
Received: January 26, 2024. Revised: March 8, 2024. 239

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.20

Security and Privacy Considerations in Multimedia Resource Management Using

Hybrid Deep Learning Techniques in Cloud Computing

Nallasivan. G 1* Karpagam. T 2 Geetha. M 3 Sankarasubramanian. R. S 4

Kannan. R 5 Bhuvanesh. A 6 Poojitha. G 7

1Department of Computer Science and Engineering,

Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamilnadu, India
2Department of Artificial Intelligence and Data Science,

R. M. K. College of Engineering and Technology, Thiruvallur, Tamilnadu, India
3Department of Electrical and Electronics Engineering,

Sri Eshwar College of Engineering, Coimbatore, Tamil Nadu, India
4Department of Mathematics, PSG Institute of Technology and Applied Research, Coimbatore, Tamil Nadu, India

5Department of Electrical and Electronics Engineering,
Nehru Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India

6Department of Electrical and Electronics Engineering,

PSN College of Engineering and Technology, Tirunelveli, Tamilnadu, India
7Department of Artificial Intelligence and Data Science,

R.M.K. College of Engineering and Technology, Tiruvallur, Tamil Nadu, India

* Corresponding author’s Email: udhayanallasivan@gmail.com

Abstract: The management of various multimedia assets, such as photos, videos, audio files, and other rich media

content, within a cloud computing environment is referred to as managing multimedia resources in the cloud. To suit

the needs of applications and users, this entails the effective storage, retrieval, processing, and distribution of

multimedia resources. Given the significance of work planning and managing resources in the cloud computing

environment, we present a unique hybrid algorithm in this research. Many cloud-based computing systems have made

extensive use of traditional scheduling techniques like ant colony optimization (ACO), first come first serve, etc. The

cloud gets client tasks at a high rate, so it is important to handle resource allocation for these tasks carefully. Using the

improved pelican optimization algorithm, we efficiently distribute the tasks to the virtual machines in this proposed

work. The proposed hybrid algorithm (Improved POA + Improved GJO) is then used to distribute and manage the

resources (Memory and CPU) as needed by the tasks. According to experimental findings, the accuracy of the proposed

technique increases by 1.12%, 2.11%, and 14.2%, respectively. It shows that the proposed method has good accuracy

compared with the existing HUNTER, FT-ERM, and RU-VMM approaches.

Keywords: Deep learning algorithms, Resource management, Load balancing, Virtual machines, Task scheduling.

1. Introduction

A large portion of multimedia services are now

supplied over the internet thanks to Web 2.0's rapid

expansion. The online multimedia systems include a

wide range of functions such media content creation,

editing, processing, searching, and storage.

Supporting such systems has meant placing heavy

and diverse demands on processing, storage, and

communication capabilities [1-3]. Cloud computing

has gained popularity over the last ten years as a

viable platform for supplying multimedia services

with the resources they need and the quality of

service (QoS) they require. Multimedia social

programs, online picture and video editing, cloud-

based video and picture sharing, and other cloud-

based applications are becoming commonplace [4, 5].

Received: January 26, 2024. Revised: March 8, 2024. 240

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.20

With the development of virtual machine (VM)

methodology, cloud computing is intended to provide

on-demand, QoS assured, and cost-effective software

and hardware solutions. The task management issue

and the handling of resources issue are two of the

main research questions in the area of cloud-based

multimedia. On the one hand, managing tasks is

accomplished by distributing already-existing

resources, seeking additional resources, or releasing

surplus resources in response to changes in workload

[6].

Cost and QoS are two significant issues in the

task management research. On the other side, using

the VM allocation strategy solves the problem of

resource management. The long-term cost and

waiting time are typically the two components of the

optimization aim for cloud VM allocation. Despite

the fact that cloud-based multimedia platforms have

been the subject of several research, the two research

concerns we described above have not been taken

into account together [7, 8]. Due to the intricacy of

the problem, heuristic-based VM allocation

algorithms are commonly used for resource

management.

Despite the fact that cloud-based multimedia

platforms have been the subject of several research,

the two research concerns we described above have

not been taken into account together [9,10]. Since

queue parameters directly relate to QoS and the price

of multimedia applications, queuing systems are

frequently employed for job management [11]. Due

to the intricacy of the problem, heuristic-based VM

allocation algorithms are commonly used for

resource management. Using IPOA, IGJO, hybrid

algorithms, we allocate and manage cloud resources

in this research with a primary focus on task

scheduling using IPOA. When compared to previous

proposed algorithms, our proposed IPOA is more

effective in scheduling tasks. To overcome the issues,

the proposed hybrid algorithm surpasses peer

research methods.

The key contribution of this research are:

• The research introduces a novel hybrid

algorithm combining IPOA and IGJO for

effective task scheduling and resource

management in cloud computing

environments. This hybrid approach aims to

enhance resource allocation efficiency and

task scheduling effectiveness.

• The proposed methodologies focus on

dynamic resource allocation and

management, considering factors such as

CPU and memory utilization. By efficiently

distributing tasks among virtual machines

and utilizing surplus resources,

• The performance of the proposed hybrid

algorithm is evaluated against existing

methods such as Round Robin, Throttled,

ACO, and Exact Algorithm. The evaluation

metrics include average response time, VM

utilization, and resource usage efficiency.

The remaining sections of the essay are structured

as follows. Task scheduling and resource

management-related work is presented at the start of

section 2, and the proposed approach and hybrid

heuristic methods are covered in section 3. The

performance assessment and simulation scenarios are

covered in section 4, which is followed by an analysis

of the experimental data and a conclusion in section

5.

2. Literature survey

The provision of effective dynamic resource

management for infrastructure in software-based

networks is [12] one of the most crucial concerns in

network virtualization. By combining the Markov-

Process with TDMA protocol, the introduced

solution (cTMvSDN) improves the handling of

resources. The markov-pattern and TDMA slicing

system is utilized to forecast upcoming time gaps in

order to maximize response time and SDN Quality of

service. The disadvantage is as the size of the network

grows, maintaining trust relationships between a

large number of nodes becomes increasingly

challenging.

[13] presented HUNTER, a holistic resource

management method for sustainable cloud computing

that is based on artificial intelligence (AI). In order to

approximate the QoS for a model state and produce

the best scheduling options, HUNTER uses a gated

graph convolution network. The proposed technique

may face challenges in scaling to large-scale cloud

environments or adapting to diverse application

workloads.

By forcing high-availability in servers and virtual

machines, [14] suggested a FT-ERM system that

approaches the aforementioned issue from a different

angle. A fault-tolerance unit made up of a decision

matrix and safe box is proposed. Developing and

maintaining a system with proactive failure

prediction, dynamic VM migration, and failure

tolerance mechanisms can be challenging and costly.

overheating.

[15] introduced Sinan, an online, data-driven,

QoS-aware cluster manager for interacting cloud

microservices. they test Sinan using representative

Received: January 26, 2024. Revised: March 8, 2024. 241

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.20

end-to-end microservice-based applications, on both

specialized neighbourhood clusters and massive

deployments on Google compute engine (GCE).

Implementing a scalable and QoS-aware resource

manager like Sinan may introduce additional

complexity and overhead to the system.

[16] presented the RU-VMM method, which

distributes the loads across the underloaded and

overloaded vehicles in order to reduce energy usage.

Additionally, RU-VMM makes an effort to prevent

pointless VM migrations within the vehicle. One

drawback is that the suggested algorithm does not

take into consideration the bandwidth and latency

involved in virtual machine transfer.

The above literatures show some disadvantages

like scalability challenges, complexity, adaptability

issues, increased overhead. To overcome the issues,

proposed a deep learning-based algorithms to

multimedia resource management in cloud. The

novelty of our approach lies in the integration of

IPOA and IGJO to address these challenges of task

scheduling and resource management simultaneously.

3. Proposed methodologies

For task scheduling, we proposed a better IPOA.

For resource management and allocation, we also

presented the IPOA, IGJO, and hybrid (IPOA+IGJO)

methodologies.

3.1 Improved pelican optimization algorithm

(IPOA)

A new meta-heuristic optimization method called

the POA is motivated by pelican hunting techniques.

The world's warm waterways are home to pelicans,

which primarily inhabit lakes, rivers, beaches, and

marshes. Pelicans typically live in groups and have

excellent swimming and flying abilities. They

primarily eat fish and have good observational skills

and keen eyesight while flying. Once the pelicans

have located their prey, they race toward it from a

height of 10 to 20 meters before diving headfirst into

the ocean to begin their hunt.

(1) Initialization: If N pelicans in an M-dimensional

space, then the location of the i-th pelican is 𝑃1 =
[𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑚, … , 𝑝𝑖𝑀], and the location P of

the N pelicans is written as follows:

𝑃 =

[

𝑃1
𝑃2
⋮
𝑃𝑖
⋮
𝑃𝑁]

=

[

𝑃11
𝑃21
⋮
𝑃𝑖1
⋮
𝑃𝑁1

𝑃12…
𝑃22…
⋮ ⋮
𝑃𝑖2…
 ⋮ ⋮
𝑃𝑁2…

𝑃1𝑚…
𝑃2𝑚…
⋮

𝑃𝑖𝑚…
⋮

𝑃𝑁𝑚…

𝑃1𝑀
𝑃2𝑀
⋮
𝑃𝑖𝑀
⋮

𝑃𝑁𝑀]

, 𝑖 = 1,2,…… ,𝑁

(1)

The location updates of the pelican are denoted as

𝑃𝑖𝑚 = 𝑙𝑜𝑤𝑚 + 𝑟𝑎𝑛𝑑𝑜𝑚 ∙ (𝑢𝑝𝑚 − 𝑙𝑜𝑤𝑚),
𝑖 = 1,2, … ,𝑀; (2)

Where random is a value chosen at random

between (0,1) and 𝑙𝑜𝑤𝑚 and 𝑢𝑝𝑚 are the pelican's

search ranges.

(2) Moving towards prey: The pelican rushes at the

prey from a great height after locating it during

this phase. It is defined as

𝑃𝑖𝑚
𝑡+1 =

{
𝑃𝑖𝑚
𝑡 + 𝑟𝑎𝑛𝑑 ∙ (𝑆𝑚

𝑡 − 𝜆 ∙ 𝑃𝑖𝑚
𝑡), 𝐹(𝑃𝑠) < 𝑓(𝑃𝑖)

𝑃𝑖𝑚
𝑡 + 𝑟𝑎𝑛𝑑 ∙ (𝑃𝑖𝑚

𝑡 − 𝜆 ∙ 𝑆𝑚
𝑡), 𝐹(𝑃𝑠) ≥ 𝑓(𝑃𝑖)

 (3)

(3) Winging on the water surface: The fish are lifted

up by the pelicans till they reach the top of the

water, and they then sweep it up in their throats

pouch. The pelicans' hunting habits is simulated

mathematically.

𝑃𝑖𝑚
𝑡+1 = 𝑝𝑖𝑚

𝑡 + 𝛾 ∙ (
𝑇 − 𝑡

𝑇
) ∙ (2 ∙ 𝑟𝑎𝑛𝑑𝑜𝑚 − 1) ∙ 𝑃𝑖𝑚

𝑡

(4)

The efficiency of the optimization process could

be further increased after making changes to the

original POA algorithm. The following is the precise

improvement strategy.

(1) Initialization strategy: After the Tent chaotic

mapping is implemented, the randomly created

initialization technique in the basic POA is

replaced with the Tent chaotic map, and Eq. (6)

can be recast as follows:

𝑝𝑖𝑚 = 𝑙𝑜𝑤𝑚 + 𝑇𝑒𝑛𝑡 ∙ (𝑢𝑝𝑚 − 𝑙𝑜𝑤𝑚),
𝑖 = 1,2, … ,𝑁; 𝑚 = 1,2,… ,𝑀; (5)

𝑇𝑒𝑛𝑡𝑡+1 = {

𝑇𝑒𝑛𝑡𝑡

2
, 𝑇𝑒𝑛𝑡𝑡 ∈ [0, 𝑧]

(1−𝑇𝑒𝑛𝑡𝑡)

(1−𝑧)
, 𝑇𝑒𝑛𝑡𝑡 ∈ [𝑧, 1]

 (6)

The POA algorithm's global search performance

is now enhanced by initializing the pelicans' positions

utilizing the Tent chaotic map.

(2) Moving towards prey: At this point, the pelican

may continuously update its position thanks to

the dynamic weight factor 𝜃. 𝜃 lowers adaptively

toward the conclusion of the iteration. It is

possible to rewrite Eq. (7) as follows:

Received: January 26, 2024. Revised: March 8, 2024. 242

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.20

Figure. 1 Architecture of proposed method

𝑃𝑖𝑚
𝑡+1 =

{

 𝜃 =
𝑒2(1−𝑡/𝑇)−𝑒−2(1−𝑡/𝑇)

𝑒2(1−𝑡/𝑇)+𝑒−2(1−𝑡/𝑇)

𝑃𝑖𝑚
𝑡 + 𝑟𝑎𝑛𝑑 ∙ (𝑆𝑚

𝑡 − 𝑃𝑖𝑚
𝑡) ∙ 𝜃, 𝑓(𝑃𝑠) < 𝑓(𝑃𝑖)

𝑃𝑖𝑚
𝑡 + 𝑟𝑎𝑛𝑑 ∙ (𝑃𝑖𝑚

𝑡 − 𝑆𝑚
𝑡) ∙ 𝜃, 𝑓(𝑃𝑠) ≥ 𝑓(𝑃𝑖)

 (7)

A Fig. 1 demonstrates the architecture of

proposed methodology.

3.2 Improved golden jackal optimization (IGJO)

GJO mimics biological swarm intelligence,

which is based on the golden jackal's hunting style.

The hunt involves three stages: locating the prey,

besieging and arousing it, and attacking it. The GJO

algorithm's mathematical framework is developed in

the sections that follow.

3.2.1. Search model

The prey's random position throughout the initial

phase.

3.2.2. Exploration stage

It is difficult to catch the prey since jackals

naturally have the capacity to pursue their prey. The

jackals will therefore be waiting to capture some

other victim. The following equations (|E|>1) can be

used to define the hunting behaviour:

𝑌1(𝑡) = 𝑌𝑀(𝑡) − 𝐸 ∙ |𝑌𝑀(𝑡) − 𝑟𝑙 ∙ 𝑃𝑟𝑒𝑦(𝑡)| (8)

𝑌2(𝑡) = 𝑌𝐹𝑀(𝑡) − 𝐸 ∙ |𝑌𝐹𝑀(𝑡) − 𝑟𝑙 ∙ 𝑃𝑟𝑒𝑦(𝑡)| (9)

𝑌𝑀(𝑡) and 𝑌𝐹𝑀(𝑡) stand for the positions of the

female and male jackals, respectively, while t stands

for the algorithm's current iteration. 𝑃𝑟𝑒𝑦(𝑡)
indicates the hunting location vector, and 𝑌1(𝑡) and

𝑌2(𝑡) are, of course, updated jackal positions.

It will be determined how much prey has in

escape energy (E) by:

𝐸 = 𝐸1 ∙ 𝐸0, 𝐸0 = 2 ∙ 𝑟 − 1 (10)

𝐸1 = 𝑐1 ∙ (1 −
𝑡

𝑇
) (11)

𝐸1 denotes the decrease in the prey's energy,

𝐸0 denotes a random integer between -1 and 1, T

denotes the greatest amount of iterations, 𝑐1 denotes

a fixed amount with a value of 1.5.

𝑟𝑙 =
5∙𝐿𝐹(𝑦)

100
 (12)

𝐿𝐹(𝑦) =
𝜇∙𝜎

100.|𝑣
(
1
𝛽
)
|

 (13)

𝜎 = {
𝛤(1+𝛽)∙sin(

𝜋𝛽

2
)

𝛤(
1+𝛽

2
)∙β∙(2𝛽−1)

}

1

𝛽

 (14)

𝑌(𝑡 + 1) =
𝑌1(𝑡)+𝑌2(𝑡)

2
 (15)

The new position of the prey with relation to the

jackals is represented by 𝑌(𝑡 + 1).

3.2.3. Exploitation

Golden jackals' pestering of prey reduces their

ability to flee. Here (|E|1) is a model for how jackals

behave when pursuing and consuming their prey:

𝑌1(𝑡) = 𝑌𝑀(𝑡) − 𝐸 ∙ |𝑟𝑙 ∙ 𝑌𝑀(𝑡) − 𝑃𝑟𝑒𝑦(𝑡)| (16)

𝑌2(𝑡) = 𝑌𝐹𝑀(𝑡) − 𝐸 ∙ |𝑟𝑙 ∙ 𝑌𝐹𝑀(𝑡) − 𝑃𝑟𝑒𝑦(𝑡)| (17)

3.2.4. Transition from exploration stage to convergence

and exploitation

The exploration phase is switched over to the

GJO algorithm's usage of the prey's volatile energy.

The prey loses a great deal of energy as it flees. In

each repetition, the beginning energy E0 is arbitrarily

Received: January 26, 2024. Revised: March 8, 2024. 243

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.20

deviated between 1 and 1. With more repetitions,

prey loses energy trying to escape. The system then

uses a pair of jackals to guess where the prey is. The

response from each candidate alters its place in

relation to the jackal pair. The exploratory and

extraction stages are supplied by lowering E1 from

1.5 to 0. In conditions E>1 and E1, the pair of jackals

veer away from the prey, respectively. The GJO

algorithm terminates when the convergence

requirements are satisfied.

3.2.5. Overview of improved GJO (IGJO)

The imbalance between exploitation and

exploration, as well as the standard GJO method's

tendency to become stuck in premature convergence,

are concerns. In this paper, Rosenbrock's direct

rotational (RDR) approach is employed to enhance

the effectiveness of the conventional GJO algorithm

against these issues. The current phase has been

completed, and the identification foundation is now

being examined to determine the overall impact of

successful stages on every of the dimensions. The

following changes have been made to the

orthonormal basis:

𝑥𝑘+1 − 𝑥𝑘+ = ∑ 𝜆𝑖 ∙ 𝑑𝑖
𝑛
𝑖=1 (18)

The directions are given in the equation below.

𝑥𝑘+1 − 𝑥𝑘+ denotes the point with the most

advantageous search direction, whereas 𝜆𝑖 denotes

the quantity of successful parameters. It is positioned

in the correct search direction as a result.

𝑝𝑖 = {
𝑑𝑖 , 𝜆𝑖 = 0

∑ 𝜆𝑗 ∙ 𝑑𝑗
𝑛
𝑗=0 𝜆𝑖 ≠ 0

 (19)

The next step is to update the search outcomes

using the Gram-Schmidt normalization technique.

𝑞𝑖 = {

𝑝𝑖 , 𝑖 = 1

𝑝𝑖 = ∑
𝑞𝑗
𝑇∙𝑝𝑖

𝑞𝑗
𝑇∙𝑞𝑖

𝑖−1
𝑗=1 𝑖 ≥ 2

 (20)

Following is a definition of the modified and

normalized search criteria.

𝑑𝑖 =
𝑞𝑖

‖𝑞𝑖‖
, 𝑖 = 1,2,3,… , 𝑛. (21)

This method updates the local search and then

runs the search operation until the algorithm's

convergence criterion is satisfied in the new opposite

direction.

3.3 Proposed model

In this proposed approach, jobs are planned on the

virtual machines, and the proposed algorithms also

effectively use resources like CPU and memory. For

the efficient operation of the proposed approaches,

various kind of virtual machines on a PM that can

interact with the scheduler were used in this case. The

tasks arrive in batches of ten, and the period between

each batch arrival is constant. Prior to allocating the

needed resources, tasks are first efficiently planned

on virtual machines. Fig. 1 shows the proposed

research. The incoming task requires n cloud

resources. The IGJO method uses the excess res3[]

mapping while the IPOA algorithm uses the excess

res2 and excess res1 mappings. On the other hand, the

hybrid method makes advantage of each of the three

resources mappings discussed previously.

3.3.1. IPOA algorithm for scheduling of VMs

Here, we utilize the IPOA method to schedule

incoming tasks on VMs swiftly. Efficiently assigning

duties received by the cloud is challenging due to

numerous incoming tasks needing distribution across

VMs (fvm0, vm1, vm2,..., vmkg). Our proposed

IPOA method ensures balanced scheduling, crucial

for effective workload distribution. Testing was

conducted on a private cloud handling batches of ten

jobs, adaptable to larger volumes. The number of

VMs used impacts clustering.

Each iteration, every cluster will determine the

smallest of these VMs, known as the global best (GB),

and the least loaded VM, known as the local best

(LBz). The VM connected to GB receives the

subsequent task. Until all of the jobs are completed,

the same procedure is repeated. This algorithm's

temporal complexity is 0(n.z). The IPOA algorithm's

time complexity will be 0(n) in polynomial time

because z is a constant.

3.3.2. IPOA algorithm for resource management and

allocation

In the cloud environment, tasks demand dynamic

resources at a quick rate, and meeting these demands

is a difficult issue. To complete tasks for customers,

VMs need sufficient resources, which are handled by

the proposed IPOA. Consider that there is a res pool

that serves as both a resource repository and a

supplier of the resources needed by the jobs. For the

purpose of carrying out a work, every of the VMs has

a minimum of 2 resources (CPU and Memory). Each

VM won't consume all the resources when

completing activities, therefore the extra ones that are

left over can be put to use for upcoming tasks.

Received: January 26, 2024. Revised: March 8, 2024. 244

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.20

Let's create clusters fc1, c2, c3,..., czg from VMs

fvm0, vm1, vm2,..., vmkg that operate in both

parallel and sequential modes for improved

efficiency. We require at least 2 clusters for execution

in parallel mode. The job is instantly started by VMs

if the next resource requirements match the unused

resources, else, the resources are pulled from a pool

of resources for the execution.

As a result, communication between the virtual

machine and the cloud resource pool is greatly

reduced as we dynamically use the resources. The

global and local best frequently provide maximum

and minimum values in IPOA, and it also depends on

the application. An increase in the amount of

communication between virtual machines and the

cloud resource pool.

3.3.3. IGJO Algorithm for resource management and

allocation

Jackals always maintain a calm demeanour while

moving slowly, and this is known as the seeking

mode in jackal behaviour. Jackals hunt prey at great

speeds when they detect its presence (a resource

match occurs), and this activity is reflected in the

tracing mode. While the searching mode watches for

a chance to catch a victim, the tracing mode functions

similarly to the IGJO algorithm. Instead of tracing

mode, we primarily focus on searching mode in the

proposed IGJO algorithm.

IGJO's seeking mode explores four memory types.

The searching memory pool (SMP) holds additional

VM resources not in excess res1 or res2. Status is

saved in the seeking range of the chosen dimension

(SRD), triggering task execution when updated (CDC

condition). The position of the golden jackal is

recorded in the SPC, updated with each seeking mode

update. Tracing mode processes seeking mode results.

Remaining resources may meet future demands,

reducing resource borrowing time significantly.

The IGJO algorithm thereby overcomes the IPOA

algorithm's aforementioned drawbacks. IGJO will

enhance the dynamic allocation and handling of

cloud resources because its seeking mode match ratio

is higher than that of the IPOA's top two matching

rules, excess res1 and excess res2.

3.3.4. HYBRID (IPOA+IGJO) algorithm for resource

allocation and management

The proposed hybrid algorithm, which combines the

benefits of both IPOA and IGJO approaches, can

overcome the limitations of the IPOA and IGJO

algorithms. Therefore, the hybrid technique offers

improved resource allocation efficiency with shorter

Table 1. PySim configuration information

Machine GHz RAM(GB) Stroage (GB)

Load

Balancer

3.40 8 100

Client

Machine

2.80 4 100

Server 2 3.40 16 200

Server 1 3.40 16 200

Table 2. VMs configuration information

VM Type MIPS RAM(GB) Stroage(GB)

Medium 1000 1 30

Small 500 0.5 20

X. Large 2000 3 50

Large 1 1500 2 40

Extra Large 2500 4 50

overall execution times. The hybrid method,

combining IPOA and IGJO, reduces communication

overhead between the resource pool and VMs by only

comparing exact matches between excess resources 1,

2, and future resource demands. However, in worst-

case scenarios, it may degrade resource allocation

performance, causing significant system delays. To

address this, we consider excess res3[], containing

additional resources. Consequently, compared to

IPOA and IGJO individually, the hybrid method

shows superior performance. To execute the lines 18–

25 and 26–29 concurrently utilizing Python threads

(using both IPOA and IGJO), we must

simultaneously apply both techniques. As a result,

when IPOA and IGJO methods are compared

independently, excess res3[] has a greater chance of

matching future resource demands.

4. Performance evaluation

On a simulator that provides a real-time cloud

environment scenario, the proposed work is tested.

Python Simulator, or PySim for short, is the term

given to the entire simulation scenario that has been

written in Python. Four actual machines make up the

experimental setup, which is connected to them in a

variety of ways. The configuration information’s of

the experiment’s setup are provided in Table 1. Here,

the term "task" refers to carrying out a task that needs

a number of resources. We regarded CPU and

Memory as two resource categories that are required

for carrying out a task. A large pool of resources in

the cloud is used to provide resources.

Ten tasks were taken into account, and they

randomly demanded cloud resources. Based on the

proposed techniques, a load balancer manages the

allocation and administration of these resources.

Received: January 26, 2024. Revised: March 8, 2024. 245

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.20

Table 3. Workload setup for scheduling

User Base Region Online Users during peak hours Online Users during non-peak hours

North America 0 135000 13500

Europe 2 255000 25500

South America 1 125000 12500

Africa 4 30000 3000

Asia 3 535000 53500

Oceania 5 10000 1000

Table 4. VMs usage

Sl. No. Throttled Round Robin ACO Exact Algorithm Proposed Algorithm

VM1 1182 254 356 253 254

VM2 76 254 289 254 254

VM3 8 253 389 254 253

VM4 2 253 180 254 254

VM5 0 254 54 253 253

Table 5. Comparison of proposed and other algorithms

for average response time

Algorithms Average Response Time

Round Robin 364.85ms

Throttled 365.52ms

Exact Algorithm 365.87ms

ACO 362.67ms

Proposed Algorithm 360.11ms

Figure 2. Average utilization of VMs

In this regard, we utilized five distinct kinds of

virtual machines, and Table 2 displays their

configuration information. Table 3 displays the

workload configuration utilized to carry out the

scheduling experiment.

Table 4 indicates that Round Robin and proposed

IPOA methods outperform the Throttled approach in

task scheduling efficiency. While Round Robin and

IPOA yield similar outputs, Round Robin's lack of

VM status checking leads to server queuing. IPOA,

by considering VM status and cluster-based

comparisons, prevents queuing and improves task

assignment. ACO assigns tasks based on lower

pheromone contents in VMs, akin to MPSO, albeit

with higher response times.

The Table 5 shows the Average response duration

for that configuration. The proposed IPOA method

not only effectively distributes the load among the

virtual computers, as can be seen from Tables 4 and

5, but it also achieves a superior average response

time.

The experiment is run again with various sets of

virtual machines and jobs, and the outcomes are

reliable. The usage of VMs with various

combinations of 1000, 2000, and 3000 workloads

was then examined. The research's employment of

several algorithms on VMs is depicted in Fig. 2. As

can be seen from Fig. 2, when compared to other

algorithms, the Throttled and ACO methods do not

consistently use the VMs.

While RR and Exact Methods effectively utilize

VMs, our IPOA method is even more efficient with

VMs and ATR. IGJO's Seeking mode takes longer

than Tracing mode, thus not considered for IPOA

scheduling. Similarly, the proposed hybrid,

combining IPOA and IGJO, is also not accounted for

in scheduling. Experiments in sequential and parallel

modes determine average response time, displayed in

Figs. 3 and 4.

We employed 10 and 20 virtual machines in two

clusters with 60 incoming jobs in Figure 3a. With 300

incoming jobs, we employed 10 and 50 VMs across

two clusters in Figure 3b. The two best VMs from

every cluster are selected in IPOA's best match (GB)

case technique so that the resources can match the

anticipated demands. We compare resource demands

and excess in each cluster, using the IGJO strategy

for remaining VMs. Specifically, we compare each

cluster's extra resources to forthcoming demands.

The experiment runs parallel with threads allocated

asymmetrically based on cluster count, crucial for

efficient resource management and speed

enhancement per cluster.

Received: January 26, 2024. Revised: March 8, 2024. 246

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.20

(a) (b)

Figure. 3 Squentail analysis: (a) Sequentail Analysis with 60 tasks and Squentail analysis with 300 tasks

(a) (b)

Figure. 4 Parallel analysis: (a) Parallel analysis with 60 tasks and Parallel analysis with 300 tasks

As can be seen from Fig. 4, parallel mode

execution will result in a faster average reaction time

than sequential mode. Figs. 3 and 4 show that, when

compared to the branch-and-bound based Exact

approach, the IPOA, IGJO, and hybrid (IPOA+IGJO)

algorithms provide workable solutions in terms of

average reaction time. Additionally, our hybrid

approach is faster than all other algorithms.

Accordingly, the resource usage factor is

examined in relation to proposed methods. The

resource use with 1000, 2000, and 3000 jobs is shown

in Figs. 5 (a), (b), and (c), respectively. In each of the

three scenarios, RR uses the maximum amount of

cloud resource pool resources. ACO uses

approximately an equal number of resources from the

unused VM resources as well as the cloud resource

pool.

IGJO surpasses IPOA in resource utilization by

effectively employing inactive cluster resources. The

hybrid method outperforms traditional approaches, as

demonstrated by the benchmark Exact method in Fig.

5, showcasing superior resource efficiency compared

to previous methods considered for evaluation.

4.1 Time complexity analysis

In the proposed hybrid method, IPOA and IGJO

approaches are the foundation. The proposed hybrid

method's time complexity is therefore O (amount of

tasks) *O (amount of clusters) *O (amount of VMs)

*O (amount of’m’iterations) *O(IPOA)*O(IGJO),

which is equal to O(n)*O(Cz)*O(VMk)*O('m’) *O

(n, Cz) *(n, Cz). The formula becomes

O(n*Cz*VMk*m).

The computational time for the three averages,

best, and worst methods out of all those proposed is

shown in Fig. 6. Utilizing the proposed and cutting-

edge benchmark techniques, we tested various job

combinations and VM counts. In Fig. 6, worst-case

execution time occurs when surplus resources don't

match anticipated needs. RR's constant execution

time stems from its reliance on cloud resources.

ACO's time consistency results from variable

pheromone content. Exact algorithm's uniform

execution time is due to exhaustive resource

allocation attempts.

Received: January 26, 2024. Revised: March 8, 2024. 247

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.20

(a) (b)

(c)

Figure. 5 Average resource usage: (a) Resource usage with 1000 tasks, (b) Resource usage with 2000 tasks, and (c)

Resource usage with 3000 tasks

Figure. 6 Execution time analysis of proposed algorithms

Figure. 7 Comparison in terms of accuracy

4.2 Comparative analysis

The efficiency of the suggested model is

compared to that of HUNTER (13), FT-ERM (14),

and RU-VMM (16) in terms of accuracy, and

scalability.

Figure. 8 Comparison in terms of scalability

Fig. 7 shows the accuracy comparison of the

proposed technique with the existing techniques,

including HUNTER, FT-ERM, and RU-VMM. The

accuracy of the proposed technique increases by

1.12%, 2.11%, and 14.2%, respectively. It shows that

the proposed method has good accuracy compared

with the existing HUNTER, FT-ERM, and RU-

VMM approaches.

Fig. 8 compares scalability between existing

HUNTER, FT-ERM, and RU-VMM proposed

method. The proposed method exhibits superior

scalability, efficiently accommodating growing

resource requirements without compromising

performance or stability. The accuracy of the

proposed technique increases by 4.78%, 35.1%, and

17.98%, compared to existing HUNTER, FT-ERM,

and RU-VMM techniques respectively.

Received: January 26, 2024. Revised: March 8, 2024. 248

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.20

5. Conclusion

In this paper, a novel hybrid algorithm that

combines improved pelican optimization algorithm

(IPOA) and improved golden jackal optimization

(IGJO), to enhance efficiency in resource allocation.

The proposed methodologies focus on dynamic

resource allocation, considering factors such as CPU

and memory utilization, and aim to improve resource

allocation efficiency and task scheduling

effectiveness. The experiments conducted

demonstrate the effectiveness of the proposed

approach compared to existing algorithms such as

Round Robin, Throttled, ACO, and exact algorithm.

Results indicate that the proposed hybrid algorithm

outperforms these methods in terms of average

response time, VM utilization, and resource usage

efficiency. Additionally, the proposed algorithm

shows improved accuracy and scalability compared

to existing techniques like HUNTER, FT-ERM, and

RU-VMM. According to experimental findings, the

accuracy of the proposed technique is higher than that

of the existing HUNTER, FT-ERM, and RU-VMM

approaches by 1.12%, 2.11%, and 14.2%,

respectively. Future research will focus on

integrating cutting-edge technologies like blockchain

and edge computing to improve multimedia resource

management in cloud computing environments'

security and privacy.

Conflicts of interest

The authors declare that they have no known

competing financial interests or personal

relationships that could have appeared to influence

the work reported in this paper.

Author contributions

The following statements should be used as

follows: “Conceptualization, G. Nallasivan and T.

Karpagam; methodology, M. Geetha; software, R. S.

Sankarasubramanian; validation, R. Kannan, A.

Bhuvanesh, and G. Poojitha; formal analysis, G.

Nallasivan; investigation, T. Karpagam; resources, M.

Geetha; data curation, R. S. Sankarasubramanian;

writing—original draft preparation, R. Kannan;

writing—review and editing, A. Bhuvanesh;

visualization, G. Poojitha; supervision, G. Nallasivan;

project administration, T. Karpagam; funding

acquisition, M. Geetha”, etc.

Acknowledgments

The author would like to express his heartfelt

gratitude to the supervisor for his guidance and

unwavering support during this research for his

guidance and support.

References

[1] A. Montazerolghaem, M. H. Yaghmaee, and A.

Leon-Garcia, “Green cloud multimedia

networking: NFV/SDN based energy-efficient

resource allocation”, IEEE Transactions on

Green Communications and Networking, Vol. 4,

No. 3, pp. 873-889, 2020.

[2] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C.

Delimitrou, “Sinan: ML-based and QoS-aware

resource management for cloud microservices”,

In: Proc. of the 26th Acm International

Conference on Architectural Support For

Programming Languages and Operating

Systems, pp. 167-181, 2021.

[3] R. T. Rodoshi, T. Kim, and W. Choi, “Resource

management in cloud radio access network:

Conventional and new approaches”, Sensors,

Vol. 20, No. 9, p. 2708, 2020.

[4] L. Ding, Z. Wang, X. Wang, and D. Wu,

“Security information transmission algorithms

for IoT based on cloud computing”, Computer

Communications, Vol. 155, pp. 32-39, 2020.

[5] A. Mijuskovic, A. Chiumento, R. Bemthuis, A.

Aldea, and P. Havinga, “Resource management

techniques for cloud/fog and edge computing:

An evaluation framework and classification”,

Sensors, Vol. 21, No. 5, p. 1832, 2021.

[6] N. Gholipour, E. Arianyan, and R. Buyya, “A

novel energy-aware resource management

technique using joint VM and container

consolidation approach for green computing in

cloud data centers”, Simulation Modelling

Practice and Theory, Vol. 104, p. 102127, 2020.

[7] X. Xu, Y. Chen, Y. Yuan, T. Huang, X. Zhang,

and L. Qi, “Blockchain-based cloudlet

management for multimedia workflow in mobile

cloud computing”, Multimedia Tools and

Applications, Vol. 79, pp. 9819-9844, 2020.

[8] P. J. Maenhaut, B. Volckaert, V. Ongenae, and

F. D. Turck, “Resource management in a

containerized cloud: Status and challenges”,

Journal of Network and Systems Management,

Vol. 28, pp. 197-246, 2020.

[9] G. Rjoub, J. Bentahar, O. A. Wahab, and A. S.

Bataineh, “Deep and reinforcement learning for

automated task scheduling in large‐scale cloud

computing systems”, Concurrency and

Computation: Practice and Experience, Vol. 33,

No. 23, p. e5919, 2021.

[10] H. Mia and F. Faisal, “Digital Human Resource

Management: Prospects & Challenges for

Received: January 26, 2024. Revised: March 8, 2024. 249

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.20

Garments Industries in Bangladesh”, European

Journal of Business and Management, Vol. 12,

No. 7, pp. 18-25, 2020.

[11] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and

F. Tian, “Dynamic task offloading and resource

allocation for mobile-edge computing in dense

cloud RAN”, IEEE Internet of Things Journal,

Vol. 7, No. 4, pp. 3282-3299, 2020.

[12] F. Faraji, A. Javadpour, A. K. Sangaiah, and H.

Zavieh, “A solution for resource allocation

through complex systems in fog computing for

the internet of things”, Computing, pp. 1-25,

2023.

[13] S. Tuli, S. S. Gill, M. Xu, P. Garraghan, R.

Bahsoon, S. Dustdar, ... and N. R. Jennings,

“HUNTER: AI based holistic resource

management for sustainable cloud computing”,

Journal of Systems and Software, Vol. 184, p.

111124, 2022.

[14] D. Saxena, I. Gupta, A. K. Singh, and C. N. Lee,

“A fault tolerant elastic resource management

framework toward high availability of cloud

services”, IEEE Transactions on Network and

Service Management, Vol. 19, No. 3, pp. 3048-

3061, 2022.

[15] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C.

Delimitrou, “Sinan: ML-based and QoS-aware

resource management for cloud microservices”,

In: Proc. of the 26th ACM International

Conference on Architectural Support For

Programming Languages and Operating

Systems, pp. 167-181, 2021.

[16] S. K. Pande, S. K. Panda, S. Das, K. S. Sahoo,

A. K. Luhach, N. Z. Jhanjhi, ... and S. Sivanesan,

“A Resource Management Algorithm for Virtual

Machine Migration in Vehicular Cloud

Computing”, Computers, Materials & Continua,

Vol. 67, No. 2, 2021.

