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Abstract: As technological advancements continue to evolve, Human Activity Recognition (HAR) has emerged as a 

crucial area. This study aims to discern four human activities are sitting, standing, walking, and jogging while 

prioritizing user privacy by employing Elliptic Curve Cryptography (ECC) based blind signatures. The research 

focuses on predicting human activities through the Support Vector Machine (SVM) algorithm, utilizing data from 

accelerometer, gyroscope and Global Positioning System (GPS) sensors in smartphones. ECC, renowned for its shorter 

key length and faster processing, ensures data confidentiality. The SVM algorithm excels in categorizing human 

activities, achieving an impressive validation accuracy of around 99.16% with an average error of merely 3.33% in 30 

real-time tests encompassing standing and walking. Notably, tests for sitting and running activities showed no errors. 

Moreover, the system’s practicality is evident as the classification process requires only 1 ms. ECC’s blind signature 

implementation effectively upholds user anonymity, fulfilling crucial criteria such as confidentiality, correctness, 

integrity, non-repudiation, blindness, unforgeability, and untraceability, without imposing substantial computational 

costs. 
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1. Introduction 

Globally, the proportion of adults aged 60 and 

above is growing faster than any other age group. It 

is expected that in 2025 there will be approximately 

1.4 billion elderly people in the world, and in 2050 

there will be 2.1 billion, especially in developing 

countries. Healthcare systems face major challenges 

from this growth, as aging is associated with 

decreased physical activity, impacting both physical 

and mental health. As more and more elderly people 

suffer from age-related diseases and malfunctions of 

body parts, the demand for intelligent health support 

systems is increasing year by year [1-3]. Because of 

this, there is a need to create a monitoring activity 

recognition that is used as an innovation that supports 

the well-being of the elderly [4]. As a result, several 

recent research projects in the HAR sector have 

focused on the sensor-based real-time monitoring 

system to promote independent living at home [2].  

Activity recognition is the technique of 

classifying a series of human activities by 

interpreting sensor data [5]. One of the main 

applications of wearable technology in the field of 

healthcare is the identification of daily activities [6]. 

Over the last few years, research on HAR has grown 

significantly because of the development of low-cost, 

less intrusive mobile sensing platforms like 

smartphones. Smartphones are cutting edge HAR 

platforms because they come with a variety of 

wireless interfaces, are simple to use, have high 

processing and storage capacities, and have sensors 

like gyroscopes, accelerometers, and compass that 

satisfy the practical and technical requirements for 

HAR tasks [7-10]. 

As wireless communication technology advances 

and mobile smart devices become more 

commonplace, more individuals feel empowered to 

share their observations and insights with others, 

leading to the rise of Mobile Crowd Sensing (MCS) 

[11]. With the advancement of sensor technology and 
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mobile computing, HAR can be extended to MCS, 

where MCS is a new innovation in IoT that has 

advantages in the process of acquiring sensor data 

from the surrounding environment [12]. The 

availability of multiple sensors integrated with 

smartphones or wearable devices is one of the 

advantages of the MCS paradigm [13]. The paradigm 

of mobile crowdsensing will enhance HAR methods, 

systems, and approaches. This is caused by a number 

of factors, including the following: crowdsensing 

increases human mobility, supporting improved 

patient or elderly monitoring; and crowdsensing 

allows for the collection of large amounts of data that 

can be used to evaluate and monitor individuals [14]. 

In addition to several advantages, security, and 

privacy [15-17], the accuracy and dependability of 

sensed data [18], and participation incentives [19] are 

very important in the MCS system. In MCS, users’ 

personal data including location and identity 

information is vulnerable to privacy attacks [20]. 

Consequently, it is critical to secure MCS 

participants’ privacy [21], because mobile devices 

are controlled by selfish and autonomous users who 

can launch insider attacks such as raising privacy 

concerns and faked sensing attacks [22]. An attacker 

has the ability to intercept MCS transmission and get 

sensitive user data from sensor data. An adversary 

may, for instance, utilize GPS sensor readings to 

gather private data about MCS members, such as 

their home address and daily commute. Most MCS 

users are hesitant to take part in sensing jobs because 

they are aware that their sensitive data may be 

vulnerable [12]. Some kinds of attacks on MCS 

includes Spoofing, Malware, Jamming, Denial of 

Service (DoS), and etc [22]. Challenges to the 

security and privacy of user data become important 

using the MCS method, by adding security 

algorithms to the system. 

So, in this research proposal, the contribution is 

using SVM for classification and employing 

pseudonym-based MCS with ECC based blind 

signature in enhancing the security and privacy of 

sensor data collected from 100 volunteers. Utilizing 

SVM can assist in accurately classifying various 

human activities from sensor data, while employing 

pseudonym-based MCS with ECC based blind 

signature can potentially enhance privacy and 

security by anonymizing user identities and securing 

the transmitted data. The proposed approach of 

combining SVM for classification and pseudonym-

based MCS with ECC based blind signature aims to 

address several challenges in HAR security and 

privacy within the MCS paradigm. By utilizing SVM, 

the system can effectively classify diverse activities 

based on sensor data patterns. Integrating 

pseudonym-based MCS with ECC based blind 

signature enhances user protection identities and 

ensures secure transmission of sensitive data. SVM is 

a powerful machine learning technique useful for 

classifying data. Applying SVM in activity 

recognition can improve the accuracy of identifying 

daily activities among the elderly, thus aiding in 

better monitoring and support for their well-being. 

Integrating pseudonym-based MCS using ECC based 

blind signature ensures enhanced privacy and 

security for user data. This method allows volunteers 

to participate in data sensing without revealing their 

true identities or compromising sensitive information. 

The use of ECC enhances cryptographic security, 

while blind signatures further protect user anonymity. 

By combining these technologies and methodologies, 

our research can provide a robust framework for 

HAR in the context of elderly care, ensuring both 

accuracy in activity classification and strong privacy 

protection for the volunteers involved in the sensing 

process. 

The rest of this paper is organized into the 

following sections. Section 2 contains related works. 

The proposed system will be explained in Section 3. 

The measurement and result will be discussed in 

Section 4. The performance analysis will be 

discussed in Section 5. The conclusion of this paper 

in Section 6. 

2. Related works 

Some research on Human Activity Recognition in 

Mobile Crowd Sensing included Alaa et.al. [14]. This 

research focuses on the development and evaluation 

of a particle swarm optimization (PSO) based 

algorithm called PSO-kNN for recognizing human 

activities in a mobile crowdsensing environment. The 

authors highlight the challenges in this research area, 

such as collecting and managing big, noisy data, and 

propose the PSO-kNN algorithm to address these 

challenges. The paper presents three main 

experiments: a simulated example to illustrate how 

the PSO algorithm searches for the optimal value of 

k, testing the proposed model using standard datasets, 

and recognizing human activities using the PSO-kNN 

algorithm. The results of the experiments 

demonstrate the effectiveness of the proposed 

algorithm in achieving competitive classification 

performance. The related data used in this paper 

includes standard datasets such as Iris, Wine, Pima 

Indians Diabetes, ORL, Yale, and Ovarian. These 

datasets vary in terms of the number of samples, 

classes, and dimensions, providing a diverse set of 

data for evaluating the proposed PSO-kNN algorithm. 

Additionally, the paper utilizes data obtained from 
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the University of California at Irvine (UCI) Machine 

Learning Repository for recognizing human activities. 

This dataset consists of feature vectors collected from 

eight subjects, each performing 19 activities using 

three different sensors: Accelerometer, Gyroscopes, 

and Magnetometer. The paper provides valuable 

contributions to the field of MCS and HAR, offering 

a novel algorithm and empirical evidence of its 

performance. The use of diverse standard datasets 

and real-world data from the UCI repository adds 

credibility to the findings and demonstrates the 

algorithm’s applicability across different contexts. 
However, in this research user privacy is not 

addressed.  

In other research of Lyu et.al. [23] discusses the 

privacy issues surrounding wearable data collection 

and reporting for mobile crowdsensing, a type of 

collaborative deep learning. The authors suggest RG-

RP, a two-stage privacy-preserving technique that 

tries to lessen transmission energy and lessen 

maximum a posteriori (MAP) estimation attacks. A 

row-orthogonal random projection (RP) matrix is 

used in the second stage to project high-dimensional 

data to a lower dimension, while a nonlinear function 

known as repeated Gompertz (RG) is used in the first 

stage to perturb each participant’s data. In order to 

improve upon standalone models, the paper also 

presents a novel LSTM-CNN model for collaborative 

learning that combines Long Short-Term Memory 

(LSTM) and Convolutional Neural Networks (CNN). 

Two real-world wearable datasets, the HAR dataset 

and the Mobile Health (MH) dataset, are given the 

accuracy results for the raw data and the perturbed 

data. The LSTM-CNN architecture produced raw 

data accuracy of 98.44% and perturbed data accuracy 

of 93.75% for the HAR dataset. This shows that, in 

comparison to the outcome from the raw data, the 

suggested privacy-preserving two-stage method 

reduced the accuracy by just 4.76%. The LSTM-

CNN architecture produced raw data accuracy of 

95.56% and perturbed data accuracy of 92.08% for 

the MH dataset. In a similar vein, accuracy was 

decreased by 3.64% when using perturbed data 

instead of raw data. The architecture of mobile 

crowd-sensing, privacy issues with sharing data from 

wearable sensors, and the need for privacy-

preserving algorithms to promote data sharing while 

safeguarding user privacy are all covered in this paper. 

It presents the RG-RP scheme and assesses, using 

both artificial and real-world datasets, how well it 

defends against MAP estimation attacks. The paper 

also introduces and shows the efficacy of the LSTM-

CNN model in collaborative learning for HAR. One 

potential disadvantage is that injecting noise directly 

into users’ raw private data could compromise data 

integrity and introduce inaccuracies.  

Research of Owoh et.al. [24] examines the 

security and privacy issues in mobile crowd sensing 

applications. Mobile crowd sensing utilizes sensors 

on smartphones and other mobile devices to collect 

environmental and user activity data at scale. As this 

emerging paradigm grows in usage, protecting 

sensitive personal information contained in the 

collected sensor data becomes critically important. 

The paper analyzes 40 Android-based mobile crowd 

sensing applications from three categories: smart city 

applications, health applications, and fitness 

applications. These apps leverage common 

smartphone sensors like GPS, accelerometer, and 

gyroscope to gather location and motion data from 

users. The smart city category includes 20 

transportation and traffic monitoring apps. 10 health 

apps related to activity tracking, diet, and more were 

selected. The final 10 apps focused on fitness 

tracking of activities like running and cycling. All 40 

apps transmit the collected sensor data to backend 

servers over the internet for analysis and insights. The 

paper provides a table outlining each application, the 

sensors utilized, and communication method. This 

contextualizes the scope and data sources considered 

in the study. To evaluate security, the researchers 

used a dynamic analysis approach intercepting 

network traffic between the apps and servers using 

Burp Suite. This allowed analyzing how sensor 

payloads were transmitted and whether sensitive user 

information could be disclosed. Analysis findings 

showed location and sensor data for all 40 apps was 

sent unencrypted in cleartext over the internet, 

allowing full disclosure of private user GPS location 

traces and activity information. The researchers also 

achieved a 100% success rate intercepting traffic, 

demonstrating a lack of effective security controls. In 

response, the paper proposes a novel encryption and 

authentication scheme for crowd sensed data based 

on the AES-256/GCM algorithm. This aims to 

securely transmit location and motion sensor data 

streams with confidentiality, integrity, and 

authentication guarantees.  

However, this research does not address the issue 

of user anonymity privacy, where it only focuses on 

the location of user data by encrypting the data using 

AES-256/CGM Algorithm. 

Research of Wang et.al. [25] presents a privacy-

preserving collaborative computation framework for 

HAR using edge computing, secure aggregation 

algorithms, and blockchain. The framework aims to 

enable data owners to collaboratively train an 

accurate HAR model while ensuring the privacy of 
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Figure. 1 Proposed Scheme 

 

 

training data. It leverages federated learning to keep 

model training procedures on local devices without 

transmitting data to a central server, thus addressing 

issues related to data privacy, storage, and bandwidth. 

The use of secure multiparty computation techniques 

and blockchain enhances the security and 

verifiability of the system. The experimental results 

demonstrate the effectiveness of the proposed 

framework, achieving an accuracy of 93.24% in the 

HAR model training process. The framework 

consists of several key components and processes. It 

begins with data collection from smart devices, 

followed by local training of the model on edge nodes 

using the collected data. The local updates are then 

aggregated using a secure aggregation algorithm, and 

the results are stored in a new block on the blockchain. 

The block structure includes the global model, 

updates after aggregation, hash value of the previous 

block, and commitments of the node updates. The 

framework’s performance was evaluated through 

experiments, demonstrating its usability and 

efficiency. While the framework presents several 

advantages, such as privacy protection, efficient 

training, and security features, there are also some 

potential disadvantages and limitations to consider 

include: the use of secure multiparty computation 

techniques increases the training time, with a round 

of iterations taking 36.4 seconds to execute. Although 

this is deemed acceptable, it still represents an 

increase in training time compared to traditional 

methods.  

From some of the shortcomings of some of the 

research above, including the problem of user 

anonymity, the addition of noise to user raw data, the 

problem of data training time and accuracy. In our 

research, we propose not adding noise to the raw user 

data so that it still produces high accuracy values and 

fast training times using the SVM algorithm by 

ensuring user anonymity by using ECC-based blind 

signatures with security attributes of blindness, 

untraceability, confidentiality, correctness, integrity, 

nonrepudiation, and unforgeability. 

3. Proposed system 

The proposed system integrates two main 

components: a machine learning scheme using 

Support Vector Machine (SVM) algorithms for 

activity recognition and a secure blind signature 

using Elliptic Curve Cryptography (ECC) for 

preserving user anonymity. In the machine learning 

scheme using supervised learning techniques has two 

main phases: training phase and testing phase. During 

the training phase, the input data is used to determine 

the classifier parameters, i.e., training samples, and 

the corresponding output, i.e., target. While in the 

testing phase according to Luts et.al. [26], a classifier 

can then be used to estimate the class labels of 

unknown samples with certain parameters that 

control the accuracy of the classifier [27]. In the blind 

signature scheme, the server as the Third Trusted 

Party (TTP) will generate as many keys as users, in 

this case 100 users. On generating public and private 

keys in the ECC algorithm using curve secp256k1 

with equation 𝑦2 ≡ 𝑥3 + 7 (𝑚𝑜𝑑 𝑝)  with a bit 

length of 256 bits. The public key will be stored in 

the database. While the private key will be stored in 

the server’s local storage which will be provided 
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when the user makes a registration request. The 

classifier results obtained previously by the user will 

be blinded to preserve the user’s anonymity. The 

integration of SVM for activity recognition and ECC-

based blind signatures with a focus on user 

anonymity in a healthcare context, particularly for the 

elderly, is novel. Preserving privacy while 

conducting accurate activity recognition is a 

significant contribution. 

Our proposed scheme consists of two scopes: 

offline scope and online scope. The offline scope 

consists of 4 phases, namely data collecting, 

preprocessing, dataset creation, training data. While 

in the online scope there are 10 phases namely initial 

configuration and registration, identity verification, 

data collecting, preprocessing, identification result, 

blinding phase, signing phase, unblinding phase and 

signature verification, encryption phase, and 

decryption phase and the Notations and Descriptions” 

section provides a summary of the mechanism’s 

notations and descriptions of abbreviations. There are 

three participants in our blind signature protocol, 

namely, a Requester 𝐴, a Signer 𝐵, and a family 

Requester F. Then the server S as a Third Trusted 

Party (TTP) is responsible for issuing a secure 

identity to the user and generating the system 

parameters.  

3.1 Offline scope 

In the offline scope, data is collected which will 

then be labelled according to the activities carried out 

by the user. Data that has been obtained during data 

collection will be pre-processed which consists of 3 

stages, namely filtering, feature extraction and 

normalization. The data that has been obtained after 

the normalization process will be trained on Machine 

Learning to carry out the classification process and 

obtain a model from the training results. 

3.1.1 Data collecting 

In collecting raw data using accelerometer and 

gyroscope sensors on smartphone. The data collected 

will be labelled according to the activities. This 

sensor value will be retrieved and used for data 

processing. On the accelerometer sensor, 3 values 

will be obtained namely (x, y, z). While on the 

gyroscope will also get 3 values namely (ϕ, θ, ψ). The 

smartphone used is Samsung Galaxy A54 which has 

an accelerometer and gyroscope. In this research the 

smartphone will be placed in the fixed position on the 

right thigh. An illustration of smartphone placement 

can be seen in Fig. 2. In this research, a data 3, 

including: 

 
Figure. 2 Illustration of Smartphone Placement 

 

 

1. Sitting and standing activities will be 

sampled with a period of 1000ms as much 

as 50 data, so that 1 data/second is obtained. 

2. Walking activities will be sampled with a 

period of 500ms as much as 50 data, so that 

2 data/second is obtained. 

3. Jogging activity will be sampled with a 

period of 250ms as much as 50 data, so that 

4 data/second is obtained. 

3.1.2 Preprocessing 

In the data collection process, the data is not 

filtered. So, it needs to be filtered to make the data 

pattern more visible. Fig. 3 shows the raw data 

accelerometer.  

In the raw data has a lot of high-frequency noise 

so it is necessary to be filtered using a low-pass filter. 

In this research, the filtering process uses variant IIR 

Filter. Low Pass filter is a good way to remove noise 

(Both mechanical and electrical) [28]. IIR Filter has 

a fast computation and has no delay, so there is no 

time delay. Since we don’t want any time delays, an 

IIR filter might be appropriate [29]. 

The Low Pass process using an IIR filter can be 

calculated using Eq. (1) 

 

𝐻(𝑧) =
𝑏0+𝑏1𝑧

−1+⋯+ 𝑏𝑛𝑧−𝑚

1+ 𝑎1𝑧
−1+⋯+ 𝑎𝑛𝑧−𝑚                 (1) 

 
Fig. 4 shows the comparison between raw data and 

filtered data. As we can see the pattern of data looks 

smoother, this is because noise in the raw data signal 

has been removed.  
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Figure. 3 Raw Data Accelerometer 

 

 

 
Figure. 4 Raw Data and Filtered Data Accelerometer x-

Axis 

 

The next process after the filtering process is 

feature extraction or selection of characteristics or 

features of each activity. From the filtering results, 

the main features obtained are accelerometer sensors 

x, y, and z axis and gyroscope ϕ, θ, ψ axis which have 

been filtered. The feature data is then carried out 

feature mapping with the measurement function such 

as mean value, standard deviation, min value and max 

value.  

The next step is the process of normalization 

using the z-score technique. This is because data has 

various ranges. A range that is too wide is feared to 

be a long computation process. Therefore, we need to 

normalize data. This normalization process using z-

score. The results of normalization using the z-score 

are in the range between -3 until 3 but can be higher 

or lower. The equation of z-score can be seen in Eq. 

(2): 

 

𝑍 =
𝑥−𝜇

𝑠
                    (2) 

 
Where 𝑥 is the raw data, 𝜇 is the average of the of the 

attribute population, 𝑠 is the standard deviation of the 

attribute population. 

 
Figure. 5 Number of Training Data 

 
 

 
Figure. 6 SVM tries to find the best hyperplane that 

separates classes -1 and 1[31] 

3.1.3 Dataset Creation 

After the data data is normalized. The data will be 

used for the training process of the machine learning 

models. In creating the dataset, the dataset file will be 

converted into the .dat file format, which corresponds 

to the dataset format required in the data training 

process using libSVM. Following are the data 

formats used in libSVM [30] : 

< 𝑙𝑎𝑏𝑒𝑙 >< 𝑖𝑛𝑑𝑒𝑥1 >:< 𝑣𝑎𝑙𝑢𝑒1 >< 𝑖𝑛𝑑𝑒𝑥 >:… 

where < 𝑙𝑎𝑏𝑒𝑙 >is a binary (-1, 1) or multi-class 

class, < 𝑖𝑛𝑑𝑒𝑥 > is an attribute representing an 

integer from 1 to n and < 𝑣𝑎𝑙𝑢𝑒 >is a feature value 

representing a real number 

3.1.4 Training data 

In the data training stage, the total data used in the 

training process is 200 data consisting of 50 sitting 

data, 50 standing data, 50 walking data, and 50 

Jogging data. The training stage is used to obtain the 

coordinates of the support vector, weight, bias and 

distance of the support vector. 

Support vector machine (SVM) is a supervised 

learning method commonly used for classification 

(such as support vector classification) and regression 

(support vector regression). SVM is a machine 
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learning method that works on the principle of 

Structural Risk Minimization with the aim of finding 

the best hyperplane that separates two classes in the 

input space. The basic principle of SVM is a linear 

classifier, which has been further developed to tackle 

nonlinear problems. By integrating the concept of 

kernel tricks into a high-dimensional workspace. 

 
a. Pattern Recognition Using SVM 

The SVM concept can be explained simply as an 

effort to find the best hyperplane that functions as a 

separator for two classes in the input space. Patterns 

belonging to class –1 are symbolized in orange, while 

patterns in class +1 are symbolized in red. The 

classification problem can be interpreted by trying to 

find the line (hyperplane) that separates the two 

groups. 

 Suppose there are 2 classes, denoted as 𝑋 ∈
𝑅𝑑 (d is the number of classes), while the labels for 

each class are denoted 𝑦𝑖  ∈ {−1, 1} , set 𝑊 =
{𝑤1, 𝑤2, … , 𝑤𝑑};  W is the weight, and the training 

tuple 𝑋 = {𝑥1, 𝑥2} , where 𝑥1 , 𝑥2  are the attribute 

values 𝐴1  and 𝐴2 , the hyperplane function can be 

denoted as follows: 

 

𝑓(𝑥) =  �⃗⃗� . 𝑥 + 𝑏        (3) 

 

where b is the bias which has a scalar quantity 

 

b. Kernel Method 

In general, the classification case is a non-linear case, 

so the kernel method is used to overcome this 

problem. Using the kernel method, a data x input 

space is mapped to feature space F with a higher 

dimension via map 𝜑 (𝜑 ∶ 𝑥 →  𝜑 (𝑥)). Therefore, x 

in input space becomes in feature space. Many times, 

the function is not available or cannot be counted. But 

the dot product of two vectors can be calculated, both 

in input space and in feature space. 

 

𝐾(𝑋𝑖 . 𝑋𝑗
𝑇) = φ (𝑋𝑖). φ (𝑋𝑗)      (4) 

 

3.2 Online Scope 

In the online scope, the user first registers, then 

the server performs verification authentication, then 

the user can record the activities performed and the 

android performs activity classification where the 

model obtained from the training results will be 

compared with the feature extraction results obtained 

in real time. Furthermore, blind data and data 

encryption are carried out. Then testing the system 

that has been designed to evaluate the system as a 

whole. 

3.2.1 Initial Configuration and Registration 

In order to configure the system, we first specify 

the domain’s specifications during the first 

registration step. The following are the default 

parameters, which consist of many important fields. 

 

(i) Create a robust elliptic curve, denoted as 𝐸 (𝐹𝑞) 
over the finite field 𝐹𝑞 where 𝑞 is represents a 

substantial prime number exceeding 256 bits. 

The size ensures a level of security equivalent to 

a 3072-bit RSA key. Next, on the elliptic curve 

𝐸 (𝐹𝑞) , an order 𝑑  and base point 𝐺  will be 

chosen. The appropriate choice satisfies 𝑑. 𝐺 =
𝑂, where 𝑂 is the point at infinity.  

(ii) Generating a public-private key pair. The TTP 

(Server) randomly chooses a secret value 𝑛𝑠 

from [2, 𝑑 − 2] and public key as follows: 

 

𝑃𝑘𝑆 = 𝑛𝑠. 𝐺                  (5) 

 

(iii) Publishing the Server’s public key 𝑃𝑘𝑆  and 

keeping 𝑛𝑠 as a secret.  

(iv) All users selecting private key (𝑛𝐴, 𝑛𝐵, 𝑛𝐹) and 

generating their public keys (𝑃𝑘𝐴, 𝑃𝑘𝐵, 𝑃𝑘𝐹)  

(v) Before accessing associated services, all users 

that is, 𝐴, 𝐵, and F must register on the dedicated 

Server (TTP) as valid participants. 

(vi) After registering, the user will receive a token 

obtained JSON Web Token or JWT which is 

used to authenticate users who use the 

application. 

(vii) Each member receives a unique set of keys upon 

creation. Through a secure channel, the private 

key with the identifiers id𝐴, id𝐵 and idF will be 

sent from TTP (Server) to the users. 

3.2.2 Identity verification 

After completion of the registration procedure, 

every entity can interact with the linked parties in an 

efficient manner. User authentication testing aims to 

give access to valid users and block access for users 

who are not registered with the system. When a user 

registers, the user data will be used to generate the 

authenticated user’s JSON Web Token (JWT). If the 

user login is a valid user, the JWT will return a valid 

token, if the user is not a valid user, the JWT will 

return an invalid token, and if the user login but there 

is a time stamp problem, the JWT will return an 

expired token. 
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3.2.3 Data Collecting 

The process of collecting data in the online 

process, where raw data from the accelerometer 

sensor will be obtained 3 values (x, y, z) and the 

gyroscope sensor will be obtained 3 values (ϕ, θ, ψ). 

Raw data taken from the two sensors is not labeled, 

but is directly used as input for the next process, 

namely preprocessing. 

3.2.4 Preprocessing 

In data preprocessing, just like data preprocessing 

during offline scope, it consists of 3 stages, namely 

filtering, feature extraction, and normalization. Data 

preprocessing results will be used as input to the 

machine learning identification process on android 

application. 

3.2.5 Identification Result  

In the decision-making stage, the results of 

normalization will be used as input for activity 

prediction on the model that has been loaded. The 

model will be compared with the data that has been 

inputted, so that it will produce output in the form of 

predictions of each activity. 

3.2.6 Blinding Phase  

The main purpose of blindness is to protect 

communications without the Signer’s knowledge. To 

accomplish this, the Requester A uses the public and 

private keys as a blind factor (𝑛𝐴, 𝑃𝑘𝐴)  along with 

the message digest ℎ(𝑚) and hash of ID user ℎ(𝐼𝐷). 

These elements are combined to blind the message 

according to Eq. (6). Subsequently, the blinding 

operation, as described in Eq. (7), is computed. Once 

completed, the blinded message 𝛼 is received by the 

Signer 𝐵 and other family Requesters 𝐹′ 

 

𝑚 = ℎ(𝑚)   ⃦ ℎ(𝐼𝐷)                      (6) 

 

𝛼 = 𝑚. 𝑛𝐴. 𝑃𝑘𝐴                 (7) 

 

3.2.7 Signing Phase  

Upon receiving the corresponding message 𝛼, 

the Signer B and other Family Requester  𝐹′ selects 

a random integer 𝛽 𝜖 [2, 𝑑 − 2] to determine secret 

element R as Eqs. (8) and (9) and the blind signature 

S as Eqs. (10) and (11). The message signature pair 

(𝛼, (𝑅, 𝑆)) sends it back to the Requester A. 

 

𝑅𝐵 = 𝛽𝐵. 𝛼                                          (8) 

 

𝑅𝐹′ = 𝛽𝐹′ . 𝛼                             (9) 

 

𝑆𝐵 = (𝑛𝐵 + 𝛽𝐵). 𝛼                (10) 

𝑆𝐹′ = (𝑛𝐹′ + 𝛽𝐹′). 𝛼               (11) 

 

3.2.8 Unblinding and Verification Phase 

To reveal the received hidden signature, the 

Requester A, uses the blind signature 𝑆𝐵 , the 

previously generated message ‘m’, private key 𝑛𝐴 , 

and public key 𝑃𝑘𝐵 of the signer to extract the blind 

signature 𝑆𝐵′ by following the expression in Eq. (12). 

Likewise, for the other Family Requester 𝐹′ 

expressed in Eq. (13). Additionally, Requester A 

computes the message digest value 𝑚′ and conducts 

the unblinding process outlined in Eq. (14). Then 𝑆𝐵′, 

𝑆
𝐹′′  and 𝑚′  are testified by Requester A that the 

message alleging the signature request while being 

blinded is genuine. 

 

𝑆𝐵′ ≡ 𝑆𝐵 − 𝑚. 𝑛𝐴 .𝑃𝑘𝐵                (12) 

 

𝑆
𝐹′′ ≡ 𝑆𝐹′ − 𝑚. 𝑛𝐴 .𝑃𝑘𝐹′              (13) 

 

𝑚′ ≡ 𝑛𝐴 .(𝑛𝐴 − 1).𝑚 + 𝑚              (14) 

 

Requester A verifies the authenticity of the signature 

and the transmitted message digest using the Signer’s 

public key  𝑃𝑘𝐵 and the public keys 𝑃𝑘𝐹′  of other 

family Requesters after obtaining the message 

signature. The validity of Eqs. (15) and (16) is 

checked during this verification process. 

 
𝑅𝐵. 𝑃𝑘𝐵 ≟ 𝑆𝐵′ − 𝑚′. 𝑃𝑘𝐵                        (15) 

 

𝑅𝐹′ . 𝑃𝑘𝐹′ ≟ 𝑆
𝐹′′ − 𝑚′. 𝑃𝑘𝐹′                  (16) 

 

3.2.9 Encryption Phase  

The encryption phase objective is to prevent 

sensitive information from leaking against the desires 

of snoopers. We take more measures to improve 

operational security, particularly when data is 

transferred across networks. The result of data 

encryption will be stored in the database. 

 

(i) To send digital information securely over the 

internet to Signer 𝐵, Requester A breaks down a 

data into a sequence �̅� , consisting of multiple 

plaintext blocks 𝑣𝑖 (≥ 1) , and each data 

segment’s individual blocks can be expressed as 

Eq. (17) 
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�̅� = {𝑣1, 𝑣2 , … , 𝑣𝑖 }              (17) 

 

(ii) If the message length is not a multiple of the 

AES block size (256 bits), may need to add 

padding to make it fit. Common padding 

schemes include PKCS#5 padding, which 

appends bytes to the message to fill the last 

block. 

 

𝑝𝑣 = 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 − ([𝑣𝑖 |𝑚𝑜𝑑 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒)       (18) 

 

If 𝑣𝑖  is not multiple of the block size, append 

bytes to the last block 𝑣𝑖 to fill the block: 

 

𝑝𝑎𝑑 = {
𝑝𝑣   𝑖𝑓 [𝑣𝑖 | 𝑚𝑜𝑑 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 ≠ 0 

0    𝑖𝑓 [𝑣𝑖 | 𝑚𝑜𝑑 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 = 0
        (19) 

 

(iii) To increase the security of encryption by 

applying the concept of chaining and 

randomization (initialization vector) on data 

blocks. In this research using cipher block 

chaining (CBC). In CBC mode, each plaintext 

block is combined with the previous ciphertext 

block before encryption, using an XOR operation. 

Additionally, an Initialization Vector (IV) is used 

to initialize the chaining process for the first 

block. Calculate the intermediate value 𝐼𝑉𝑖: 

 

𝐼𝑉𝑖 = 𝑣𝑖 ⨁ 𝑐𝑖−1               (20) 

 

Encrypt the intermediate value 𝐼𝑉𝑖 , using the 

encryption function: 

 

𝐶𝑖 = 𝐸𝑘(𝐼𝑉𝑖)               (21) 

 

3.2.10 Decryption Phase 

Decryption refers to the inverse operation, 

converting the encrypted message back to its original 

state. This decryption process is performed on an 

android and displayed on an android application to 

see the results of user activity classification by 

Requester A and Requester Family F. 

(i) For decrypt the ciphertext block 𝐶𝑖  using the 

decryption function with the same key k 

 

𝐼𝑉𝑖 = 𝐷𝑘(𝐶𝑖)               (22) 

 

(ii) Calculate the plaintext block 𝑣𝑖 , using the 

intermediate value 𝐼𝑉𝑖  and previous ciphertext 

block 𝑐𝑖−1 

 

𝑣𝑖 = 𝐼𝑉𝑖 ⨁ 𝑐𝑖−1               (23) 

 

(iii) If padding was added during encryption (e.g., 

PKCS#5 padding), remove it to recover the 

original plaintext. 

4. Measurement Result and Discussion 

In this section, we introduce the results of the 

offline scope and the online scope. In the offline 

scope, the results of training machine learning from 

accelerometer and gyroscope sensors are presented. 

In the online scope, the results of testing the model 

from the training results and the results of the blind 

signature using the ECC algorithm are shown. 

4.1 Offline Scope Result 

The first process is the process of collecting raw 

data from Accelerometer sensors (x, y, z) and 

Gyroscope sensors (ϕ, θ, ψ), as many as 50 data per 

axis using the application that has been made with 

different periods according to the activities carried 

out by the user. Figs. 7-10 shows four plots of raw 

data in each activity performed by a human subject 

participating in the experiment. In the graph, the x-

axis shows the number of data or iterations, and the 

y-axis shows the measurement data on the 

accelerometer and gyroscope sensors. A zero or 

missing value check was performed before the three-

axis accelerometer and three-axis gyroscope values 

were displayed in graph form. If there are no null 

values in the reading, thus ensuring that the data is 

properly filtered before representation [32]. 

From the result of raw data on each activity can 

be described in the form of a graphical signal which 

can be seen in Figs. 7-10. Figs. 7-8 show the results 

of the graphic signal representation of sitting and 

standing activities having almost the same pattern, 

both of which are activities with static movements. 

The walking and Jogging activities shown in Figs. 9-

10 have a more varied data pattern. It can be seen that 

Jogging activities produce higher and sharper 

accelerometer and gyroscope graphic signals with 

more ripple than walking activity. 

From the results of data collected that has been 

carried out for each activity, Figs. 7-10 shows the 

pattern of raw data, where many high-frequency 

signals are usually identified as noise so that the 

selection of features cannot be determined for each 

activity. Therefore, a preprocessing technique is 

needed to sort out the signal from noise, The 

following is the result of the Low Pass filter (x-axis) 

can be illustrated in the graph shown in Figs. 11-14. 

Where in the graph, the x-axis shows the number of 

data or iterations, and the y-axis shows the 

measurement data on the accelerometer and 

gyroscope sensors. 
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(a) 

 
(b) 

Figure. 7: (a) Accelerometer Raw Data Result in Sitting Activity and (b) Gyroscope Raw Data Result in Sitting Activity 

 

 
(a) 

 
(b) 

Figure. 8: (a) Accelerometer Raw Data Result in Standing Activity and (b) Gyroscope Raw Data Result in Standing 

Activity 

 

 
(a) 

 
(b) 

Figure. 9: (a) Accelerometer Raw Data Result in Walking Activity and (b) Gyroscope Raw Data Result in Walking 

Activity 

 

 
(a) 

 
(b) 

Figure. 10: (a) Accelerometer Raw Data Result in Jogging Activity and (b) Gyroscope Raw Data Result in Jogging 

Activity 
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(a) 

 
(b) 

Figure. 11: (a) Filtering Accelerometer Data (x-axis) in Sitting Activity and (b) Filtering Gyroscope Data (x-axis) in 

Sitting Activity 

 

 
(a) 

 
(b) 

Figure. 12: (a) Filtering Accelerometer Data (x-axis) in Standing Activity and (b) Filtering Gyroscope Data (x-axis) in 

Standing Activity 

 

 
(a) 

 
(b) 

Figure. 13: (a) Filtering Accelerometer Data (x-axis) in Walking Activity and (b) Filtering Gyroscope Data (x-axis) in 

Walking Activity 

 

 
(a) 

 
(b) 

Figure. 14: (a) Filtering Accelerometer Data (x-axis) in Jogging Activity (b) Filtering Gyroscope Data (x-axis) in Jogging 

Activity 
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Table 1. Feature Extraction Measurement Result 

acc_x

_ min 

acc_y

_ min 

acc_z

_ min 

acc_x

_ 

max 

acc_y

_ 

max 

… 
gy_z 

_std 

-0.96 -0.48 7.972 5.557 3.117 ... 
0.00

2 

 

 
Table 2.  Normalization Measurement Result 

acc_x

_ min 

acc_y

_ min 

acc_z

_ min 

acc_x

_ max 

acc_y

_ max 
… 

gy_

z  

_st

d 

1.919 -1.027 1.648 0.515 -1.558 ... -0.8 

-0.23 0.903 -0.50 -0.160 0.154 … 0.59 

-0.26 1.058 -0.52 0.309 0.173 … 0.52 

… … … … … … … 

… … … … … … … 

0.468 
1.274

9 

-

0.215 
-0.772 -0.176 … -0.8 

 

 
Table 3. Support Vector Machine Tuning Parameters 

Parameter Value 

Kernel RBF 

C (cost) 100 

Gamma 1 

Tolerance 0.001 

 

 
Table 4. Metric Evaluation of Each Class 

Class Accuracy Precision Recall 
f1-

score 

1.0 1 1 1 1 

2.0 0.9830 0.9375 1 0.9670 

3.0 0.9830 1 0.9411 0.9690 

4.0 1 1 1 1 

Overall 

accuracy 
0.9916 

 

 

From the filtering results, the main features obtained, 

contained the x, y, and z axis accelerometer sensors 

and the gyroscope axes ϕ, θ, ψ which have been 

filtered, feature data are then carried out feature 

mapping with measurement functions such as mean 

value, standard deviation, min value, and max value. 

From the feature mapping, a total of 24 data features 

were produced. The results of the sitting activity 

feature extraction example are shown in Table 1. 

The next step is the normalization process which 

uses the z-score technique. The normalization results 

are shown in Table 2. 

The next step is the training. the total dataset used 

for the data modeling process is 200 data, each of 

which has the same data distribution.Based on the 

best results (tuning parameters) obtained from the  

 
Figure. 15 Confusion Matrix Results 

 

above analysis using the C-SVC type SVM algorithm 

with one vs one multiclass classification technique, 

parameter c (cost) is 100, gamma is 1, and RBF 

(Radial Basis Function) kernel with a data set 

comparison of 70% training data and 30% testing 

data. which is shown in Table 3. 

RBF (Radial Basis Function) with a comparison 

of 140 training data and 60 testing data, showing the 

results of measuring classification performance on 

the original data (ground truth) and predicted data 

from the classification model visualized in the 

Confusion Matrix shown in Fig. 15. Based on 

confusion matrix data, the results obtained with a 

testing accuracy is 99.16%. As for the results metric 

evaluation in detail from the first trial can be seen in 

Table 4 where each class is calculated and evaluated 

respectively. 

4.2 Online Scope Result 

The next step is system testing which aims to test 

the validated model using real-time data from 

accelerometer and gyroscope sensors. The data 

collection and data preprocessing stages in this 

testing process are the same as the data modeling 

stages using machine learning. At the decision-

making stage, the results of normalization will be 

used as input for activity prediction against the model 

that has been loaded. The model will be compared 

with the data that has been inputted, so that it will 

produce output predictions of each activity. The 

testing process is carried out with the SVM C-SVC 

type and the RBF kernel. This testing process was 

carried out 30 times for each activity. Fig. 16 shows 

the sample decision results of sitting activities. 

Fig. 17 shows the classification result evaluation 

graph on each activity with 30 tests. 

Fig. 17, it can be explained that the average 

classification error in 30× testing each activity is very 

small, which is 3.33% in standing and walking  
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Figure. 16 Visualization in Sitting Activity 

 

 
Figure. 17 Classification Result Evaluation Graph 

 

activities. While sitting and Jogging activities have 

no error in 30× testing classification, it can be 

concluded that the metric in each activity is very good. 

The next is the result of blind signature ECC. The 

challenge associated with solving the Blind Signature 

ECC determines the robustness of our method. At the 

same time, using the blind signature approach 

improves the overall security of data transmissions. 

The proposed scheme is strengthened and made more 

useful for a variety of applications by incorporating 

additional characteristics, such as confidentiality, 

correctness, integrity, nonrepudiation, and 

unforgeability, in addition to the essential properties 

of blindness and untraceability. We look at these 

security criteria for our plan in the following manner. 

Blindness, Blindness is the inability of the Signer to 

see the message’s content while they are signing it. 

Our scheme’s blinded message is created as 𝛼 =
𝑚. 𝑛𝐴. 𝑃𝑘𝐴 . Without the parameters the message 

digest (𝑚) and the blinding factor (𝑛𝐴. 𝑃𝑘𝐴) neither 

the Signer (𝐵), other Family Requester 𝐹′  nor the 

opponent can deduce the message (𝛼). Because 

determining the blindness factor in this equation 

requires computing the number of points on the 

elliptic curve over fields, it becomes quite difficult to 

break the value of knowing desired points when 

solving the Blind Signature ECC. The attempt to 

invert a hash function with the other parameter value, 

𝑚, is not simple. Because the Signer 𝐵 and other 

Family Requester 𝐹′  signs the blinded message 

without knowing its contents, the current approach 

can thus satisfy the blindness property. 

Untraceability, in any blind signature system, 

untraceability is a critical security requirement. The 

Signer loses the ability to link a signature to a specific 

message once the message signature pair becomes 

public. In this experimental setup, steps (7), (8), (9), 

(10), and (11) are used to generate the message 

signature pair (𝛼, (𝑅, 𝑆)). During a blind signature 

request, the Signer 𝐵, only has their private key 𝑛𝐵 

and a randomly generated 𝛽𝐵 . The connection 

between the message and the blind signature is 

untraceable without knowledge of the secret factors, 

which include a unique message digest m, and A’s 

private key 𝑛𝐴 from Requester A, Signer 𝐵, and other 

Family Requester 𝐹′ . As a result, this method 

effectively preserves the untraceability or 

unlinkability of a blind signature. 

Confidentiality, requires hiding the message’s 

contents from unauthorized entities or processes.  In 

this investigation, all messages are blinded by 

Requester A, followed by signing from both Signer B 

and other family Requester 𝐹′ , and then pass through 

a permutation procedure before returning to 

Requester A. Even if intercepted during transmission, 

the transmitted text should present an extremely 

difficult task for any adversary attempting to decode 

the messages. Determining the desired points in 

tackling the Blind Signature ECC presents a 

significant challenge for attackers because they must 

determine the number of points on the elliptic curve 

over fields. As a result, the current method ensures 

confidentiality by effectively safeguarding the 

message’s contents.
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Table 5. Comparison of The Proposed Scheme and Four Existing Similar Research 

Goals Alaa, et.al[14] Lyu et.al[23] 
Owoh et.al 

[24] 
Wang et.al [25] Our Scheme 

Good Accuracy 
√ (Not 

Described) 

√ (accuracy 

93.75%) 
NA 

√ (accuracy 

93.24%) 

√ (accuracy 

99,16%) 

Good Classification 

Time 
√ NA NA √ (around 36.4 s) √ (around 1 ms) 

Blindness NA NA NA NA √ 

Untraceability NA NA NA NA √ 

Confidentiality NA NA √ NA √ 

Correctness NA NA NA NA √ 

Integrity NA NA √ NA √ 

Nonrepudiation NA NA NA NA √ 

Unforgeability NA NA NA NA √ 

 

 
Table 6. Computational Complexity Symbols 

Symbol Definition Operation Cost 

𝑇𝑀𝑈𝐿  The duration of a multiplication operation's execution = 37𝜇𝑠 

𝑇𝐴𝐷𝐷  The duration of a addition operation's execution Negligible 

𝑇𝐸𝑋𝑃  The duration of a exponentiation operation's execution ≈ 8𝑚𝑠 

𝑇𝐼𝑁𝑉𝑅𝑆 The duration of a addition modular multiplicative 

inverse execution 
≈ 8𝑚𝑠 

𝑇𝐸𝐶𝑀𝑈𝐿  The duration of ECC point multiplication execution ≈ 1𝑚𝑠 

𝑇𝐸𝐶𝐴𝐷𝐷 The duration of ECC point addition execution ≈ 185𝜇𝑠 

𝑇ℎ The duration of ECC point hash operation’s execution ≈ 814𝜇𝑠 

𝑡ℎ The duration of basic hash function operation’s 

execution 
≈ 15𝜇𝑠 

 

 

Table 7. Computational Cost in Our Proposed Scheme 
Item Computational Cost Estimation 

Blinding 1𝑇𝐸𝐶𝑀𝑈𝐿 + 1𝑇𝑀𝑈𝐿  1 𝑚𝑠 

Signing 2𝑇𝐸𝐶𝑀𝑈𝐿 + 1𝑇𝐴𝐷𝐷 2𝑚𝑠 

Unblinding 2𝑇𝐸𝐶𝑀𝑈𝐿 + 2𝑇𝐸𝐶𝐴𝐷𝐷 + 1𝑇ℎ 3𝑚𝑠 

Signature Verification 1𝑇𝐸𝐶𝑀𝑈𝐿 + 1𝑇𝐸𝐶𝐴𝐷𝐷 + 1𝑡ℎ 1𝑚𝑠 

Whole System (Data Collecting 

+ Preprocessing + Identification 

+ Blind Signature) 

 

14𝑠 

 

 

Table 8. Computation Time Performance of Generate Key 
Number of User Estimation ECC Estimation RSA 

10 1 42𝑚𝑠 24009 𝑚𝑠 

20 222𝑚𝑠 63738 𝑚𝑠 

50 411𝑚𝑠 126275 𝑚𝑠 

100 550𝑚𝑠 202705 𝑚𝑠 

 

 

Correctness, the correctness property ensures that 

anyone with access to the Signer’s public key can 

authenticate the signature correctly. Public 

verification, on the other hand, may reveal the 

Signer’s identity for each session via a distinct 

electronic link between the identity and the public 

key, potentially compromise-ing various secret 

messages. In our framework, Requester A is in charge 

of verifying the authenticity of the signature created 

by Signer B and other Family Requester 𝐹′. This is 

accomplished by authenticating the use of B’s public 

key, ensuring the correctness of the signed message. 

Requester A examines the validity of Eqs. (15) and 

(16) to determine the accuracy of the signatures from 

both Signer B and other Family Requester F’. If these 

equations are correct, the pair (𝑆′, 𝑚′)  is recognized 
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as a valid message signature. Throughout this 

verification process, Requester A uses the secret 

value 𝑛𝐵 to authenticate the identity of Signer B, and 

similarly uses the secret value 𝑛𝐹′, to authenticate the 

identity of Signer 𝐹′. These secret values are derived 

from B’s private key and used in Eqs. (10) and (11) 

for the other Family Requester 𝐹′. As a result, the 

proposed design effectively maintains the property of 

correctness. 

Integrity, Integrity means that no malicious or 

unintentional changes can be made to the data while 

it is being transmitted. It is difficult to tamper with 

the message segments if an adversary tries to change 

a specific piece of data, such as sections of blind text 

that are being communicated between the sender and 

the recipient.  Additionally, every part of the blind 

text that is embedded in the encoded text and 

assigned a corresponding coordinate position 

depends heavily on every message block. When a 

deliberate action is taken to alter a specific message, 

the avalanche effect should follow with radically 

different outcomes. As a result, the suggested remedy 

offers the integrity property. 

Nonrepudiation, Nonrepudiation refers to a Signer’s 

inability to retract their signature from a genuinely 

signed message. In this case, Signer B who claimed 

to have signed the document, electronically signed 

the blinded message. Normally, a signature with 

specific values is returned to Requester A along with 

the classification result and user tracking. B cannot 

refute the act of signing by using the random number 

𝛽𝐵  and B’s private key 𝑛𝐵 , which also applies to 

other Family Requesters 𝐹′ . Furthermore, because 

Requester A is required to use the corresponding 

public key 𝑃𝑘𝐵 for B during verification, Requester 

A can later confirm that the message’s signature has 

been legitimately endorsed by the designated Signer 

B and other Family Requesters 𝐹′ . This is 

accomplished through the signature validation 

process described in Eqs. (15) and (16). As a result, 

the proposed method effectively ensures 

nonrepudiation. 

Unforgeability, Unforgeability refers to an 

interactive signature protocol’s ability to produce a 

valid signature for a given message only by the 

legitimate Signer. Furthermore, the Signer is not 

permitted to create additional signatures beyond the 

number of allowed signing instances (also known as 

non-reusability). Even if an adversary intercepts or 

eavesdrops on the blinded message (𝛼, (𝑅, 𝑆)) in 

order to attempt signature generation without the 

designated Signer B’s private key 𝑛𝐵, they will not be 

able to obtain a valid pair (𝛼, (𝑅, 𝑆)). This is due to 

an adversary’s inability to convincingly impersonate 

Signer B when forging a legally blind signature. 

Similarly, after interacting with Requester A once, the 

likelihood of Signer B successfully guessing a 

random signature (𝑅, 𝑆) in an attempt to create 

additional valid signatures is extremely low. 

Furthermore, Requester A can use the signature 

verification procedure 𝑅𝐵. 𝑃𝑘𝐵 ≟ 𝑆𝐵′ − 𝑚′. 𝑃𝑘𝐵  as 

defined in Eq. (15) to check any received message 

tuple (𝑆𝐵′ , 𝑚′, 𝑅𝐵)  corresponding to that signature 

for forgery. An adversary Signer faces difficulties in 

reversing the one-way hash function and solving the 

Blind Signature ECC for these parameters as a result 

of this process. In essence, the proposed plan satisfies 

the unforgeability property. 

The distinguishing characteristics are compatible 

with blind signatures, and we have detailed the 

intricate aspects of our proposed scheme in terms of 

security requirements. Table 5 provides a comparison 

of four similar existing studies. A “√” symbol in the 

table indicates that a security requirement has been 

met, while a “NA” or Not Available symbol indicates 

that the requirement has not been met as specified. 

The comparison shows how our current approach, 

which includes the above goals, improves security in 

comparable blind signature applications. Notably, 

while successful existing schemes have limitations in 

areas such as blindness, untraceability, and 

correctness, our proposed scheme stands out for its 

enhanced security. 

Table 5 illustrates how our suggested strategy 

helps to satisfy the requirement for an authentication 

system that upholds machine learning accuracy 

values while safeguarding privacy and anonymity. In 

research [14], they used k-Nearest Neighbour (k-NN) 

as a recommended model. To get the ideal k 

parameters The k-NN Classifier value used in this 

research Particle Swarm Optimization (PSO) 

technique. This first research experiment shows 

experimentally how PSO enters. The recommended 

approach is to find the ideal k parameter values to 

reduce the classification error rate of the k-NN 

classifier. But they do not explicitly mention the 

accuracy values.  This research also does not discuss 

the privacy and anonymity of users. In research [23] 

outlines a privacy-preserving collaborative deep 

learning framework for HAR, employing a two-stage 

scheme called RG-RP. The first stage involves 

perturbing participant data using a repeated 

Gompertz function to thwart MAP estimation attacks, 

while the second stage projects the data to a lower 

dimension using a row-orthogonal random projection 

matrix. The proposed LSTM-CNN model for activity 

recognition, when used with the privacy-preserving 

scheme, achieves an accuracy of 93.75% for the HAR 

dataset and 92.08% for the MH dataset, 
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demonstrating competitive accuracy while providing 

significant privacy benefits. Where the result of 

adding noise to raw user data results in a decrease in 

accuracy in this research. In research [24] the paper 

primarily focuses on securing location data in mobile 

crowd sensing (MCS) applications, but it has 

limitations. It is limited to Android-based sensing 

applications, potentially limiting its generalizability. 

The proposed security scheme lacks comparative 

analysis with existing methods and does not 

thoroughly address implementation challenges or 

real-world deployment considerations. Additionally, 

the paper does not extensively evaluate the impact on 

user experience. While it provides valuable insights, 

there are opportunities to enhance the research by 

considering a broader perspective on security, 

privacy, and practical implementation considerations 

for securing location data in MCS applications. In 

this research only focuses on confidentiality, integrity 

and authentication guarantees, while user anonymity 

is not considered. In research [25] This paper 

proposes a privacy-preserving framework for 

collaborative HAR using federated learning, edge 

computing and blockchain technology. Multiple edge 

nodes collect data from smart devices and conduct 

local model training without sharing raw data. A 

secure aggregation protocol is used to aggregate local 

model updates in a privacy-preserving manner. Smart 

contracts on the blockchain network replace the 

central server for model aggregation to improve 

security and transparency. According to experiments, 

the proposed framework achieves 93.24% accuracy 

for activity recognition while preserving user privacy 

during collaborative training. The training time is 

increased by the use of secure multiparty 

computation techniques; a round of iterations takes 

36.4 seconds to complete. And in our proposed, we 

improved the training accuracy results using the 

SVM algorithm, namely 99.16% with a classification 

time of 1 ms, and guaranteed user anonymity with the 

security attributes blindness of untraceability, 

confidentiality, correctness, integrity, nonrepudiation, 

and unforgeability. 

5. Performance Analysis 

In this section, we will first discuss the overall 

performance analysis of the system. The following 

section will investigate in quantitative detail the 

performance of our proposed SVM to classify and 

ECC blind signature algorithm. First, we will 

examine the results of analysing how much 

computing time is needed to classify smartphones in 

real-time, starting from inputting data in the model to 

making decisions. In addition, we will examine the  

 
Figure. 18 Graph of Average Computational Time in 

Each Activity 

 

theoretical results for solving the cryptological 

operations involved with respect to the computational 

and communication costs incurred by each task 

according to the concept of modular arithmetic 

operations [33]. Fig. 18 shows the process of 

classifying smartphones in real-time, starting from 

inputting data in the model to making decisions. The 

graph above shows that the average time interval for 

classification on smartphones in real-time is around 1 

ms. With an average classification computation time 

of 1 ms, it can be concluded that the classification 

process starts from inputting data in the model until 

decision-making is very fast. This shows that the 

prediction system can work in real- time. Because of 

the fast classification computation time, there is no 

need to worry about data loss for further activities. In 

addition, with a short classification computational 

time, no large resources are needed to compute with 

the model that has been made. Table 6 shows the 

notations we use to evaluate performance, which 

include scalar multiplication, dot addition, hash 

construction, and modular arithmetic. Table 7 shows 

the computational cost of our scheme for each stage 

such as blinding, signing, unblinding, and 

verification. Table 8 shows Computation Time 

Performance of Generate Key, where the increasing 

number of users created, the longer the key 

generation time on the TTP (Server). However, the 

time difference between generating user keys in 

ECC-based blind signature is very small around 150 

ms. 

6. Conclusion 

Based on the experimental results obtained from 

the study, it can be concluded that the proposed SVM 

C-SVC model with RBF kernel and the data 

normalization technique has achieved a high level of 

accuracy in predicting the four tested activities of 

sitting, standing, walking, and jogging. The 

experimental results obtained in the machine learning 

process were satisfactory with an overall accuracy of 
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99.16%. This is supported by the evaluation metrics 

obtained in detail from the confusion matrix analysis 

and the comparison of each class performance. The 

outcomes of the system testing conducted in the 

online scope demonstrated that the suggested model 

could effectively use accelerometer and gyroscope 

sensor data to classify and predict sitting, standing, 

walking, and jogging activities in real-time. Fig. 16’s 

decision classification results and Fig. 17’s 

classification result evaluation graph. The robustness 

and accuracy of the proposed SVM-C SVC model 

using RBF kernel and data normalization techniques 

may contribute to the development of more advanced 

intelligent systems in the healthcare and wearable 

device industries. This significantly improves the 

overall user experience due to the model’s ability to 

accurately classify activity and predict potential 

health issues such as sedentary behaviour and fall risk, 

providing personalized recommendations. In addition, 

in maintaining anonymous users using blind 

signature ECC has fulfilled criteria such as 

confidentiality, correctness, integrity, nonrepudiation, 

and unforgeability, blindness and untrace ability at a 

low computational cost. 

 
Notations and Descriptions 

𝐸 (𝐹𝑞) 
An elliptical curve 𝐸 over a finite 

field 𝐹𝑞 
𝐺 A base point of elliptic curve 

𝑑 A prime order of 𝐺 

𝑃𝑘𝑆, 𝑛𝑠 
A public and private key pair from 

Server 

𝑃𝑘𝐴, 𝑃𝑘𝐵 , 𝑃𝑘𝐹 

All users’ public keys as requester 

(𝐴), signer (𝐵), and Family Requester 

(F) 

𝑛𝐴, 𝑛𝐵 , 𝑛𝐹 

All users’ private keys as requester 

(𝐴), signer (𝐵), and Family Requester 

(F) 

𝑖𝑑𝐴, 𝑖𝑑𝐵, 𝑖𝑑𝐹 

User identity data, including requester 

(𝐴), signer (𝐵), and Family Requester 

(F) 

𝑚 
a hash value obtained from the 

sequence of ciphertext 

𝛼 A blinded message 

𝛽 A random integer number 

𝑅𝐵, 𝑅𝐹′  
Secret Element Signer B, Secret 

Element Other Family Requester 

𝑆𝐵 , 𝑆𝐹′  
Blind Signature Signer B, Blind 

Signature Other Family Requester 

�̅� A plaintext segment 

𝑝𝑣 Padding value 

𝑝𝑎𝑑 Padding 

𝐶𝑖 Ciphertext block 

𝑐𝑖−1 Previous ciphertext block 

𝐼𝑉𝑖  Intermediate value 

𝐸𝑘 Encryption Process 

𝐷𝑘 Decryption Process 

ECC Elliptic Curve Cryptography 

SVM Support Vector Machine 

JWT JSON Web Token 

TTP Third Trusted Party 
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