation 

Ess=0 

OS=0% 

T=88 min 

 

 

PID controller with the results of other types of 

controllers that are taken from [8] and [10] with the 

same dataset as in Table 1 in order to validate the 

efficacy of the two optimization algorithms (GWO 

and PSO) for tuning the parameters of the PID 

controller in this work in terms of reaching the blood 

glucose level at a normal physiological level at a 

minimum time and for showing the time 

enhancement percentage by using Eq. (16): 

 

𝑇𝑖𝑚𝑒 𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 (%) =  

(1 −
𝑇𝑖𝑚𝑒 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑛𝑜𝑟𝑚𝑎𝑙 𝑙𝑒𝑣𝑒𝑙 𝑏𝑦 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑚𝑒𝑡ℎ𝑜𝑑

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑛𝑜𝑟𝑚𝑎𝑙 𝑙𝑒𝑣𝑒𝑙 𝑏𝑦 𝑜𝑡ℎ𝑒𝑟 𝑚𝑒𝑡ℎ𝑜𝑑 
)  

× 100%           (16) 
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The fractional order PID and the fuzzy logic 

controllers in [8] were built for the linear Bergman 

model and only for the first patient, using only five 

rules for the membership function and using the try-

and-error method for obtaining the gain in the input-

output fuzzy logic controller. Therefore, the 

controller generates a fast and non-optimal value of 

the insulin control action that leads to an overshoot in 

the response of the blood glucose level. In contrast, 

the proposed adaptive PID controller using the two 

heuristic methods (GWO and PSO) is used with a 

nonlinear Bergman model, and the controller has 

generated optimal or near-optimal insulin control 

action based on the best parameters obtained by the 

optimization algorithms that lead to reaching the 

blood glucose level to a normal physiological level 

without any overshooting and no oscillation in the 

response. By using Eq. (16), the comparison results 

showed that the PID-GWO and the PID-GPSO 

algorithms enhance the time (96 and 88) minutes to 

reach the blood glucose level in a normal state by 4% 

and 12%, respectively, when compared to the 

fractional order PID and the fuzzy logic controller 

algorithms [8] that reached the blood glucose level in 

a normal state at 100 minutes when taken with the 

same Bergman model parameters and the same 

operation conditional.The type-2 fuzzy controller in 

[10] was designed for the linear patient Bergman 

model and only for the first patient. It uses the try-

and-error method to obtain the four control gains in 

the control law. As a result, the controller generates a 

quick and suboptimal value of the insulin control 

action, which causes a slight oscillation in the blood 

glucose level response. When a nonlinear patient 

Bergman model is used with the proposed adaptive 

PID controller with the two heuristic methods (GWO 

and PSO), the controller generates an optimal or near-

optimal insulin control action based on the best 

parameters found by the optimization algorithms, 

which results in the blood glucose level being brought 

to a normal physiological level without oscillating or 

overshooting. According to the comparative results 

when used Eq. (16), the PID-GWO and the PID-PSO 

algorithms outperform the type-2 fuzzy controller 

algorithm in terms of how long it takes to achieve a 

normal blood glucose level (20% and 27%, 96 and 88 

minutes respectively) [10] that reached the blood 

glucose level in a normal state at 120 minutes when 

taken with the same Bergman model parameters and 

the same operation conditional. 

In summary, the simulation results demonstrate 

that the suggested adaptive PID controller with PSO 

and GWO algorithms can generate the best insulin 

control action, which allows the nonlinear patient 

Bergman model to track the required blood glucose 

level with the least amount of tracking error and to 

achieve optimal performance without oscillation in 

the various patient types' output blood glucose levels. 

5. Conclusions 

This study presented the design and simulation of 

an offline adaptive PID controller using PSO and 

GWO algorithms for blood glucose level monitoring 

and control in a nonlinear patient Bergman model. In 

order to track and stabilize the blood glucose level 

response in diabetes patients by figuring out the ideal 

insulin-infusion level and maintaining the blood 

glucose level at the normal physiological level, three 

distinct patient models were used as a nonlinear 

model to solve the problem statement. As a result, the 

auto-tuned control strategy of the adaptive PID 

controller with PSO and GWO algorithm was 

suggested, and it is very effective in resolving the 

following issues:  

• At the target level of 80 mg/dl, the blood glucose 

level is superbly monitored and sustained at a 

typical physiological level of 60–120 mg/dl 

without oscillation. 

• Without reaching the saturation state, an ideal or 

nearly ideal smooth value of the insulin-infusion 

control action was produced to improve the blood 

glucose level response in diabetic patients. 

• The suggested controller, which is based on PSO 

and GWO algorithms, has offline tuning control 

settings that provide smooth insulin action 

without a large spike or a saturation state, which 

results in a high tracking precision of the 

measured blood glucose level. 

• When tracking blood glucose, the maximum span 

tracking error level approaches zero. 

• By comparing the proposed PID-GWO and the 

PID-PSO algorithms with the fractional order 

PID and the fuzzy logic control algorithms, the 

proposed controllers enhance the time by 4% and 

12%, respectively, to reach the blood glucose 

level at a normal physiological level, and they 

improve the time by 20% and 27%, respectively, 

compared to the type-2 fuzzy control algorithm. 

 

In the future, the experimental work of the 

proposed off-line adaptive PID controller with an 

optimization algorithm will be implemented in an 

embedded system based on an FPGA development 

board with an insulin pump device in order to 

manufacture an artificial pancreas. 
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