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Abstract: The multi-objective economic load dispatch problem (ELDP) with non-smooth cost functions and ramp-

rate limits presents a challenging optimization task in power systems. This paper proposes the use of a modified cheetah 

optimizer (MCO) that incorporates opposition-based learning (OBL) and a dynamic adaptive weighting factor to 

efficiently solve this problem. The simulations are conducted on standard test systems using MATLAB programming. 

A comparative study is performed, evaluating the performance of the MCO against basic CO and other similar 

heuristics. The results demonstrate the effectiveness of the MCO in achieving optimal solutions for the multi-objective 

ELDP with non-smooth cost functions and ramp-rate limits. The proposed approach offers a promising solution for 

addressing the complex optimization requirements in power system operation and planning. The optimal cost is 

determined using multi-criterion optimization (MCO) in 3-bus system as $6,838.6434/h, $7,738.789/h, and 

$8,252.033/h for 700 MW, 800 MW and 850 MW demand levels respectively. The optimal cost is evaluated as 

$17,988.96/h for the 13-bus test system considering a total demand of 1800 MW. The optimal cost is evaluated as 

121960.30 $/hr, for the 40-bus test system considering a total demand of 10500 MW. These outcomes demonstrate the 

efficacy of MCO in resolving the ELDP with generator and valve controls.  

Keywords: Optimal power flow, Electric vehicle fleets, Open access trading, Wind farms, Skill optimization algorithm, 

Opposition-based learning.   

 

 

1. Introduction 

The economic load dispatch problem (ELDP) is 

pivotal in power systems, optimizing energy 

generation to minimize production costs while 

meeting demand. It ensures efficient resource 

utilization, grid stability, and reduced operational 

expenses by allocating power from generators 

economically and reliably [1]. A country's economic 

growth and power system efficiency are intertwined: 

expanding economies demand more electricity, while 

a stable power supply fosters industrial growth, 

enabling productivity, attracting investments, and 

supporting technological advancements. ELDPs 

come in various forms—Classical ELD minimizes 

costs with operational constraints, Multi-objective 

ELD optimizes multiple goals, Dynamic ELD 

considers time-varying demands and constraints, 

Security-Constrained ELD emphasizes stability, and 

Stochastic ELD manages uncertainties like load 

forecasts and renewable variations [2]. Solutions 

involve classical methods (lambda iteration, gradient, 

newton-raphson) offering quick but limited solutions 

and modern optimization techniques providing robust, 

efficient solutions for complex ELDPs, 

accommodating non-linear constraints and diverse 

objectives in power system optimization [2]. 

In recent times, various researchers have been 

motivated to solve ELDPs using various meta-

heuristics. In [3], crow search algorithm (CSA1) and 

differential evolution (DE) were used to solve ELDP 

considering only quadratic cost curves and generator 

limits. In [4], gradient-based optimizer (GBO) is 

employed for solving ELDP along with emission 

control and transmission loss. The study considers 
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the generator limits and valve settings. In [5], an 

improved symbiosis particle swarm optimization 

(ISPSO) is proposed for ELDP focusing on cost 

minimization by handling MW limits and valve 

controls. In [6], salp swarm algorithm (SSA) and β-

hill climbing optimizer (βHO) are hybridized to 

formulate hybrid salp swarm algorithm (HSSA) and 

solved ELDP for cost reduction. In [7], dynamic 

particle swarm optimization (DPSO) and grey wolf 

optimizer (GWO) were employed for ELDP in multi-

area power system by aiming cost reduction. In [8], 

deep neural network (DNN) is trained by using 

different solution data set of ELDPs using λ-iteration 

optimization algorithm by considering only MW 

limits. In [9], an enhanced exploratory whale 

optimization algorithm (EEWOA) is utilized for 

solving multi-period ELDP. In [10], quasi 

oppositional population based global particle swarm 

optimizer with inertial weights (QPGPSO-W) is 

introduced by aiming cost and loss reducing while 

solving ELDP with MW limits and valve controls. In 

[11], memory-based gravitational search algorithm 

(MBGSA) is introduced for solving ELDP 

considering photovoltaic power generation and load 

demand variations. The study considered only cost 

minimization and MW limits. In [12], chameleon 

swarm algorithm (CSA2) is employed for solving 

ELDP and combined emission economic load 

dispatch (CEEDP) with MW limits by considering 

cost and loss minimization. In [13], total operating 

cost (includes fuel, maintenance, emission, power 

loss, and wind power costs) is optimized while 

solving ELDP using DNN and novel genetic 

algorithm (nGA). Notably, the study was also 

considered ramp rate and spinning reserve limits. In 

[14], evolutionary simplex adaptive Hooke-Jeeves 

algorithm (ESAHJ) is developed by hybridizing GA 

and modified Hooke and Jeeves methods. In [15], an 

innovative hybrid algorithm (ihPSODE) by 

combining novel PSO (nPSO) and DE (nDE) is 

developed for solving ELDP with multiple objectives 

and constraints.  In [16], arithmetic optimization 

algorithm (AOA) is proposed with six elementary 

mathematic functions for balancing exploration and 

exploitation for solving ELDP by aiming cost and 

loss reduction. In [17], modified krill herd algorithm 

(MKHA) is proposed by embedding crossover and 

mutation features for solving ELDP with multiple 

constraints. In [18], salp swarm algorithm (SSA) is 

introduced for ELDP subjected to MW limits, valve 

points and ramp rate limits. It is aimed to reduce 

operating cost and total transmission loss. In [19], 

oppositional based learning (OBL) is employed to 

improve pigeon-inspired optimizer (PIO) for solving 

ELDP focusing on cost minimization. In [20], 

symbiotic organism search with disruption operator 

(DSOS) is presented for ELDP for ensuring better 

exploration features. In [21], search and rescue 

optimization algorithm (SRA) is proposed for ELDP 

is solved by aiming cost and loss reducing with MW 

limits and valve controls. In [22], multigroup marine 

predator algorithm (MGMPA) based ELDP is 

presented to reduce cost of generation and 

transmission lines. The problem is constrained by 

generator limits and valve controls. In [23], a novel 

artificial ecosystem-based optimization (AEO) is 

employed for solving ELDP with MW limits and 

valve controls. In [24], author proposes a novel 

approach based on the chaotic slime mould algorithm 

(CSMA) for solving the ELD problem. The 

algorithm's effectiveness is demonstrated through 

comprehensive experiments, and it shows promising 

results in optimizing the economic load dispatch 

problem. In [25], a hybrid Harris Hawks optimizer 

(HHHO) combines the Harris Hawks optimization 

algorithm with other metaheuristics to enhance 

exploration and convergence for the economic load 

dispatch problem. Experimental results demonstrate 

HHHO's superiority over existing techniques. In [26], 

a memetic sine cosine algorithm (MSCA) is proposed, 

combining the global search of sine cosine algorithm 

with local search to improve solution quality for 

economic load dispatch. In [27], a hybrid capuchin 

search algorithm (HCSA) is introduced, combining 

Capuchin Search Algorithm and gradient search for 

balanced exploration-exploitation in economic load 

dispatch. Results show HCSA's effectiveness. In [28], 

a Quasi-oppositional-based political optimizer 

(QOBPO) handles non-convex economic emission 

load dispatch with valve-point loading via quasi-

oppositional learning and political optimization. 

QOBPO achieves better economic-emission trade-

offs. 

From the comparison of literature listed in Table 

1, meta-heuristics, while versatile, might converge 

slowly or get stuck in local optima. The no free lunch 

theorem (NFLT) [29] states anyone algorithm works 

for all problems, justifying the need for new 

approaches. In recent times, migration-crossover 

algorithm (MCA) [30], four directed search 

algorithm (FDSA) [31], total interaction algorithm 

(TIA) [32], walk-spread algorithm (WSA) [33], and 

attack leave optimizer (ALO) [34] are have been 

introduced for solving various optimization problems. 

However, a reliable metaheuristic demonstrates 

stability and resilience by consistently identifying 

near-optimal or ideal solutions even when faced with 

changes in problem landscapes or algorithm settings 

[35]. Cheetah optimizer [36], is one such another 

recent efficient metaheuristic and adapted in this 
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work for the first time. Since this work is focused on 

only economic aspects and thus emission is not 

considered. Further, the tie-line limit is required for 

only when ELDP is handling in multi-area power 

system. On the other hand, spinning reserve is 

required for ensuring reliability under generators 

failure, but can cause for extra operating cost. Thus, 

this work is not handled tie-line and spinning reserve 

constraints.    

Within this context, this work presents the 

following significant contributions: 

 

• Introduction of the cheetah optimizer (CO) for the 

economic load dispatch problem (ELDP) within 

power systems, marking a pioneering application. 

• Incorporation of opposition-based learning (OBL) 

algorithm to enhance search capabilities and 

initialize the population for improved 

optimization. 

• Effective handling of valve point limits and ramp 

rate limits during the resolution of ELDP. 

• Optimization of multiple objectives, specifically 

total fuel cost and transmission losses, enhancing 

the comprehensiveness of the solution. 

• Conducting simulations on standard three-unit 

and thirteen-unit test systems to validate the 

proposed methodologies. 

• Augmentation of the analysis by deploying 

various meta-heuristics alongside the modified 

cheetah optimizer (MCO) for a comprehensive 

quantitative evaluation of computational 

efficiency. 

 

Paper organized as: Generator fuel cost curves and 

valve controls are covered in section 2. Section 3 

describes the multi-objective function with equal and 

unequal constraints. Section 4 explains CO and the 

modified cheetah optimizer. Section 5 compares 

conventional test system simulation findings. Section 

6 concludes the investigation on valve controls, 

multi-objective functions, optimizer upgrades, and 

simulation assessments.  

2. Modelling of concepts  

The curve typically slopes upwards due to factors 

like start-up costs, fuel expenses, maintenance, and 

other operational costs. At lower power outputs, the 

cost per unit of generated power tends to be higher 

due to start-up or minimum generation costs. As the 

output increases, the marginal cost of generating 

additional power decreases until reaching a certain 

point where it might plateau or slightly increase due 

to factors like efficiency limitations or fuel expenses. 

 

 
Figure. 1 Non-smooth fuel cost curve with valve controls 

 

This curve is crucial in ELD as it helps in 

determining the optimal allocation of power output 

among generators to meet demand while minimizing 

the overall production cost. The objective is to find 

the combination of generator outputs that satisfy the 

demand at the lowest possible cost, considering 

various constraints and operating conditions.  The 

following Eq. (1) and Eq. (2) are the expressions for 

generators cost curve without and with valve point 

controls, respectively.   

 

𝑓𝑖(𝑃𝑖) = 𝑎𝑖𝑃𝑖
2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖   (1) 

 

𝑓𝑖(𝑃𝑖) = (𝑎𝑖𝑃𝑖
2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖)  

+|𝑑𝑖 × 𝑠𝑖𝑛[𝑒𝑖 ×  (𝑃𝑖
𝑚𝑖𝑛 − 𝑃𝑖)]|        (2) 

 

where 𝑃𝑖 is the output power of a generator-i, 𝑎𝑖, 𝑏𝑖, 

𝑐𝑖 , 𝑑𝑖  and 𝑒𝑖 are the coefficients of cost curve, 

respectively; 𝑓𝑖 is the fuel cost of a generator-i, 𝑃𝑖
𝑚𝑖𝑛 

and 𝑃𝑖
𝑚𝑎𝑥  are the minimum and maximum MW 

limits of a generator-i, respectively. 

Valve settings and ramp rates are crucial to ELD. 

Valve modifications affect thermal generator 

efficiency and flexibility. Increased operational 

maneuverability may reduce efficiency, whereas 

lower settings maximize efficiency. Ramp rates allow 

rapid power output changes to suit demand but may 

strain equipment. ELD valve settings and ramp rates 

should be balanced for effective load tracking, grid 

stability, resource use, system dependability, and 

equipment stress. 

3. Problem formulation  

The power plants use multi-valve steam turbines 

to regulate the power output of their generating units. 

These turbines, with their frequent valve openings, 

create fluctuations in the generator's fuel cost 
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function. To address this issue in examining the 

Economic Dispatch problem, a rectified sinusoidal 

component needs incorporation into the standard 

quadratic cost function. Consequently, the quadratic 

cost function for generating units affected by valve 

point loading is outlined below. 

 

𝐹𝑐 = ∑ {(𝑎𝑖𝑃𝑖
2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖) + |𝑑𝑖 × 𝑠𝑖𝑛[𝑒𝑖 ×

𝑛𝑔
𝑖=1

 (𝑃𝑖
𝑚𝑖𝑛 − 𝑃𝑖)]|}         (3) 

 

In ELDP, equal constraints typically refer to 

equality constraints that maintain the balance 

between power generation and demand (load + 

losses). 

 

𝑃𝐷 = ∑ 𝑃𝑖
𝑛𝑔
𝑖=1      (4) 

 

𝑃𝐷 + 𝑃𝑙𝑜𝑠𝑠 = ∑ 𝑃𝑖
𝑛𝑔
𝑖=1      (5) 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ ∑ 𝑃𝑖𝐵𝑖𝑗𝑃𝑗 +
𝑛𝑔
𝑗=1 ∑ 𝐵0𝑖𝑃𝑖 +𝑁𝐺

𝑖=1 𝐵00
𝑛𝑔
𝑖=1   (6) 

 

Unequal constraints, on the other hand, involve 

inequality conditions, often related to generator limits, 

transmission line capacities, and various operational 

limits. These constraints ensure that the generated 

power remains within the capacity limits of the 

generators and transmission lines, considering factors 

like minimum and maximum generation limits, ramp 

rates, and other operational restrictions. 

 

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖

𝑚𝑎𝑥   (7) 

 

𝑃𝑖 − 𝑃𝑖
0 ≤ 𝑈𝑅𝑖    (8) 

 

𝑃𝑖
0 − 𝑃𝑖 ≤ 𝐷𝑅𝑖    (9) 

 

where 𝐹𝑐  is the total fuel cost of all generators in the 

system, 𝑃𝑖
0 is the earlier output power of a generator-

i, 𝑈𝑅𝑖  and 𝐷𝑅𝑖  are the up-ramp and down-ramp 

limits, respectively; 𝑛𝑔 is the number of generators, 

𝑃𝐷  is the total demand on system, 𝑃𝑙𝑜𝑠𝑠  is the total 

transmission loss, 𝐵𝑖𝑗 , 𝐵0𝑖  an 𝐵00  are the B-

coefficients of transmission system, respectively. 

 

 

Table 1. Objective functions, constraints and solution techniques used ELDPs in literature 
Method Objectives Limits 

Cost Loss Emission MW 

limits 

Valve  

points 

Ramp  

rate 

Tie-line Spinning  

Reserve 

CSA1 & DE [3] x - - x - - - - 

MBGSA [11] x - - x - - - - 

DNN [8] x - - x - - - - 

EEWOA [9] x - - x x - - - 

ISPSO [5] x - - x x - - - 

HSSA [6] x - - x x - - - 

GWO [7] x - - x x - x - 

OPIO [19] x - - x x x - - 

QPGPSO-W [10] x x - x x - - - 

ESAHJ [14] x x - x x - - - 

ihPSODE [15] x x - x x - - - 

AOA [16] x x - x x - - - 

MKHA [17] x x - x x x - - 

MKHA [18] x x - x x x - - 

DSOS [20] x x - x x x - - 

CSA2 [12] x x x x - - - - 

GBO [4] x x x x x - - - 

nGA [13] x x x x x x - x 

SAR [21] x x - x x - - - 

MGMPA [22] x x - x x - - - 

AEO [23] x x - x x - - - 

CSMA [24] x x - x x - - - 

HHO-AβHC [25] x x - x x - - - 

SCA-βHC [26] x x - x x - - - 

IHCSA [27] x x - x x - - - 

QOPO [28] x x - x x - - - 

Proposed x x - x x - - - 
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4. Solution methodology 

The solution methodology of ELDP is developed 

based on recent metaheuristic cheetah optimizer 

(CO) with opposition-based learning (OLB) and an 

adaptive weighting factor.    

4.1 Cheetah optimizer 

The CO algorithm, inspired by the cheetah's 

hunting methods [36], offers advantages like minimal 

parameter adjustments, swift convergence, and 

simplified calculations. It follows three key stages: 

searching, waiting, and attacking, streamlining the 

optimization process. 

4.1.1. Searching phase 

With a vigilant gaze, the cheetah keenly observes 

its environment, leveraging its hunting instincts to 

seek optimal prey according to the current 

environmental dynamics. The mathematical model at 

this stage is outlined as follows: 

 

𝐶𝑝𝑞
𝑘+1 = 𝐶𝑝𝑞

𝑘 + 𝑟 × 𝑅𝑝𝑞
𝑘    (10) 

 

𝑅𝑝𝑞
𝑘 = 0.001 +

𝑘

𝑘𝑚𝑎𝑥
(𝑢𝑙𝑖𝑚 − 𝑙𝑙𝑖𝑚) (11) 

 

where 𝐶𝑝𝑞
𝑘  signifies the current position of cheetah-p 

at iteration k while 𝐶𝑝𝑞
𝑘+1  represents its updated 

position at the subsequent iteration, 𝑟 denotes a 

randomly chosen number from the range (0, 1), 

𝑅𝑝𝑞
𝑘  refers to a random step length, and 𝑢𝑙𝑖𝑚 and 𝑙𝑙𝑖𝑚 

represent the upper and lower bounds of variable q. 𝑘 

stands for the current iteration, and 𝑘𝑚𝑎𝑥 denotes the 

maximum iteration count. 

4.1.2. Sitting and waiting phase 

While foraging, each cheetah movement bears the 

risk of alerting and potentially startling its prey, 

leading to escape. Cheetahs adopt a strategy of 

staying low or camouflaging in bushes, patiently 

awaiting prey within striking distance. During the 

sitting and waiting stage, the cheetah maintains its 

position unchanged, represented mathematically as 

follows: 

 

𝐶𝑝𝑞
𝑘+1 = 𝐶𝑝𝑞

𝑘                                      (12) 

4.1.3. Attacking phase 

Cheetahs' prowess lies in their precise timing 

during prey attacks, relying on remarkable speed and 

agility. In the attacking stage, they swiftly close the 

distance, using speed to destabilize prey strategically. 

Attacks, solitary or group-based, involve tactical 

positioning based on prey movements and group 

dynamics. The mathematical representation for this 

stage follows: 

 

𝐶𝑝𝑞
𝑘+1 = 𝐶𝐻𝑞

𝑘 + 𝑋𝑝𝑞 × 𝑌𝑝𝑞
𝑘   (13) 

 

𝑋𝑝𝑞 = |𝑟𝑝𝑞|
𝑒𝑥𝑝(

𝑟𝑝𝑞

2
)

× 𝑠𝑖𝑛(2𝜋𝑟𝑝𝑞) (14) 

 

𝑌𝑝𝑞
𝑘 = 𝐶𝑟𝑞

𝑘+1 − 𝐶𝑝𝑞
𝑘     (15) 

 

where 𝐶𝐻𝑞
𝑘  signifies the prey's position, while 𝑋𝑝𝑞 

and 𝑌𝑝𝑞
𝑘  represent the turning factor and interaction 

factor, respectively, 𝑟𝑝𝑞 stands for a randomly chosen 

value from a normal distribution. Additionally, 

𝐶𝑟𝑞
𝑘+1 and 𝐶𝑝𝑞

𝑘  denote the positions of cheetahs r and 

j at iteration k, respectively. 

4.2 Modified cheetah optimizer  

In the proposed modified cheetah optimizer 

(MCO), the searching phase is improvised using 

opposition based learning for population diversity, 

promoting convergence toward the global optimum. 

 

𝐶�̅� = 𝑢𝑙𝑖𝑚 + 𝑙𝑙𝑖𝑚 − 𝐶𝑖                          (16) 

 

where 𝐶�̅�  is a population initiated in the opposite 

direction.  

Later, in the attacking phase, the cheetah employs 

a dynamic weighting factor, 𝛾, for ongoing position 

updates. Initially, 𝛾 holds a higher value, facilitating 

an efficient global search. As the iteration progresses, 

𝛾 gradually decreases adaptively [37], modifying Eq. 

(13) as follows:  

 

𝐶𝑝𝑞
𝑘+1 = 𝐶𝐻𝑞

𝑘 + 𝛾𝑝𝑞 × 𝑌𝑝𝑞
𝑘              (17) 

 

Here dynamic weighting factor 𝛾𝑝𝑞 is dependent on 𝜕 

as defined by: 

 

𝜕 =
𝑘

𝑘𝑚𝑎𝑥
                         (18) 

 

𝛾𝑝𝑞 =
𝑒4(1−𝜕)−𝑒−4(1−𝜕)

[𝑒2(1−𝜕)+𝑒−2(1−𝜕)]
2         (19) 

 

𝑌𝑝𝑞
𝑘 = 𝐶𝑟𝑞

𝑘+1 − 𝐶𝑝𝑞
𝑘     (20) 

 

By these modifications, the basic CO can experience 

better search characteristics, and can balance  
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Table 2. Comparison for a demand of 700 MW 

 DSOS [20] MCO CO 

G1 322.94 323.36 322.875 

G2 99.33 98.99 98.401 

G3 277.73 277.66 278.724 

Cost  6838.4143 6838.4133 6838.6434 

Mean - 6838.627 6838.639 

SD - 0.00232 0.00286 

 
Table 3. Comparison for a demand of 800 MW 

 DSOS [20] MCO CO 

G1 369.94 368.459 369.758 

G2 114.54 115.555 114.507 

G3 315.52 315.986 315.735 

Cost  7738.5035 7738.503 7738.789 

Mean - 7738.79 7738.792 

SD - 0.0046 0.00711 

 

exploration and exploitation phases by avoid local 

trap or optima, resultant for global solution. 

5. Results and discussion 

The computational efficacy of the proposed MCO 

is verified while solving ELDP on standard test 

systems [27]. Two test systems are considered for 

analyzing the impact of valve-point loading effects 

and ramp-rate limits on ELDP solution.  

5.1 Three units test system 

For this test system, the transmission loss is 

ignored and considered only cost optimization with 

valve point controls. The demand levels are taken as 

700 MW, 800 MW and 850 MW and the results of 

CO, MCO are given in Table 2, Table 3 and Table 4, 

respectively. The mean and standard deviation (SD) 

of 25 independent runs are also tabulated. Further, the 

results of CO and MCO are compared with DSOS 

[20]. The optimal cost is determined as 6838.4133 

$/hr and 6838.6434 $/hr with MCO and CO. In 

comparison to CO, MCO has resulted best solution 

and it is very competitive with DSOS [20]. Similarly, 

MCO has shown superiority than CO and DSOS [20] 

for a demand of 800 MW and also for 850 MW, the 

results are better than DSOS [20] and ISPSO [5].    

Further, the computational features of MCO are 

quantified over 25 independent runs by considering 

load demand as 850 MW. Also, basic CO, cuckoo 

search algorithm (CSA) [38], teaching learning based 

optimization (TLBO) [39], artificial rabbits 

optimization (ARO) [40], grasshopper optimization 

algorithm (GOA) [41], prairie dog optimization 

(PDO) [42], butterfly optimization algorithm (BOA) 

[43], and firefly algorithm (FA) [44] are used for 

comparative study.  The results are given in Table 4 

and it can be seen that the MCO has been 

outperformed than other algorithms with least global 

optima.    

5.2 Thirteen units test system 

In this scenario, simulations are performed on a 

13-units power system considering a total demand of 

1800 MW considering both limits. The results of 

MCO over 25 independent runs along with other 

comparative algorithms are given in Table 3. From 

the results, MCO is outperformed than other 

compared algorithms by its global best, 17988.96 

$/hr.   

Further, a comparison with literature is given in 

Table 5. In order to cross verify the results which are 

reported in literature works, we have used brute force 

technique by considering the reported schedule in the 

cost curve for evaluating the total cost. The corrected 

values are given in Table 6. As per the comparison of 

corrected cost functions, MCO is highly comparative 

with QOPO [28], whereas superior to CSMA [24], 

HHO-AβHC [25], SCA-βHC [26], and IHCSA [27].  

 

 

 
Table 4. Comparison of different algorithms for three units system with Pd = 850 MW 

Algorithm  
Schedule (MW) Cost ($/hr) 

Pg1 Pg2 Pg3 Best Worst Mean Median SD 

MCO 395.309 301.993 152.698 8252.033 8978.065 8645.213 8640.494 118.043 

CO 499.665 300.335 50.000 8273.702 8954.948 8627.167 8633.250 132.755 

CSA 501.219 298.781 50.000 8302.129 8918.455 8640.373 8645.926 134.717 

TLBO 496.697 303.303 50.000 8310.748 8956.688 8639.265 8642.703 119.056 

ARO 502.430 297.570 50.000 8324.201 8905.957 8637.363 8640.514 128.980 

GOA 406.277 297.860 145.863 8349.217 8985.551 8641.163 8644.257 124.027 

PDO 406.503 293.470 150.028 8351.280 8980.821 8647.461 8642.544 135.055 

BOA 494.175 305.825 50.000 8354.220 8885.906 8641.583 8643.591 129.922 

FA 497.564 152.436 200.000 8354.990 8981.300 8631.659 8638.399 121.617 

PSO 399.747 377.391 72.862 8365.966 8970.968 8642.211 8647.447 123.065 
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Table 5. Comparison of different algorithms for thirteen units system with Pd = 1800 MW 

Item FA BOA PDO GOA ARO TLBO CSA CO MCO 

Pg1 628.0021 627.67 539.35 629.23 626.41 626.48 628.23 628.74 628.44 

Pg2 0.001185 297.00 360.00 299.55 300.99 307.35 360.00 360.00 1.56 

Pg3 359.142 298.99 299.36 220.58 293.41 226.37 1.39 216.69 359.97 

Pg4 159.7312 60.01 60.01 60.90 60.18 60.00 60.00 60.00 111.48 

Pg5 60 60.00 60.00 60.00 60.72 60.92 60.00 60.00 109.86 

Pg6 60 60.00 109.88 60.36 62.30 60.00 159.80 60.32 160.05 

Pg7 60 60.06 60.00 159.26 60.14 60.00 60.03 60.00 60.00 

Pg8 60 60.14 60.04 60.00 60.10 154.39 110.51 105.43 114.25 

Pg9 159.7479 60.00 60.00 60.57 60.02 60.00 161.24 60.45 60.00 

Pg10 103.4461 66.17 40.17 40.00 40.00 40.37 40.51 40.00 40.17 

Pg11 40 40.01 40.14 40.31 40.12 40.40 48.31 40.41 44.70 

Pg12 55 55.08 56.17 55.67 82.43 55.26 55.00 55.53 55.65 

Pg13 55 55.15 55.00 55.15 55.77 55.00 55.00 55.00 55.05 

Best  17992.45 17991.58 17990.62 17997.17 17999.62 17989.19 17977.27 17999.90 17988.96 

Worst 18329.65 18262.73 18291.86 18322.55 18328.25 18286.21 18280.85 18277.89 18333.46 

Mean 18168.77 18155.43 18177.04 18176.77 18217.28 18166.82 18184.36 18172.64 18162.21 

Median 18195.08 18152.99 18162.40 18175.59 18247.03 18162.69 18215.96 18182.81 18133.31 

SD 89.91886 75.16 68.69 69.89 75.41 73.84 72.66 80.90 85.57 

 
Table 7. Comparison of different algorithms for forty units system with Pd = 10500 MW 

Unit # Pg1 Pg2 Pg3 Pg4 Pg5 Pg6 Pg7 Pg8 Pg9 Pg10 

Schedule (MW) 114.00 114.00 120.00 190.00 97.00 140.00 280.67 290.42 292.51 130.00 

Unit # Pg11 Pg12 Pg13 Pg14 Pg15 Pg16 Pg17 Pg18 Pg19 Pg20 

Schedule (MW) 168.80 168.80 214.76 304.52 304.52 394.28 489.28 489.28 511.28 511.28 

Unit # Pg21 Pg22 Pg23 Pg24 Pg25 Pg26 Pg27 Pg28 Pg29 Pg30 

Schedule (MW) 523.28 523.71 523.28 523.28 523.82 523.28 13.84 11.78 10.19 94.83 

Unit # Pg31 Pg32 Pg33 Pg34 Pg35 Pg36 Pg37 Pg38 Pg39 Pg40 

Schedule (MW) 190.00 181.90 187.16 164.81 180.46 199.99 108.24 90.29 89.20 511.28 

 
Table 6. Comparison of literature for 13-units system 

Method Reported  

cost ($/hr) 

Corrected  

cost ($/hr) 

CSMA [24] 18701.49 19081.62 

HHO-AβHC [25] 17,960.43 18424.86 

SCA-βHC [26] 17960.39 18425.00 

IHCSA [27] 17,960.37 18425.00 

QOPO [28] 17988.99 18450.00 

Proposed  17988.96 17988.96 

 

 
Figure. 2. Convergence characteristics of different 

algorithms in 40-bus system 

5.3 Forty units test system 

In this test system, 40 units are supposed to supply 

10500 MW demand. The best results of MCO over 

25 independent runs are alone given in Table 7. The 

corresponding operating cost is 121960.30 $/hr, 

which is very competitive with the result HSSA of 

121960.27 $/hr [6]. The convergence characteristics 

of different algorithms are given in Fig. 2. 

6. Conclusion 

The multi-objective economic load dispatch 

problem (ELDP) poses a significant challenge in 

power systems due to its non-smooth cost functions 

and ramp-rate limits. This study introduces a solution 

using a modified cheetah optimizer (MCO) that 

integrates opposition-based learning (OBL) and a 

dynamic adaptive weighting factor. This method 

efficiently tackles the complexity of the ELDP. By 

conducting simulations on standard test systems 

through MATLAB programming, a comparative 

analysis is performed. The MCO's performance is 

evaluated against other algorithms, showcasing its 

effectiveness in delivering optimal solutions for the 
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multi-objective ELDP with non-smooth cost 

functions and ramp-rate limits. The optimal cost is 

determined using MCO in 3-bus system as 6838.6434 

$/h, 7738.789 $/h, and 8252.033 $/h for 700 MW, 

800 MW and 850 MW, respectively. Similarly, the 

optimal cost is evaluated as 17988.96 $/h for 13-bus 

test system considering a total demand of 1800 MW. 

The optimal cost is evaluated as 121960.30 $/hr, for 

the 40-bus test system considering a total demand of 

10500 MW. These results have shown the 

effectiveness of MCO in solving ELDP.     
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Notations 

𝑃𝑖   Output power of a generator-i 

𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖  and 𝑒𝑖 Cost coefficients of cost curve  

𝑓𝑖 Fuel cost of a generator-i 

𝐹𝑐  Total fuel cost of all generators 

in the system 

𝑃𝑖
𝑚𝑖𝑛 Minimum MW limits of a 

generator-i 

𝑃𝑖
𝑚𝑎𝑥 Maximum MW limits of a 

generator-i 

𝑃𝑖
0 Earlier output power of a 

generator-i 

𝑈𝑅𝑖 Up-ramp limit 

𝐷𝑅𝑖 Down-ramp limit 

𝑛𝑔 Number of generators 

𝑃𝑙𝑜𝑠𝑠 Total transmission loss 

𝐵𝑖𝑗 , 𝐵0𝑖  an 𝐵00 B-coefficients of transmission 

system 
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