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Abstract: The race to halt Alzheimer's disease (AD) in its tracks demands an early warning system. By predicting 

which mild cognitive impairment (MCI) patients are likely to decline into AD, clinicians can intervene while the 

window of opportunity remains open. But how to separate the MCI patients bound for AD from those with more 

benign forms of impairment? The key lies in examining the factors that influence disease progression. While prior 

studies have scratched the surface, a comprehensive analysis has proven elusive. Enter the Alzheimer's Disease 

Neuroimaging Initiative database, which tracks AD progression through a wealth of patient characteristics. 

Leveraging these rich data, our hybrid approach combines survival analysis with machine learning to generate 

dynamic predictions of time to AD onset. Rather than merely detecting AD early or diagnosing its current state, our 

model gazes into the future, forecasting progression from MCI to AD before the disease fully erupts. Among similar 

efforts, the proposed approach stands apart in scale and accuracy, validated on more patients and with higher 

predictive power than earlier attempts. Even cognitive tests or brain scans alone can foretell decline, with the 

proposed work achieving a remarkable C-index of 0.85 when evaluated using the whole ADNI dataset not only a 

sample from it. By revealing who is likely to convert to AD and when, this work enables clinicians to intervene at 

the critical junction where MCI transitions to inevitable decline. The future of AD treatment may hinge on such early 

warnings. 
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1. Introduction 

Alzheimer’s disease (AD) is a progressive 

neurodegenerative disorder with mental, cognitive, 

and structural deteriorations that accounts for 60% 

to 80% of dementia cases [1]. Alzheimer’s disease 

causes 5% of deaths in the U.S. It’s the seventh 

leading cause of mortality for 65-and-overs [2]. 

There is currently no treatment that can reverse the 

effects of Alzheimer’s disease (AD), so there is a 

significant amount of focus on research aimed at 

developing a deeper understanding of the condition 

as well as techniques for determining who is at risk 

for developing Alzheimer’s disease before the onset 

of symptoms. Because of the mentioned facts, it is 

extremely important to recognize patients who are at 

a high risk of acquiring Alzheimer’s disease [1]. In 

the same vein, early detection is necessary for the 

development of a treatment strategy that would slow 

down the advancement of the disease. It is when one 

symptom leads to another symptom in the 

progression of the illness. 

There are numerous causes for the onset and 

progression of Alzheimer’s disease; however, it is 

unknown how much each one contributes to the 

disease. Consequently, it is essential to study 

exhaustively the implications of data emanating 

from diverse sources with varying statistical 

characteristics and missing data. Recent research has 

proven that many sources of clinical data might 

provide complementary information, such that 

combining multiple sources of data improves the 
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prediction of cognitive decline over utilizing a 

single source [3]. It presents analytical challenges, 

such as the risk of overfitting the approach to the 

data, the approach’s inability to generalize to fresh 

data, and the large variance of approaches fitted to 

this data. Therefore, picking the appropriate 

characteristics can assist the inductive learner in 

enhancing their learning velocity, generalization 

ability, and induced approach simplicity [4]. 

In the recent years, considerable effort has been 

invested in the development of machine learning 

algorithms that can measure multiple predictors for 

a more precise risk assessment. Most of the machine 

learning has been accomplished through 

classification algorithms [5-7], which divide 

subjects into two groups, such as stable or 

progressive Mild Cognitive Impairment (MCI). On 

the other hand, classification methods cannot deal 

well with missing data, and there are various ways 

to define who belongs in a class. Survival analysis 

(SA) has recently been utilized as a superior method 

for calculating the risk of AD in MCI [8]. 

Random Forest is a powerful and versatile 

machine learning algorithm that has found 

significant applications in survival analysis. Survival 

analysis deals with predicting the time until an event 

of interest occurs, such as death or failure, and 

understanding the factors that influence it. Random 

Forest’s importance in survival analysis stems from 

its ability to handle high dimensional data, handle 

missing values, and capture complex nonlinear 

relationships between predictors and survival 

outcomes. Moreover, Random Forest can effectively 

handle interactions and non-proportional hazards, 

which are common challenges in survival analysis. 

By aggregating multiple decision trees and using 

ensemble learning, Random Forest can provide 

more accurate and robust predictions, reducing the 

risk of overfitting. Additionally, Random Forest 

offers feature importance measures, enabling 

researchers to identify the most influential predictors 

for survival outcomes. This information is crucial 

for understanding the underlying mechanisms and 

making informed decisions in various fields, 

including healthcare, finance, and engineering. 

Overall, Random Forest plays a pivotal role in 

survival analysis by providing reliable predictions, 

interpretability, and valuable insights into the factors 

influencing survival outcomes. 

The objective of using Random Forest in 

survival analysis for predicting the conversion from 

MCI to Alzheimer’s Disease (AD) is to develop a 

predictive model that can effectively identify 

individuals who are at a higher risk of progressing to 

AD. The conversion from MCI to AD is a critical 

stage in the disease progression, and early detection 

plays a crucial role in providing appropriate care and 

intervention. By utilizing Random Forest in survival 

analysis, we aim to leverage its strengths in handling 

complex and high-dimensional data to capture the 

multifaceted nature of MCI-to-AD conversion. 

Random Forest’s ability to handle interactions, non-

linear relationships, and missing values allows for 

the inclusion of various predictors such as 

demographic information, cognitive assessments, 

genetic markers, and imaging data. By aggregating 

multiple decision trees, Random Forest can provide 

reliable predictions while mitigating the risk of 

overfitting. Additionally, by assessing the feature 

importance within the Random Forest model, we 

can identify the key predictors that contribute 

significantly to the prediction of conversion. 

Ultimately, the objective is to develop a robust and 

accurate predictive model that can aid clinicians and 

researchers in identifying individuals at higher risk 

of MCI-to-AD conversion, enabling targeted 

interventions and personalized care to potentially 

delay or prevent the onset of Alzheimer’s disease. 

The rest of the work is organized as follows: Section 

2 discusses the related work presented in the 

literature for identifying AD. Section 3 describes the 

scientific approaches, methods, and data. Section 4 

explores the experimental work to illustrate the 

results and discussing them. Finally, Section 5 

concludes the findings and results of the paper. 

2. Related work 

Medical imaging and its applications have been 

widely attracted the attention of researchers for 

decades. Different types of scanning techniques and 

the analysis of them can help physicians in 

accurately diagnose the disease, not only that but 

also aid in early detection of dangerous diseases like 

tumours and AD [9-12]. The emergence and 

development of machine learning and deep learning 

techniques have also shared in the development of 

this research area. The following subsections focus 

on the work done in literature in the field of AD 

detection from medical scans. 

2.1 Prediction based on MRI only 

Most Alzheimer’s disease (AD) research has 

relied only on medical imaging [13]. Using 

structural MRI data, Liu et al [14] proposed a multi-

model deep learning framework based on 

convolutional neural networks (CNN) for automated 

hippocampal segmentation and AD classification. 

The authors achieved an accuracy rate of 88% in 
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AD classification, and 77% in MCI classification, 

but the authors limited their study to the 

hippocampus area only. Liu et al. [15] proposed a 

novel method for extracting ROI features and 

interregional features based on multiple measures 

from MRI images. The authors used six different 

anatomical measures to obtain six node feature sets 

and six edge feature sets, then they applied 

MKBoost algorithm to obtain the best classification 

accuracy from each feature set to select the best 

feature set, however, the work is very time and 

resource consuming with no remarkable 

enhancements in accuracy rate. 

Basheera and Ram [16] proposed a framework 

to predict differentiate between MCI and CN in 

order to detect AD at an early stage and they 

confirmed that they obtained high accuracy, but the 

noticeable drawback is the small size of the used 

dataset as they used only 4463 images for both 

training and testing. Basheer et al. [17] suggested a 

method based on deep learning to automatically 

measure the hippocampus volume without prior 

segmentation of the volumetric MRI scans. The 

authors developed a 2D convolutional neural 

network (CNN) model that uses 3-channel 2-D 

patches to predict the number of voxels that belong 

to the hippocampus to detect AD accordingly, but 

the results didn’t exceed 84% for the right 

hippocampus and 83% for the left hippocampus. 

Castro et al. [18] main goal was to make a system 

that automatically finds the disease in sagittal 

magnetic resonance images (MRI). The authors 

confirmed that Deep Learning models and transfer 

learning could be effective in this field, but nothing 

clear was mentioned about the results. Zao et al. 

[19] tried to find out if the radiomic features of the 

hippocampus are useful in reliably classifying MRI 

markers for (AD) using multivariate support vector 

machine (SVM). The authors succeeded to reach an 

accuracy rate of 88.2%, but the number of patients 

used to evaluate this study was small, as they used 

scans of 261 patients only. 

In summary, while MRI is a valuable tool in AD 

diagnosis, relying only on MRI for prediction has 

limitations in terms of specificity, sensitivity in early 

stages, subtype differentiation, cost and accessibility, 

lack of functional information, and the need for 

longitudinal data. Integrating MRI with other 

biomarkers and clinical assessments can enhance the 

accuracy of AD prediction and improve detection 

outcomes. 

 

 

 

 

2.2 Prediction based on multiple features 

Cai et al. [20] also used SVM and least squares 

loss function to select the optimal subset of 

embedded features, but the authors only reached an 

accuracy rate of 71.17%. Shikalgar and Sonavane 

[21] employed a multimodal data classifier using a 

hybrid deep neural network (NNs) that takes EEG 

inputs to classify MRI images. The authors’ aimed 

at improving the learning process by incorporating 

the weight components that uncover relationships 

between brain areas and genes to the NNs. The 

authors confirmed that they achieved an accuracy 

rate that exceeded 98% but the dataset used was too 

small to validate the results, as they only used 512 

MRI scans, which suggests an overfitting.  

Bi et al. [22] proposed “brain region-gene pairs” 

as the sample’s multimodal characteristics for 

detecting relationships between brain regions and 

genes. In addition, cluster evolutionary random 

forest (CERF), a novel data analysis technique 

suitable for “brain region-gene pairs,” was 

introduced, but the authors only used a small sample 

from ADNI dataset. Qiu et al. [23] explained how 

the data obtained from MRI scans is useful in 

improving the accuracy of diagnoses, especially for 

the Mini-Mental State Examination (MMSE) and 

logical memory (LM) tests, but the authors 

confirmed that their work was just proof of principle 

that multimodal fusion of models developed using 

MRI scans, and still needs to be validated in large 

number of scans. 

Alexiou et al. [24] discussed how the abnormal 

testing in one or more biomarkers can cause the 

development or presence of Alzheimer’s disease, 

but the authors confirmed that a validation on a 

large dataset is still needed to measure how effective 

is their approach. Venugopalan et al. [25] used deep 

learning (DL) to integrate MRI, genetic and clinical 

test data to classify patients into AD and MCI. The 

authors used 3D-convolutional neural networks 

(CNNs) for imaging data and extract features from 

clinical and genetic data, the authors just confirmed 

that their multimodal approach has outperformed 

other single models in literature. Zawawi et al. [26] 

developed a new hybrid model for extracting 

features from medical data by combining three 

different types of features: MRI, seven different 

types of neurologic tests, and baseline diagnosis. 

The authors confirmed that the three used features 

outperformed most of the well-known features, the 

authors succeeded in achieving an accuracy that 

exceeded 90%, but the main drawback was in the 

long time needed for diagnoses. Later than that, the 

same authors improved their results and reduced 
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time needed for features’ extraction, but they 

confirmed that they used only a small sample of 

instances [27].  

In summary, while combining MRI with other 

biomarkers or assessments can enhance AD 

prediction, there are limitations in terms of increased 

complexity and cost, lack of standardized protocols, 

unclear added value, limited availability or 

invasiveness of complementary techniques, 

interpretation challenges, and limited prediction 

accuracy. These drawbacks highlight the need for 

ongoing research, standardization efforts, and 

careful consideration of the practicality and clinical 

utility of combining multiple techniques in AD 

prediction. 

2.3 Prediction based on time series 

Hong et al. [28] used a deep learning approach 

to differentiate between MCI and AD. The authors 

relied on LSTM, and they succeeded in 

differentiating between MCI and AD with an 

accuracy rate of only 78%. Yang et al. [29] went for 

using the linear regression, and they succeeded to 

discover that the corpus callosum (CC) atrophy 

increases AD development, but they confirmed that 

they have a drawback which is the poor prediction 

time. The authors also confirmed that their 

suggested approach could appropriately restore the 

failure time in right censoring. Zawawi et al. [30] 

proposed a Prediction Model to capture the 

conditions between characteristics and the next stage. 

The authors confirmed that their model successfully 

recognized the affected brain regions across both 

MRI and Neurological data sets, but the authors 

mentioned that their system needs to be validated 

using actual data. 

Mirabnahrazam et al [31] used a deep learning 

approach to predict the time to AD conversion. The 

authors used survival analysis model that extends 

the traditional Cox regression model. They also 

discovered that the genetic factors had the least 

impact on survival analysis, while cognitive tests, 

demographics, and CSF features had the greatest 

impact. The authors used large sample of ADNI 

dataset to validate their work, and they succeeded to 

measure disease progression with a C-index of 80%.  

Compared with methods that focus on the goal 

of binary classification accuracy at a fixed threshold, 

our interest lies in modelling an approach that 

dynamically predicts the progression from MCI to 

AD over next eight years. Therefore, this approach 

can be transferred into clinically prediction approach.  

The last research conducted by Sarica et al [32] 

proposed an intriguing Random Survival Forests 

model for survival prediction. They found that 

optimizing hyperparameters yielded strong c-index 

scores of 0.798 with a Cox model and an even better 

0.85 with their proposed Random Survival Forest. 

The drawbacks of Sarica’s work include the small 

size of the used dataset, and most importantly they 

calculated the C-index individually for every 

parameter then they calculated the average which 

might be not an accurate metric for such a problem. 

Time series analysis can be a valuable approach 

for AD prediction, it has limitations related to data 

availability and quality, variability, and noise in 

longitudinal data, limited temporal resolution, the 

non-linear and dynamic nature of AD progression, 

generalizability and external validity, and 

interpretability and clinical utility. Addressing these 

challenges requires careful consideration of study 

design, data collection protocols, modelling 

techniques, and validation strategies to enhance the 

accuracy and applicability of AD prediction using 

time series analysis. 

Using survival analysis is important in AD 

prediction as it handles censoring, accommodates 

time-dependent covariates, estimates cumulative 

probabilities, incorporates competing risks, enables 

individualized risk prediction, and facilitates 

longitudinal data analysis. By utilizing survival 

analysis techniques, researchers and clinicians can 

gain valuable insights into the timing, risk factors, 

and progression of AD, leading to improved 

prediction models and personalized approaches for 

early detection and intervention.  

This paper addresses the limitations of all 

previous approaches found in literature, beside that 

it presents a novel way in the disease progression 

detection and analysis by studying cases that have 

been monitored for seven years not only four like 

other methodologies in literature work (See sections 

3 & 4). At the end from all the work done in 

literature related to AD, Khajehpiri et al [8], 

Mirabnahrazam et al [31], and Sarica et al [32] are 

the only state-of-the-art works used to compare 

survival analysis for predicting the future 

progression of MCI to AD, which is the main target 

of this work also. Because of that, a comparison 

between the proposed approach’s results and their 

results can be found in section 5 (see table 4). 

3. Materials & methods 

This section explains the proposed approach, 

how and why is has been selected, the dataset used, 

and how it was prepared and processed. The 

following subsection demonstrates the proposed 

work in this paper step by step. 
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3.1 Dataset description 

Data from the Alzheimer Disease Neuroimaging 

Initiative (ADNI) was used in this work as this is the 

largest publicly available dataset for this kind of 

problems [33]. The ADNI clinical dataset comprises 

clinical information about each subject including 

recruitment, demographics, physical examinations, 

and cognitive assessment data. The dataset also 

contains variety of scans and data representations 

like MRI, PET scans. Genetic data, cognitive tests 

data, demographics, etc. (see fig.1). Amongst all the 

previously mentioned scans and data representations, 

only MRIs and Neurological data were useful in our 

problem (see fig. 2 and 3). This work, unlike state-

of-the-art work done in literature used the whole 

dataset not only a sample of it. The whole dataset 

contains a time series of measurements from 1,737 

patients at each visit was used to evaluate the 

proposed approach. The used dataset contains at 

least 9 different scans for every patient, which 

means 1,737 x 9 = 15633 MRI images with their 

corresponding neurological data. The ADNI dataset 

has been instrumental in advancing our 

understanding of AD, identifying biomarkers, 

developing diagnostic criteria, and facilitating the 

development and evaluation of new therapeutic 

interventions. Its rich and diverse data continue to 

support research efforts aimed at improving early 

detection, monitoring disease progression, and 

developing effective treatments for AD. 

 

 

 
Figure.1 Different data representations in ADNI dataset 

[33] 

 

 
Figure. 2 Sample MRI scans from ADNI dataset showing 

coronal, sagittal, and axial plans 

 

 
Figure. 3 Sample Neurological data from ADNI dataset 

 

3.2 Subjects 

The suggested prediction approach was trained 

and tested on ADNI data using 18-month 

longitudinal trajectories of 900 cases per class 

(norm); Contains a total of 1800 items. Including 24 

neurological tests associated with MRI. Each patient 

profile consisted of 24 tests and 7 image files. 

Patient trajectories described temporal changes in 

falls variables over intervals that are three months 

each. The detailed data processing steps are 

described in the following sections. The inclusion 

criteria used in this study was as follows: 1) 55 to 90 

years; 2) Education level from primary education to 

higher education institutions; 3) People of all 

colours and strokes. The different types of data used 

in this study is as follows: 1) Neurological 

examination (neuropsychologist); 2) Criteria: initial 

testing and patient diagnosis; 3) Brain imaging 

techniques (MRI only). 

3.3 Data preprocessing 

Data pre-processing step is done to get the data 

ready and in suitable format to be inputted to the 

machine learning classifiers. We assumed that some 

data are missing at random, and that filtering is not 

informative because missing values are frequently 

seen in medical datasets. After that, imputation is 

used to replace the missing values with the correct 

ones. Missing data is often imputed using multiple 
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imputations, which maintain the relationships 

between the data and the uncertainty in those 

relationships. 

The dataset used here included variety of cases 

such as patients with cognitive typical Cognitively 

Normal (NL), patients with mid-cognitive 

impairment (MCI), and patients with Alzheimer’s 

Disease (AD) who underwent six-month follow-up 

exams after being recruited from more than fifty 

different US and Canadian centers. When it comes 

to brain state analysis there are typically nine classes, 

however, only two classes can effectively exhibit the 

concept of AD survival time prediction.  Those two 

classes are namely: the AD and the MCI.  

The assessment data was primarily made up of 

neurological tests, medical scan dates, and MRI 

results. Imputation was carried out during the cross-

validation cycle, but only on the training set, using 

the prediction matrix that was created on that set. 

The features obtained from the ADNI dataset 

after preprocessing are 12 features. Those 12 

features can be categorized as follows: one 

categorical, three ordinals, and the rest are numeric 

representations of the images. The last step in the 

data preprocessing was the normalization step, 

where any feature with more than 60% of its values 

missing would be excluded from the dataset. 

3.4 Method 

There are several reasons for selecting Random 

Forest for survival analysis in predicting the 

conversion from Mild Cognitive Impairment (MCI) 

to Alzheimer’s Disease (AD). Following is a list of 

those reasons: 

1) Handling Complex and Nonlinear 

Relationships: Random Forest can capture 

complex and nonlinear relationships between 

predictors and survival outcomes. This is 

particularly important in analysing medical data 

where the relationship between variables can be 

intricate and non-linear. 

2) Robustness to Overfitting: Random Forest has 

built-in mechanisms to reduce the risk of 

overfitting, which occurs when a model 

performs well on the training data but fails to 

generalize to new data. By aggregating multiple 

decision trees and using ensemble learning, 

Random Forest provides more robust 

predictions and reduces the risk of overfitting. 

3) Dealing with High-Dimensional Data: Random 

Forest can effectively handle high-dimensional 

data, allowing for the inclusion of a wide range 

of predictors such as demographic information, 

clinical assessments, genetic markers, and 

imaging data. This enables a comprehensive 

analysis that considers multiple factors 

influencing the conversion from MCI to AD. 

4) Handling Missing Values: Random Forest is 

capable of handling missing values in the 

dataset, reducing the need for extensive data 

imputation or exclusion of samples with missing 

values. This is particularly advantageous in real-

world scenarios where missing data is common. 

5) Variable Importance Measures: Random Forest 

provides variable importance measures, 

allowing researchers to identify the most 

influential predictors for the conversion from 

MCI to AD. This information can provide 

valuable insights into the underlying 

mechanisms and help prioritize specific factors 

for further investigation. 

6) Flexibility and Adaptability: Random Forest can 

be applied to various types of survival data, 

including right-censored data commonly 

encountered in survival analysis. It can handle 

time-dependent covariates, time-varying effects, 

and non-proportional hazards, making it suitable 

for analysing dynamic and complex survival 

data. 

Overall, it can be said that Random Forest is a 

powerful and versatile algorithm for survival 

analysis, offering robust predictions, handling 

complex relationships, accommodating high-

dimensional data, and providing valuable insights 

into variable importance. Those factors make it a 

suitable choice for predicting the conversion from 

MCI to AD, where accuracy and interpretability of 

results are crucial for early identification and 

diagnosis.  

Detecting the true survival time for a patient is 

of ultimate importance in the field of healthcare. 

Accurately determining how long a patient is 

expected to survive can have significant 

implications for treatment decisions, care planning, 

and patient outcomes. By identifying the true 

survival time, healthcare professionals can tailor 

interventions and therapies to meet the individual 

needs of the patient, ensuring the most effective and 

appropriate care. Additionally, accurate survival 

time prediction enables healthcare providers to offer 

patients and their families’ realistic expectations, 

enabling them to make informed decisions regarding 

end-of-life care, advanced directives, and putting 

future plans. Detecting the true survival time 

empowers medical professionals to optimize care, 

provide compassionate support, and enhance the 

overall quality of life for the patient during their 

coming lifetime. 
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After data preprocessing and normalization, the 

procedure starts with the analysis of the raw data 

and guides the reader through the process of 

assessing the outcomes using the cross-validation 

penalty method. The following subsections explain 

the general steps of our approach. 

3.4.1. Inputting pre-processed data 

The suggested approach uses three types of data: 

The MRI image, the results of a neurological 

examination, and the diagnosis at the first visit. It 

includes 68 features (26 neurological tests, 7 MRI 

and 35 key indices). Each represents a patient record. 

The first step of the proposed approach used patient 

data as input. Missing values exclusion is handled at 

this stage.  

3.4.2. Feature selection 

Such massive data recording requires a 

significant investment in computing power and 

money. This fact indicates that the suggested 

method chooses the best attributes to enhance 

performance. The factor that most effectively 

explains patient survival is the result of this stage. 

3.4.3. Running fandom forest algorithm 

The final step is the estimation of the prognosis 

of Alzheimer's disease patients using random forests 

for Alzheimer's disease analysis. The 

methodological approach presented here offers a 

new scientific approach to the study and 

interpretation of other methods. 

Most machine learning algorithms contain one 

or more hyperparameters that should be selected to 

optimize the performance of the approach. In this 

work, a 10-fold nested cross-validation loop was 

used to automatically tune these hyperparameters. In 

the inner loop, the hyperparameter values were 

selected by a random search over 25 iterations. 

Performance was evaluated on an outdoor cycle. 

Therefore, all sampling processes were performed  
 

 
Figure. 4 The architecture of the proposed approach 

 

for each combination of training and testing data. 

Figure 4 shows an overall architecture of the 

proposed approach with its three main layers. 

3.4.4. Survival analysis 

The main purpose of survival analysis is to 

estimate when an event is likely to occur or to 

predict time until an event, such as when mild 

cognitive impairment (MCI) will progress to 

Alzheimer's disease (AD). Survival analysis can 

handle right-censored data which occurs when the 

event of interest is not observed because the study 

ends first. This happens with stable mild cognitive 

impairment patients. The waiting time until an event 

happens is defined as a positive random variable T. 

Given T's probability density function f(t), the 

cumulative distribution function is: 

 

𝐹(𝑡) = Pr[𝑇 < 𝑡] = ∫ 𝑓(𝑢)𝑑𝑢
𝑡

−∞

(1) 

 

The survival probability S(t) that the event of 

interest has not occurred by some time t is: 

 

𝑆(𝑡) = 1 − 𝐹(𝑡) = Pr[𝑇 < 𝑡] (2) 

 

The hazard function h(t) represents the 

approximate probability that an event will occur in 

the small interval [t, t + dt]. Meanwhile, the 

cumulative hazard function H(t) equals the integral 

of h(t) over the interval [0, t]. For a discrete time 

interval subdivided into J parts, the risk score for a 

sample x is calculated as: 

 

𝑟(𝑥) = ∑ 𝐻(𝑡𝑗, 𝑥)

𝐽

𝑗=1

(3) 

 

The Cox proportional hazard model (CPH) [34] 

is a semi-parametric approach that makes parametric 

assumptions about how predictors affect the hazard 

function but does not assume any particular form for 

the baseline hazard function itself. The Cox model 

hazard function h(t) can be estimated as: 

 

ℎ(𝑡, �⃗�𝑖) = ℎ0(𝑡)ŋ(�⃗�𝑖) (4) 

 
The variable h0(t) denotes the unknown baseline 

hazard function, which represents the hazard when 

all predictor values are zero. The risk function, 
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typically defined as a linear representation, is 

written as  ŋ(�⃗⃗⃗�𝑖): 

 

ŋ(�⃗�𝑖) =  𝑒
∑ 𝑥𝑗

𝑖𝑝
𝑗=1 𝑤𝑗 (5) 

 
where wj are the coefficients to determinate and 

x⃗⃗i is the observed feature vector. 

The Cox proportional hazards (CPH) model 

estimates parameters by maximizing the partial 

likelihood function, allowing predictors to have a 

multiplicative effect on the hazard function. A major 

advantage of CPH is the ability to interpret results 

similarly to regression models. However, CPH can 

yield inaccurate standard deviations for estimators 

when faced with high-dimensional data and few 

observations. 

3.5 Approach evaluation 

The evaluation of the proposed approach 

involves assessing its performance and reliability in 

accurately identifying MCI patients who are at risk 

of MCI to AD conversion. Several evaluation 

measures can be used to evaluate the model’s 

predictive capabilities. The Concordance Index (C-

index) [34,35] is a common metric used in survival 

analysis to measure the model’s ability to rank 

individuals based on their predicted risk of 

conversion.  

 

𝐶 − 𝑖𝑛𝑑𝑒𝑥 =
𝑁. 𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡𝑃𝑎𝑖𝑟

𝑁. 𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒𝑃𝑎𝑖𝑟
(6) 

 

A higher C-index indicates better discriminatory 

power, with values closer to 1 indicating stronger 

predictions. Additionally, time-dependent measures 

such as the time-dependent Area Under the Curve 

(AUC) can be employed to assess the model’s 

performance at different time points during the 

follow-up period [36,37]. This provides insights into 

the model’s predictive accuracy over time and its 

ability to capture changes in risk over the disease 

progression. Calibration plots can also be used to 

assess the calibration of the model by comparing the 

predicted probabilities of conversion with the 

observed conversion rates across different risk 

groups. Furthermore, internal, and external 

validation techniques can be employed to evaluate 

the model’s generalizability across different datasets 

and populations. Internal validation, such as cross-

validation, can assess the model’s performance on 

the same dataset used for training, while external 

validation involves testing the model on independent 

datasets to verify its performance in real-world 

scenarios. The evaluation of a Random Forest 

survival analysis model for predicting conversion 

from MCI to AD involves a comprehensive 

assessment of its discriminative power, calibration, 

and generalizability using appropriate evaluation 

metrics and validation techniques. 

Good classification results should produce two 

non-overlapping classes or sets of probabilities, 

namely positive class, and adverse events class. 

Calibration is the degree to which the expected 

probability matches the actual events quantitatively 

[38]. When the observed and expected values for 

every conceivable grouping of the data, arranged by 

increasing predicted values, concur, the technique is 

considered well-calibrated. Statistics that split a data 

set into classes and contrast the average expected 

probability with the result's prevalence in each class 

are known as calibration measures. 

The null hypothesis uses a paired t test to test 

whether the means of two sets of values are equal. 

Since many training and test sets may overlap, the 

assumption of the t-test is that the two sets of values 

in question are randomly selected to test the 

performance of both approaches (e.g., k-fold 

repeated cross-validation). 

The experiment was carried out under the 

following conditions. The R package Machine 

Learning in R (MLR) was used as a framework to 

perform the comparison, and all code for the 

experiments was written in R. AD patient survival 

analysis additionally makes use of survminer and 

survival rates from the R package. Using five 

iterations of 10-fold stratified cross-validation, all 

resampling was done. 70% of the data are training 

data, while the remaining 30% are test data.  

4. Results and discussion 

In this paper, a new survival analysis approach 

to detect the progression probability of an MCI 

patient to be converted to an AD patient was 

proposed and discussed. In this work the shape of 

the survival function is not as important as the 

probability of progression.  

The proposed work computes the predicted 

survivor function for AD patient using RF survival 

approach. Table 1 discusses the danger of the 

progression the patients are prone to over 48 months. 

It illustrates the following criteria:  

• n.risk: Number of patients at risk of being 

diagnosed with AD each time. 

• n.event: There are 238 events that occurred 

initially. This number then begins to decrease 

until it finally reaches 23. 
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Table 1. Patients’ Proportional Hazards Approach  

 Initial 

examination  

After 48 months 

n.risk 1741 56 

n.event 238 23 

Survival 86% 14% 

Standard 

error  

0.8% 1.8% 

Means value  -0.852 and 0.883 -0.126 and 0.200 

Concordance 

index 

85% 15% 

 

• Survival: Estimates the probability of survival. 

In the total sample of patients, 86% of disease 

progressed. That number starts to drop to 14% 

after 48 months.  

• std.err: existence standard error (Patient had a 

low life expectancy).  

• Lower and upper 95% CI: lower bound of the 

confidence interval. About 85% of the generated 

intervals contain the true population. This means 

that the sampling process is repeated several 

times. 

As a result, the sample size increases and the 

range of interval values decreases, making the mean 

more accurate than with smaller samples. The 

probability that the population mean is -0.852 and 

0.883 standard deviations (z-score) from the sample 

mean is 85% for time interval 0. The 48-month 

interval is -0.126 to 0.200. As a result, there is a risk 

that 15% of the population mean is outside the upper 

and lower bounds of the confidence interval. 

In survival analysis, the time it takes for events 

to occur—also known as survival time—is 

researched and modelled. The most popular 

technique for analysing the correlation between 

predictor factors and survival time is the Cox 

proportional hazards regression methodology. Table 

2 shows the effect of each feature on the survival 

analysis. It consists of the following: 

1. Coefficient: Measures the effect of a covariate 

(log hazard ratio). 

2. exp(coef): Displays the hazard ratio, the effect 

size of a covariate.  

3. se(coef): standard error. 

4. z: Gives the Wald statistic corresponding to the 

standard error ratio of each regression 

coefficient (z = coef/se(coef)).  

5. Pr(>|z|): The probability of the Wald statistical 

value. Review what each feature means.  

6. Hazard ratio confidence interval: The hazard 

ratio (exp(coef)) has an upper and lower 95% 

confidence interval on the sum. 

Three tests that can be used to determine the 

overall importance of an approach are the likelihood 

ratio test, the Wald test, and the log-rank statistic. 

Asymptotically, these three tests are equivalent. If N 

is large enough, we get similar results. For small N, 

it may be slightly different. Likelihood ratio tests 

work best with the small sample sizes for which 

they are commonly used. The results of the 

suggested work were as follows: 

• Agreement = 0.78 (se = 0.009) 

• Likelihood ratio test = 815.3/3 df 

• Wald test = 524.3 p = 2e-16 

• Test score (log rank) = 549.7 in 3 DF, p = 2e-16 

In general, the most used evaluation measure for 

survival approaches is the goodness-of-fit index (c-

index, c-statistic). The goodness-of-fit index (c-

index) is a measure for evaluating the predictions of 

an approach. It can be expressed as the ratio of 

matching pairs to the total number of assessment 

pairs that can be made [39]. It ranges from 0.5 to 1 

and is equivalent to the area under the receiver 

operating characteristic (ROC) curve. Sub-0.5 

values signify inadequate approximation 

performance. When the method's prediction is less 

accurate than chance, it has a value of 0.5. 

Ultimately, performance above 0.7 is considered 

good. Details of the results are presented in Table 3.  

Six months apart, patients were reassessed. After 

two years, the patient's chance of developing the 

illness dropped as a result. Although 1741 instances 

were used to begin this procedure, 56 individuals 

eventually did not convert to AD. Table 4 represents 

a comparison between the results of the proposed 

approach and the best state-of-the-art approaches in 

literature.  

From the above table it can be seen clearly that 

the proposed approach is evaluated using a huge 

number of patients compared to the number of 

patients used in literature to make accurate analysis 

avoiding any possibility of overfitting. It can also be 

seen that the proposed work outperformed other 

state-of-the-art approaches addressing the same 

problem with the largest C-index. Only Sarica et al  
 

Table 2. Random Forest Survival Approach Summary 

 coef exp(coef) se(coef) z Pr(>|z|) Lower0.95 

CDRSB -4.666e-01 6.271e-01 2.898e-02 -16.100 <2e-16 0.6514 

MMSE 4.216e-02 1.043e+00 1.429e-02 2.951 0.00317 1.0143 

Ventricles 1.991e-06 1.000e+00 1.448e-06 1.375 0.16922 1.0000 
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Table 3. Interpretation of the Proposed Approach 

Ti

m

e  

n.ris

k  

n.e

ven

t 

Survi

val 

std.err lower

95%

CI  

uppe

r95%

CI 

0 1741  238  0.863  0.00823  0.847  0.880 

6 1260  210  0.719  0.01137  0.697  0.742 

12 863  166  0.581  0.01332  0.556  0.608 

18 536  120  0.451  0.01471  0.423  0.481 

24 376  77 0.359  0.01500  0.330  0.389 

36 156  51  0.241  0.01683  0.211  0.277 

48 56 23 0.142 0.01871 0.110 0.184 

 

Table 4. Comparison between the results of this work and 

the state-of-the-art results 

Authors Year Dataset No. of 

Patients 

C-

index 

Khajehpiri et al 

[8] 

2022 ADNI 882 73.3% 

Mirabnahrazam et 

al [31] 

2022 ADNI 401 80% 

Sarica et al [32] 

 

2023 ADNI 387 85% 

This work 

 

2023 ADNI 1741 85% 

 

 

[32], the last work done in this area obtained 

comparable results, but their C-index is a calculated 

average of individual C-indexes for different 

parameters which cannot be considered an accurate 

metric for such a problem as mentioned before. The 

small sample selected from ADNI also suggests 

overfitting in their results. 

5. Conclusion 

This paper introduces a new survival analysis 

approach for detecting the progression from MCI to 

AD using Random Forest. Because the condition is 

essentially progressive, the approach considers the 

timing data gathered from the cases. This work is 

predicting the future progression of the MCI to AD, 

unlike most of the work done in literature which 

only focus on the classifying the state of the current 

diagnosis. Amongst all the work done in literature in 

this field only two attempts were done to address the 

problem of the prediction of the possible future 

progression of the disease, and the proposed work 

outperforms both of them in terms of number of 

patients studied, and C-index, where the proposed 

approach succeeded to achieve a C-index of 85% 

when evaluated on the whole dataset which contains 

1741 patients compared to 401, 397, and 882 

patients (see table 4). Our approach is not limited to 

the prediction of Alzheimer’s Disease, but it also 

identifies the relative feature that affects progression. 

This is a step forward in this field to be applied in 

real scenarios. The results of the proposed 

experiments are as follows: Concordance = 0.78, 

likelihood ratio test = 815.3 on 3 df, Wald test = 

524.3, Test score (log-rank) = 549.7 on 3 DF, and p 

= 2e-16.  

Improving the proposed approach’s performance 

in future will require further research in other 

regression and deep learning methods. Personal data 

could improve the performance and efficiency of 

AD prediction at an earlier stage. 
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