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Abstract: The management of various multimedia assets, such as photos, videos, audio files, and other rich media 

content, within a cloud computing environment is referred to as managing multimedia resources in the cloud. To suit 

the needs of applications and users, this entails the effective storage, retrieval, processing, and distribution of 

multimedia resources. Given the significance of work planning and managing resources in the cloud computing 

environment, we present a unique hybrid algorithm in this research. Many cloud-based computing systems have made 

extensive use of traditional scheduling techniques like ant colony optimization (ACO), first come first serve, etc. The 

cloud gets client tasks at a high rate, so it is important to handle resource allocation for these tasks carefully. Using the 

improved pelican optimization algorithm, we efficiently distribute the tasks to the virtual machines in this proposed 

work. The proposed hybrid algorithm (Improved POA + Improved GJO) is then used to distribute and manage the 

resources (Memory and CPU) as needed by the tasks. According to experimental findings, the accuracy of the proposed 

technique increases by 1.12%, 2.11%, and 14.2%, respectively. It shows that the proposed method has good accuracy 

compared with the existing HUNTER, FT-ERM, and RU-VMM approaches. 

Keywords: Deep learning algorithms, Resource management, Load balancing, Virtual machines, Task scheduling.  

 

 

1. Introduction 

A large portion of multimedia services are now 

supplied over the internet thanks to Web 2.0's rapid 

expansion. The online multimedia systems include a 

wide range of functions such media content creation, 

editing, processing, searching, and storage. 

Supporting such systems has meant placing heavy 

and diverse demands on processing, storage, and 

communication capabilities [1-3]. Cloud computing 

has gained popularity over the last ten years as a 

viable platform for supplying multimedia services 

with the resources they need and the quality of 

service (QoS) they require. Multimedia social 

programs, online picture and video editing, cloud-

based video and picture sharing, and other cloud-

based applications are becoming commonplace [4, 5]. 
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With the development of virtual machine (VM) 

methodology, cloud computing is intended to provide 

on-demand, QoS assured, and cost-effective software 

and hardware solutions. The task management issue 

and the handling of resources issue are two of the 

main research questions in the area of cloud-based 

multimedia. On the one hand, managing tasks is 

accomplished by distributing already-existing 

resources, seeking additional resources, or releasing 

surplus resources in response to changes in workload 

[6]. 

Cost and QoS are two significant issues in the 

task management research. On the other side, using 

the VM allocation strategy solves the problem of 

resource management. The long-term cost and 

waiting time are typically the two components of the 

optimization aim for cloud VM allocation. Despite 

the fact that cloud-based multimedia platforms have 

been the subject of several research, the two research 

concerns we described above have not been taken 

into account together [7, 8]. Due to the intricacy of 

the problem, heuristic-based VM allocation 

algorithms are commonly used for resource 

management. 

Despite the fact that cloud-based multimedia 

platforms have been the subject of several research, 

the two research concerns we described above have 

not been taken into account together [9,10]. Since 

queue parameters directly relate to QoS and the price 

of multimedia applications, queuing systems are 

frequently employed for job management [11]. Due 

to the intricacy of the problem, heuristic-based VM 

allocation algorithms are commonly used for 

resource management. Using IPOA, IGJO, hybrid 

algorithms, we allocate and manage cloud resources 

in this research with a primary focus on task 

scheduling using IPOA. When compared to previous 

proposed algorithms, our proposed IPOA is more 

effective in scheduling tasks. To overcome the issues, 

the proposed hybrid algorithm surpasses peer 

research methods. 

The key contribution of this research are: 

 

• The research introduces a novel hybrid 

algorithm combining IPOA and IGJO for 

effective task scheduling and resource 

management in cloud computing 

environments. This hybrid approach aims to 

enhance resource allocation efficiency and 

task scheduling effectiveness. 

• The proposed methodologies focus on 

dynamic resource allocation and 

management, considering factors such as 

CPU and memory utilization. By efficiently 

distributing tasks among virtual machines 

and utilizing surplus resources, 

• The performance of the proposed hybrid 

algorithm is evaluated against existing 

methods such as Round Robin, Throttled, 

ACO, and Exact Algorithm. The evaluation 

metrics include average response time, VM 

utilization, and resource usage efficiency. 

 

The remaining sections of the essay are structured 

as follows. Task scheduling and resource 

management-related work is presented at the start of 

section 2, and the proposed approach and hybrid 

heuristic methods are covered in section 3. The 

performance assessment and simulation scenarios are 

covered in section 4, which is followed by an analysis 

of the experimental data and a conclusion in section 

5. 

2. Literature survey 

The provision of effective dynamic resource 

management for infrastructure in software-based 

networks is [12] one of the most crucial concerns in 

network virtualization. By combining the Markov-

Process with TDMA protocol, the introduced 

solution (cTMvSDN) improves the handling of 

resources. The markov-pattern and TDMA slicing 

system is utilized to forecast upcoming time gaps in 

order to maximize response time and SDN Quality of 

service. The disadvantage is as the size of the network 

grows, maintaining trust relationships between a 

large number of nodes becomes increasingly 

challenging. 

[13] presented HUNTER, a holistic resource 

management method for sustainable cloud computing 

that is based on artificial intelligence (AI). In order to 

approximate the QoS for a model state and produce 

the best scheduling options, HUNTER uses a gated 

graph convolution network. The proposed technique 

may face challenges in scaling to large-scale cloud 

environments or adapting to diverse application 

workloads. 

By forcing high-availability in servers and virtual 

machines, [14] suggested a FT-ERM system that 

approaches the aforementioned issue from a different 

angle. A fault-tolerance unit made up of a decision 

matrix and safe box is proposed. Developing and 

maintaining a system with proactive failure 

prediction, dynamic VM migration, and failure 

tolerance mechanisms can be challenging and costly. 

overheating.  

[15] introduced Sinan, an online, data-driven, 

QoS-aware cluster manager for interacting cloud 

microservices. they test Sinan using representative 
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end-to-end microservice-based applications, on both 

specialized neighbourhood clusters and massive 

deployments on Google compute engine (GCE). 

Implementing a scalable and QoS-aware resource 

manager like Sinan may introduce additional 

complexity and overhead to the system. 

[16] presented the RU-VMM method, which 

distributes the loads across the underloaded and 

overloaded vehicles in order to reduce energy usage. 

Additionally, RU-VMM makes an effort to prevent 

pointless VM migrations within the vehicle. One 

drawback is that the suggested algorithm does not 

take into consideration the bandwidth and latency 

involved in virtual machine transfer. 

The above literatures show some disadvantages 

like scalability challenges, complexity, adaptability 

issues, increased overhead. To overcome the issues, 

proposed a deep learning-based algorithms to 

multimedia resource management in cloud. The 

novelty of our approach lies in the integration of 

IPOA and IGJO to address these challenges of task 

scheduling and resource management simultaneously. 

3. Proposed methodologies 

For task scheduling, we proposed a better IPOA. 

For resource management and allocation, we also 

presented the IPOA, IGJO, and hybrid (IPOA+IGJO) 

methodologies. 

3.1 Improved pelican optimization algorithm 

(IPOA) 

A new meta-heuristic optimization method called 

the POA is motivated by pelican hunting techniques. 

The world's warm waterways are home to pelicans, 

which primarily inhabit lakes, rivers, beaches, and 

marshes. Pelicans typically live in groups and have 

excellent swimming and flying abilities. They 

primarily eat fish and have good observational skills 

and keen eyesight while flying. Once the pelicans 

have located their prey, they race toward it from a 

height of 10 to 20 meters before diving headfirst into 

the ocean to begin their hunt.  

(1) Initialization: If N pelicans in an M-dimensional 

space, then the location of the i-th pelican is 𝑃1 =
[𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑚, … , 𝑝𝑖𝑀], and the location P of 

the N pelicans is written as follows:  

 

𝑃 =

[
 
 
 
 
 
𝑃1
𝑃2
⋮
𝑃𝑖
⋮
𝑃𝑁]
 
 
 
 
 

=

[
 
 
 
 
 
𝑃11
𝑃21
⋮
𝑃𝑖1
⋮
𝑃𝑁1

𝑃12…
𝑃22…
⋮    ⋮
𝑃𝑖2…
 ⋮    ⋮
𝑃𝑁2…

𝑃1𝑚…
𝑃2𝑚…
⋮

𝑃𝑖𝑚…
⋮

𝑃𝑁𝑚…

𝑃1𝑀
𝑃2𝑀
⋮
𝑃𝑖𝑀
⋮

𝑃𝑁𝑀]
 
 
 
 
 

, 𝑖 = 1,2,…… ,𝑁 

(1) 

 

The location updates of the pelican are denoted as 

 

𝑃𝑖𝑚 = 𝑙𝑜𝑤𝑚 + 𝑟𝑎𝑛𝑑𝑜𝑚 ∙ (𝑢𝑝𝑚 − 𝑙𝑜𝑤𝑚),      
𝑖 = 1,2, … ,𝑀;      (2) 

 

Where random is a value chosen at random 

between (0,1) and 𝑙𝑜𝑤𝑚  and 𝑢𝑝𝑚  are the pelican's 

search ranges. 

(2) Moving towards prey: The pelican rushes at the 

prey from a great height after locating it during 

this phase. It is defined as 

 

𝑃𝑖𝑚
𝑡+1 =  

{
𝑃𝑖𝑚
𝑡 + 𝑟𝑎𝑛𝑑 ∙ (𝑆𝑚

𝑡 − 𝜆 ∙ 𝑃𝑖𝑚
𝑡 ),    𝐹(𝑃𝑠) < 𝑓(𝑃𝑖)

𝑃𝑖𝑚
𝑡 + 𝑟𝑎𝑛𝑑 ∙ (𝑃𝑖𝑚

𝑡 − 𝜆 ∙ 𝑆𝑚
𝑡 ),    𝐹(𝑃𝑠) ≥ 𝑓(𝑃𝑖)

  (3) 

 

(3) Winging on the water surface: The fish are lifted 

up by the pelicans till they reach the top of the 

water, and they then sweep it up in their throats 

pouch. The pelicans' hunting habits is simulated 

mathematically. 

 

𝑃𝑖𝑚
𝑡+1 = 𝑝𝑖𝑚

𝑡 + 𝛾 ∙ (
𝑇 − 𝑡

𝑇
) ∙ (2 ∙ 𝑟𝑎𝑛𝑑𝑜𝑚 − 1) ∙ 𝑃𝑖𝑚

𝑡  

(4) 

 

The efficiency of the optimization process could 

be further increased after making changes to the 

original POA algorithm. The following is the precise 

improvement strategy. 

(1) Initialization strategy: After the Tent chaotic 

mapping is implemented, the randomly created 

initialization technique in the basic POA is 

replaced with the Tent chaotic map, and Eq. (6) 

can be recast as follows: 

 

𝑝𝑖𝑚 = 𝑙𝑜𝑤𝑚 + 𝑇𝑒𝑛𝑡 ∙ (𝑢𝑝𝑚 − 𝑙𝑜𝑤𝑚),    
𝑖 = 1,2, … ,𝑁;   𝑚 = 1,2,… ,𝑀;     (5) 

 

𝑇𝑒𝑛𝑡𝑡+1 = {

𝑇𝑒𝑛𝑡𝑡

2
,      𝑇𝑒𝑛𝑡𝑡 ∈ [0, 𝑧]

(1−𝑇𝑒𝑛𝑡𝑡)

(1−𝑧)
,      𝑇𝑒𝑛𝑡𝑡 ∈ [𝑧, 1]

     (6) 

 

The POA algorithm's global search performance 

is now enhanced by initializing the pelicans' positions 

utilizing the Tent chaotic map. 

(2) Moving towards prey: At this point, the pelican 

may continuously update its position thanks to 

the dynamic weight factor 𝜃. 𝜃 lowers adaptively 

toward the conclusion of the iteration. It is 

possible to rewrite Eq. (7) as follows: 
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Figure. 1 Architecture of proposed method 

 

𝑃𝑖𝑚
𝑡+1 =  

{
 

 𝜃 =
𝑒2(1−𝑡/𝑇)−𝑒−2(1−𝑡/𝑇)

𝑒2(1−𝑡/𝑇)+𝑒−2(1−𝑡/𝑇)
                                 

𝑃𝑖𝑚
𝑡 + 𝑟𝑎𝑛𝑑 ∙ (𝑆𝑚

𝑡 − 𝑃𝑖𝑚
𝑡 ) ∙ 𝜃,   𝑓(𝑃𝑠) < 𝑓(𝑃𝑖)

𝑃𝑖𝑚
𝑡 + 𝑟𝑎𝑛𝑑 ∙ (𝑃𝑖𝑚

𝑡 − 𝑆𝑚
𝑡 ) ∙ 𝜃,   𝑓(𝑃𝑠) ≥ 𝑓(𝑃𝑖)

  (7) 

 

A Fig. 1 demonstrates the architecture of 

proposed methodology. 

3.2 Improved golden jackal optimization (IGJO) 

GJO mimics biological swarm intelligence, 

which is based on the golden jackal's hunting style. 

The hunt involves three stages: locating the prey, 

besieging and arousing it, and attacking it. The GJO 

algorithm's mathematical framework is developed in 

the sections that follow. 

3.2.1. Search model 

The prey's random position throughout the initial 

phase. 

3.2.2. Exploration stage 

It is difficult to catch the prey since jackals 

naturally have the capacity to pursue their prey. The 

jackals will therefore be waiting to capture some 

other victim. The following equations (|E|>1) can be 

used to define the hunting behaviour: 

 

𝑌1(𝑡) = 𝑌𝑀(𝑡) − 𝐸 ∙ |𝑌𝑀(𝑡) − 𝑟𝑙 ∙ 𝑃𝑟𝑒𝑦(𝑡)|       (8) 

 

𝑌2(𝑡) = 𝑌𝐹𝑀(𝑡) − 𝐸 ∙ |𝑌𝐹𝑀(𝑡) − 𝑟𝑙 ∙ 𝑃𝑟𝑒𝑦(𝑡)|   (9) 

 

𝑌𝑀(𝑡) and 𝑌𝐹𝑀(𝑡) stand for the positions of the 

female and male jackals, respectively, while t stands 

for the algorithm's current iteration. 𝑃𝑟𝑒𝑦(𝑡) 
indicates the hunting location vector, and 𝑌1(𝑡) and 

𝑌2(𝑡) are, of course, updated jackal positions. 

It will be determined how much prey has in 

escape energy (E) by: 

𝐸 = 𝐸1 ∙ 𝐸0,   𝐸0 = 2 ∙ 𝑟 − 1             (10) 

 

𝐸1 = 𝑐1 ∙ (1 −
𝑡

𝑇
)              (11) 

 

𝐸1 denotes the decrease in the prey's energy, 

𝐸0 denotes a random integer between -1 and 1, T 

denotes the greatest amount of iterations, 𝑐1 denotes 

a fixed amount with a value of 1.5. 

 

𝑟𝑙 =
5∙𝐿𝐹(𝑦)

100
               (12) 

 

𝐿𝐹(𝑦) =
𝜇∙𝜎

100.|𝑣
(
1
𝛽
)
|

                (13) 

 

𝜎 = {
𝛤(1+𝛽)∙sin(

𝜋𝛽

2
)

𝛤(
1+𝛽

2
)∙β∙(2𝛽−1)

}

1

𝛽

              (14) 

 

𝑌(𝑡 + 1) =
𝑌1(𝑡)+𝑌2(𝑡)

2
              (15) 

 

The new position of the prey with relation to the 

jackals is represented by 𝑌(𝑡 + 1). 

3.2.3. Exploitation  

Golden jackals' pestering of prey reduces their 

ability to flee. Here (|E|1) is a model for how jackals 

behave when pursuing and consuming their prey: 

 

𝑌1(𝑡) = 𝑌𝑀(𝑡) − 𝐸 ∙ |𝑟𝑙 ∙ 𝑌𝑀(𝑡) − 𝑃𝑟𝑒𝑦(𝑡)|       (16) 

 

𝑌2(𝑡) = 𝑌𝐹𝑀(𝑡) − 𝐸 ∙ |𝑟𝑙 ∙ 𝑌𝐹𝑀(𝑡) − 𝑃𝑟𝑒𝑦(𝑡)|    (17) 

3.2.4. Transition from exploration stage to convergence 

and exploitation 

The exploration phase is switched over to the 

GJO algorithm's usage of the prey's volatile energy. 

The prey loses a great deal of energy as it flees. In 

each repetition, the beginning energy E0 is arbitrarily 
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deviated between 1 and 1. With more repetitions, 

prey loses energy trying to escape. The system then 

uses a pair of jackals to guess where the prey is. The 

response from each candidate alters its place in 

relation to the jackal pair. The exploratory and 

extraction stages are supplied by lowering E1 from 

1.5 to 0. In conditions E>1 and E1, the pair of jackals 

veer away from the prey, respectively. The GJO 

algorithm terminates when the convergence 

requirements are satisfied. 

3.2.5. Overview of improved GJO (IGJO) 

The imbalance between exploitation and 

exploration, as well as the standard GJO method's 

tendency to become stuck in premature convergence, 

are concerns. In this paper, Rosenbrock's direct 

rotational (RDR) approach is employed to enhance 

the effectiveness of the conventional GJO algorithm 

against these issues. The current phase has been 

completed, and the identification foundation is now 

being examined to determine the overall impact of 

successful stages on every of the dimensions. The 

following changes have been made to the 

orthonormal basis: 

 

𝑥𝑘+1 − 𝑥𝑘+ = ∑ 𝜆𝑖 ∙ 𝑑𝑖
𝑛
𝑖=1              (18) 

 

The directions are given in the equation below. 

𝑥𝑘+1 − 𝑥𝑘+  denotes the point with the most 

advantageous search direction, whereas 𝜆𝑖  denotes 

the quantity of successful parameters. It is positioned 

in the correct search direction as a result. 

𝑝𝑖 = {
𝑑𝑖 ,                     𝜆𝑖 = 0

∑ 𝜆𝑗 ∙ 𝑑𝑗         
𝑛
𝑗=0 𝜆𝑖 ≠ 0

              (19) 

 

The next step is to update the search outcomes 

using the Gram-Schmidt normalization technique. 

 

𝑞𝑖 = {

𝑝𝑖 ,                                    𝑖 = 1

𝑝𝑖 = ∑
𝑞𝑗
𝑇∙𝑝𝑖

𝑞𝑗
𝑇∙𝑞𝑖

𝑖−1
𝑗=1             𝑖 ≥ 2

             (20) 

 

Following is a definition of the modified and 

normalized search criteria. 

 

𝑑𝑖 =
𝑞𝑖

‖𝑞𝑖‖
, 𝑖 = 1,2,3,… , 𝑛.             (21) 

 

This method updates the local search and then 

runs the search operation until the algorithm's 

convergence criterion is satisfied in the new opposite 

direction. 

3.3 Proposed model 

In this proposed approach, jobs are planned on the 

virtual machines, and the proposed algorithms also 

effectively use resources like CPU and memory. For 

the efficient operation of the proposed approaches, 

various kind of virtual machines on a PM that can 

interact with the scheduler were used in this case. The 

tasks arrive in batches of ten, and the period between 

each batch arrival is constant. Prior to allocating the 

needed resources, tasks are first efficiently planned 

on virtual machines. Fig. 1 shows the proposed 

research. The incoming task requires n cloud 

resources. The IGJO method uses the excess res3[] 

mapping while the IPOA algorithm uses the excess 

res2 and excess res1 mappings. On the other hand, the 

hybrid method makes advantage of each of the three 

resources mappings discussed previously. 

3.3.1. IPOA algorithm for scheduling of VMs 

Here, we utilize the IPOA method to schedule 

incoming tasks on VMs swiftly. Efficiently assigning 

duties received by the cloud is challenging due to 

numerous incoming tasks needing distribution across 

VMs (fvm0, vm1, vm2,..., vmkg). Our proposed 

IPOA method ensures balanced scheduling, crucial 

for effective workload distribution. Testing was 

conducted on a private cloud handling batches of ten 

jobs, adaptable to larger volumes. The number of 

VMs used impacts clustering. 

Each iteration, every cluster will determine the 

smallest of these VMs, known as the global best (GB), 

and the least loaded VM, known as the local best 

(LBz). The VM connected to GB receives the 

subsequent task. Until all of the jobs are completed, 

the same procedure is repeated. This algorithm's 

temporal complexity is 0(n.z). The IPOA algorithm's 

time complexity will be 0(n) in polynomial time 

because z is a constant.  

3.3.2. IPOA algorithm for resource management and 

allocation 

In the cloud environment, tasks demand dynamic 

resources at a quick rate, and meeting these demands 

is a difficult issue. To complete tasks for customers, 

VMs need sufficient resources, which are handled by 

the proposed IPOA. Consider that there is a res pool 

that serves as both a resource repository and a 

supplier of the resources needed by the jobs. For the 

purpose of carrying out a work, every of the VMs has 

a minimum of 2 resources (CPU and Memory). Each 

VM won't consume all the resources when 

completing activities, therefore the extra ones that are 

left over can be put to use for upcoming tasks.  



Received:  January 26, 2024.     Revised: March 8, 2024.                                                                                                 244 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.20 

 

Let's create clusters fc1, c2, c3,..., czg from VMs 

fvm0, vm1, vm2,..., vmkg that operate in both 

parallel and sequential modes for improved 

efficiency. We require at least 2 clusters for execution 

in parallel mode. The job is instantly started by VMs 

if the next resource requirements match the unused 

resources, else, the resources are pulled from a pool 

of resources for the execution.  

As a result, communication between the virtual 

machine and the cloud resource pool is greatly 

reduced as we dynamically use the resources. The 

global and local best frequently provide maximum 

and minimum values in IPOA, and it also depends on 

the application. An increase in the amount of 

communication between virtual machines and the 

cloud resource pool. 

3.3.3. IGJO Algorithm for resource management and 

allocation 

Jackals always maintain a calm demeanour while 

moving slowly, and this is known as the seeking 

mode in jackal behaviour. Jackals hunt prey at great 

speeds when they detect its presence (a resource 

match occurs), and this activity is reflected in the 

tracing mode. While the searching mode watches for 

a chance to catch a victim, the tracing mode functions 

similarly to the IGJO algorithm. Instead of tracing 

mode, we primarily focus on searching mode in the 

proposed IGJO algorithm.  

IGJO's seeking mode explores four memory types. 

The searching memory pool (SMP) holds additional 

VM resources not in excess res1 or res2. Status is 

saved in the seeking range of the chosen dimension 

(SRD), triggering task execution when updated (CDC 

condition). The position of the golden jackal is 

recorded in the SPC, updated with each seeking mode 

update. Tracing mode processes seeking mode results. 

Remaining resources may meet future demands, 

reducing resource borrowing time significantly. 

The IGJO algorithm thereby overcomes the IPOA 

algorithm's aforementioned drawbacks. IGJO will 

enhance the dynamic allocation and handling of 

cloud resources because its seeking mode match ratio 

is higher than that of the IPOA's top two matching 

rules, excess res1 and excess res2.  

3.3.4. HYBRID (IPOA+IGJO) algorithm for resource 

allocation and management 

The proposed hybrid algorithm, which combines the 

benefits of both IPOA and IGJO approaches, can 

overcome the limitations of the IPOA and IGJO 

algorithms. Therefore, the hybrid technique offers 

improved resource allocation efficiency with shorter  

 

Table 1. PySim configuration information 

Machine GHz RAM(GB) Stroage (GB) 

Load 

Balancer 

3.40 8 100 

Client 

Machine 

2.80 4 100 

Server 2 3.40 16 200 

Server 1 3.40 16 200 

 
Table 2. VMs configuration information 

VM Type MIPS RAM(GB) Stroage(GB) 

Medium 1000 1 30 

Small 500 0.5 20 

X. Large 2000 3 50 

Large 1 1500 2 40 

Extra Large 2500 4 50 

 

overall execution times. The hybrid method, 

combining IPOA and IGJO, reduces communication 

overhead between the resource pool and VMs by only 

comparing exact matches between excess resources 1, 

2, and future resource demands. However, in worst-

case scenarios, it may degrade resource allocation 

performance, causing significant system delays. To 

address this, we consider excess res3[], containing 

additional resources. Consequently, compared to 

IPOA and IGJO individually, the hybrid method 

shows superior performance. To execute the lines 18–

25 and 26–29 concurrently utilizing Python threads 

(using both IPOA and IGJO), we must 

simultaneously apply both techniques. As a result, 

when IPOA and IGJO methods are compared 

independently, excess res3[] has a greater chance of 

matching future resource demands. 

4. Performance evaluation 

On a simulator that provides a real-time cloud 

environment scenario, the proposed work is tested. 

Python Simulator, or PySim for short, is the term 

given to the entire simulation scenario that has been 

written in Python. Four actual machines make up the 

experimental setup, which is connected to them in a 

variety of ways. The configuration information’s of 

the experiment’s setup are provided in Table 1. Here, 

the term "task" refers to carrying out a task that needs 

a number of resources. We regarded CPU and 

Memory as two resource categories that are required 

for carrying out a task. A large pool of resources in 

the cloud is used to provide resources. 

Ten tasks were taken into account, and they 

randomly demanded cloud resources. Based on the 

proposed techniques, a load balancer manages the 

allocation and administration of these resources.  
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Table 3. Workload setup for scheduling 

User Base Region Online Users during peak hours Online Users during non-peak hours 

North America 0 135000 13500 

Europe 2 255000 25500 

South America 1 125000 12500 

Africa 4 30000 3000 

Asia 3 535000 53500 

Oceania 5 10000 1000 

 
Table 4. VMs usage 

Sl. No. Throttled Round Robin ACO Exact Algorithm Proposed Algorithm 

VM1 1182 254 356 253 254 

VM2 76 254 289 254 254 

VM3 8 253 389 254 253 

VM4 2 253 180 254 254 

VM5 0 254 54 253 253 

 
Table 5. Comparison of proposed and other algorithms 

for average response time 

Algorithms Average Response Time 

Round Robin 364.85ms 

Throttled 365.52ms 

Exact Algorithm 365.87ms 

ACO 362.67ms 

Proposed Algorithm 360.11ms 

 

 
Figure 2. Average utilization of VMs 

 

 

In this regard, we utilized five distinct kinds of 

virtual machines, and Table 2 displays their 

configuration information. Table 3 displays the 

workload configuration utilized to carry out the 

scheduling experiment. 

Table 4 indicates that Round Robin and proposed 

IPOA methods outperform the Throttled approach in 

task scheduling efficiency. While Round Robin and 

IPOA yield similar outputs, Round Robin's lack of 

VM status checking leads to server queuing. IPOA, 

by considering VM status and cluster-based 

comparisons, prevents queuing and improves task 

assignment. ACO assigns tasks based on lower 

pheromone contents in VMs, akin to MPSO, albeit 

with higher response times. 

The Table 5 shows the Average response duration 

for that configuration. The proposed IPOA method 

not only effectively distributes the load among the 

virtual computers, as can be seen from Tables 4 and 

5, but it also achieves a superior average response 

time.  

The experiment is run again with various sets of 

virtual machines and jobs, and the outcomes are 

reliable. The usage of VMs with various 

combinations of 1000, 2000, and 3000 workloads 

was then examined. The research's employment of 

several algorithms on VMs is depicted in Fig. 2. As 

can be seen from Fig. 2, when compared to other 

algorithms, the Throttled and ACO methods do not 

consistently use the VMs.  

While RR and Exact Methods effectively utilize 

VMs, our IPOA method is even more efficient with 

VMs and ATR. IGJO's Seeking mode takes longer 

than Tracing mode, thus not considered for IPOA 

scheduling. Similarly, the proposed hybrid, 

combining IPOA and IGJO, is also not accounted for 

in scheduling. Experiments in sequential and parallel 

modes determine average response time, displayed in 

Figs. 3 and 4. 

We employed 10 and 20 virtual machines in two 

clusters with 60 incoming jobs in Figure 3a. With 300 

incoming jobs, we employed 10 and 50 VMs across 

two clusters in Figure 3b. The two best VMs from 

every cluster are selected in IPOA's best match (GB) 

case technique so that the resources can match the 

anticipated demands. We compare resource demands 

and excess in each cluster, using the IGJO strategy 

for remaining VMs. Specifically, we compare each 

cluster's extra resources to forthcoming demands. 

The experiment runs parallel with threads allocated 

asymmetrically based on cluster count, crucial for 

efficient resource management and speed 

enhancement per cluster. 
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(a) (b) 

Figure. 3 Squentail analysis: (a) Sequentail Analysis with 60 tasks and Squentail analysis with 300 tasks 

 

  

(a) (b) 

Figure. 4 Parallel analysis: (a) Parallel analysis with 60 tasks and Parallel analysis with 300 tasks 

 

 

As can be seen from Fig. 4, parallel mode 

execution will result in a faster average reaction time 

than sequential mode. Figs. 3 and 4 show that, when 

compared to the branch-and-bound based Exact 

approach, the IPOA, IGJO, and hybrid (IPOA+IGJO) 

algorithms provide workable solutions in terms of 

average reaction time. Additionally, our hybrid 

approach is faster than all other algorithms. 

Accordingly, the resource usage factor is 

examined in relation to proposed methods. The 

resource use with 1000, 2000, and 3000 jobs is shown 

in Figs. 5 (a), (b), and (c), respectively. In each of the 

three scenarios, RR uses the maximum amount of 

cloud resource pool resources. ACO uses 

approximately an equal number of resources from the 

unused VM resources as well as the cloud resource 

pool. 

IGJO surpasses IPOA in resource utilization by 

effectively employing inactive cluster resources. The 

hybrid method outperforms traditional approaches, as 

demonstrated by the benchmark Exact method in Fig. 

5, showcasing superior resource efficiency compared 

to previous methods considered for evaluation. 

4.1 Time complexity analysis 

In the proposed hybrid method, IPOA and IGJO 

approaches are the foundation. The proposed hybrid 

method's time complexity is therefore O (amount of 

tasks) *O (amount of clusters) *O (amount of VMs) 

*O (amount of’m’iterations) *O(IPOA)*O(IGJO), 

which is equal to O(n)*O(Cz)*O(VMk)*O('m’) *O 

(n, Cz) *(n, Cz). The formula becomes 

O(n*Cz*VMk*m).  

The computational time for the three averages, 

best, and worst methods out of all those proposed is 

shown in Fig. 6. Utilizing the proposed and cutting-

edge benchmark techniques, we tested various job 

combinations and VM counts. In Fig. 6, worst-case 

execution time occurs when surplus resources don't 

match anticipated needs. RR's constant execution 

time stems from its reliance on cloud resources. 

ACO's time consistency results from variable 

pheromone content. Exact algorithm's uniform 

execution time is due to exhaustive resource 

allocation attempts. 
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(a) (b) 

 
(c) 

Figure. 5 Average resource usage: (a) Resource usage with 1000 tasks, (b) Resource usage with 2000 tasks, and (c) 

Resource usage with 3000 tasks 

 

 
Figure. 6 Execution time analysis of proposed algorithms 

 

 
Figure. 7 Comparison in terms of accuracy 

4.2 Comparative analysis 

The efficiency of the suggested model is 

compared to that of HUNTER (13), FT-ERM (14), 

and RU-VMM (16) in terms of accuracy, and 

scalability. 

 
Figure. 8 Comparison in terms of scalability 

 

Fig. 7 shows the accuracy comparison of the 

proposed technique with the existing techniques, 

including HUNTER, FT-ERM, and RU-VMM. The 

accuracy of the proposed technique increases by 

1.12%, 2.11%, and 14.2%, respectively. It shows that 

the proposed method has good accuracy compared 

with the existing HUNTER, FT-ERM, and RU-

VMM approaches. 

Fig. 8 compares scalability between existing 

HUNTER, FT-ERM, and RU-VMM proposed 

method. The proposed method exhibits superior 

scalability, efficiently accommodating growing 

resource requirements without compromising 

performance or stability. The accuracy of the 

proposed technique increases by 4.78%, 35.1%, and 

17.98%, compared to existing HUNTER, FT-ERM, 

and RU-VMM techniques respectively. 
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5. Conclusion 

In this paper, a novel hybrid algorithm that 

combines improved pelican optimization algorithm 

(IPOA) and improved golden jackal optimization 

(IGJO), to enhance efficiency in resource allocation. 

The proposed methodologies focus on dynamic 

resource allocation, considering factors such as CPU 

and memory utilization, and aim to improve resource 

allocation efficiency and task scheduling 

effectiveness. The experiments conducted 

demonstrate the effectiveness of the proposed 

approach compared to existing algorithms such as 

Round Robin, Throttled, ACO, and exact algorithm. 

Results indicate that the proposed hybrid algorithm 

outperforms these methods in terms of average 

response time, VM utilization, and resource usage 

efficiency. Additionally, the proposed algorithm 

shows improved accuracy and scalability compared 

to existing techniques like HUNTER, FT-ERM, and 

RU-VMM. According to experimental findings, the 

accuracy of the proposed technique is higher than that 

of the existing HUNTER, FT-ERM, and RU-VMM 

approaches by 1.12%, 2.11%, and 14.2%, 

respectively. Future research will focus on 

integrating cutting-edge technologies like blockchain 

and edge computing to improve multimedia resource 

management in cloud computing environments' 

security and privacy. 
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