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Abstract: Fruit classification from images plays a pivotal role in diverse domains. Despite numerous efforts to tackle 
this challenge, it remains complex due to the diversity of fruit and applications. This study presents an enhanced 
support vector machine (SVM) based on grey wolf optimizer (GWO) for fruit image classification. GWO is used to 
optimize the hyperparameters of SVM and low variance feature selection threshold. The utilization of MPEG-7 
visual descriptors negates the need for segmentation. The results showcase exceptional classification accuracy across 
Ubaya-IFDS3000, Ubaya-IFDS5000, and Supermarket produce datasets, with standout features achieving up to 
99.21%, 98,28%, and 99.85% accuracies, respectively. Notably, the proposed method consistently outperforms SVM 
optimized with the other optimization algorithms. Further, it excels in classification accuracy when compared to 
previous state-of-the-art methods. This study emphasizes the importance of hyperparameter optimization using GWO 
and its effectiveness in fruit image classification. 
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1. Introduction 
Fruit classification from images holds significant 

importance in various fields, such as agriculture, 
food industry, retail, and dietary recommendations 
[1, 2]. The classification of fruits from images has 
been the subject of extensive research by scholars. 
However, it remains a significant challenge due to 
the sheer diversity of fruit types available in the 
market and its wide array of application domains. 
With many fruit varieties and varying visual 
characteristics, this field of study continues to 
evolve, aiming to develop robust and adaptable 
classification systems that cater to the diverse needs 
of different industries and contexts [3]. Fruit 
classification from images is an inexpensive method 
compared to other approaches [4] and is an 
alternative to the traditional classification method 
[5]. Fruit classification from images can be broadly 
categorized into two main methods: traditional 
machine learning and deep learning. In the 
traditional machine learning approach, some features 

are extracted from fruit images and then used to train 
the machine learning model [6]. 
Numerous studies have employed traditional 
machine learning methods to classify fruits from 
images [1, 6-17]. This approach usually involves 
segmentation and feature extraction steps in the 
classification pipeline. Segmentation is the process 
of separating objects from their backgrounds, 
enabling subsequent analysis and recognition [18]. 
Various segmentation methods have been employed 
for fruit classification from images in some studies, 
including background subtraction [8, 10, 12, 16], 
split-and-merge [13-15, 17], GrabCut [7], and 
automatics thresholding [1]. Color, texture, and 
shape were the most used features for fruit 
classification from images in the traditional machine 
learning approach. Several studies have 
implemented feature and classifier fusion strategies 
to enhance classification accuracy, as reported in [1, 
6, 9-11, 16]. In previous research, support vector 
machines (SVM) and artificial neural networks 
(ANN) have been the predominant classifiers for 
fruit classification from images that 
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Nomenclature 
𝑭𝑭 Features fusion 

CS Color structure 
SC Scalable color 
CL Color layout 
HT Homogeneous texture 
ET Edge histogram 
𝐱𝐱,𝐱𝐱𝑖𝑖 Feature vector 
𝑦𝑦𝑖𝑖 Expected output 
𝑦𝑦(𝐱𝐱) Predicted output 
𝐰𝐰, 𝑏𝑏 SVM parameters 
𝐶𝐶 Regularization parameter 

𝐾𝐾�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� Kernel function 
𝐏𝐏(𝑖𝑖),𝐏𝐏𝑗𝑗(𝑖𝑖) The position vector of grey wolf 

𝐏𝐏�𝑗𝑗 The estimation of 𝐏𝐏 
𝐏𝐏𝑝𝑝(𝑖𝑖) The position vector of prey 

𝐀𝐀,𝐀𝐀𝒋𝒋 ,𝐂𝐂,𝐂𝐂𝒋𝒋 Coefficient vectors 
𝑎𝑎 Scalar between 0 and 2 

𝐫𝐫1, 𝐫𝐫2 Random vectors 
𝐃𝐃,𝐃𝐃𝑗𝑗 The distance between the wolf and the prey 
𝑓𝑓(𝐏𝐏) Objective function 
𝑇𝑇 The threshold value of LVFS 
𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 Classification accuracy 
𝐶𝐶𝑡𝑡 The number of correctly classified images 
𝑇𝑇𝑡𝑡 The number of images in the dataset 
𝛼𝛼𝑖𝑖 Dual coefficient 
𝜉𝜉𝑖𝑖 Slack variables 
𝛾𝛾 Kernel coefficient 

 
achieved the best performance, such as in [1, 12-17], 
[19-22]. Derivative-free optimization techniques, 
such as fitness-scaled chaotic artificial bee colony 
(FSCABC) [19], biogeography-based optimization 
(BBO) [20], and Kalman filter (KF) [21], have also 
been applied to train classifiers for fruit recognition 
from images to enhance performance, as reported in 
[1, 14, 15]. 

In the case of fruit classification from images 
using deep learning, previous studies can be 
categorized into two main approaches: building 
convolutional neural networks (CNN) models from 
scratch [22-25] and utilizing pre-trained CNN 
models with transfer learning strategies [24, 26-32]. 
Some previous studies employed several pre-trained 
CNN model architectures to classify fruits from 
images. These architectures included MobileNetV2 
[27, 28], VGG-16 [24], AlexNet [26], DenseNet [29-
31], ResNet [30, 31], NASNet [30], EfficientNet 
[30], Inception V3 [31], and MangoNet [32]. Many 
researchers have employed a technique known as 
image augmentation to achieve a well-performing 
CNN model during the training phase. Image 
augmentation involves creating variations of the 
training data by applying transformations like 
rotations, flips, and zooms to increase the diversity 
of training data [23, 24, 26]. 

In addition to selecting the appropriate 
classification model, the choice and tuning of 
hyperparameters play a crucial role in determining 
the model's performance. Hyperparameters are 
settings or configurations not learned from the data. 
Still, they are essential for the model's behavior, 
such as learning rates, batch sizes, or the number of 
layers in a neural network. Optimizing these 
hyperparameters is crucial to obtain the best model 
performance [33, 34]. However, in the existing 
literature, hyperparameter tuning has predominantly 
been explored in studies focusing on fruit 
classification from images through deep learning 
approach, as reported in [29-32]. Several 
optimization algorithms have been employed for 
hyperparameter tuning in deep learning models for 
fruit image classification. Noteworthy among them 
are the Aquila Optimization Algorithm (AOA) [29], 
Tunicate Swarm Algorithm (TSA) [31], Harris 
Hawks Optimization (HHO) [32], and Bayesian 
Optimization [30]. On the other hand, in machine 
learning approach, researchers have primarily 
focused on selecting models, feature engineering, 
data preprocessing, and sometimes neglecting the 
crucial step of fine-tuning hyperparameters.  

This study proposes an enhanced SVM based on 
Gray Wolf Optimizer (GWO) to classify fruit from 
images. GWO is a nature-inspired metaheuristic 
algorithm based on grey wolves' hunting and social 
behavior. It mimics the pack's hierarchy and 
cooperation to find optimal solutions [35]. GWO has 
been effectively applied in various hyperparameter 
optimization tasks for traditional machine learning 
[36-38] and deep learning [39-41]. In this study, 
GWO is employed to optimize the hyperparameters 
of SVM and the threshold value of low variance 
feature selection (LVFS) to improve the accuracy of 
SVM in classifying fruit from images. Moving 
Picture Experts Group-7 (MPEG-7) visual 
description [42] is used as input features to SVM. 
Using the MPEG-7 visual descriptor, the fruit image 
classification process does not require preprocessing 
and segmentation [43].  

The strong points of the proposed method are as 
follows: 
• Using GWO for hyperparameter optimization in 

SVM brings an innovative dimension to fruit 
image classification. To the best of the Author’s 
knowledge, GWO has never been employed to 
optimize the hyperparameter of SVM for fruit 
image classification in the literature. 

• By fusing MPEG-7 color and texture features, the 
proposed approach revolutionizes fruit image 
classification, eliminating the need for 
preprocessing and segmentation as well as 
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significantly enhancing the performance of SVM 
in classifying fruit images. 

• Acknowledging the diverse range of fruit types, 
the proposed method stands out for its ability to 
provide accurate and adaptable classification 
across various fruit datasets. 

• A new Indonesian fruit image dataset, called 
Ubaya-IFDS5000 dataset, is also proposed in this 
paper. 
The rest of the paper is organized as follows. In 

Section 2, the focus is on the materials used and the 
proposed method. Section 3 unfolds the outcomes of 
experiments, presenting a meticulous analysis of the 
results obtained. Finally, Section 4 encapsulates the 
essence of the study, synthesizing the key takeaways 
and implications drawn from the study.  

2. Materials and methods 

2.1 Ubaya-IFDS3000 dataset 

The Ubaya-IFDS3000 dataset [6] is the first 
image dataset used in this study. The dataset has 15 
classes of Indonesian fruits, namely ambarella, 
avocado, dragon fruit, duku, durian, guava, 
mangosteen, pacitan orange, persimmon, pineapple, 
salak, sapodilla, siam lime, soursop, and star fruit. 
The dataset contains a total of 3000 images, with 
200 images per class. All images were captured 
using a Canon EOS Kiss X6i camera in RGB (Red, 
Green, Blue) color space, with a dimension of 
2592×1456 pixels and a resolution of 72 dpi and 
saved as a JPEG file. The dataset incorporated five 
background colors (pink, white, light blue, light 
green, and light yellow) and two illumination levels 
(160 and 1050 lumens). Images were taken with the 
camera tilted at 0o or 45o to introduce variance. 
Deliberate choices such as varying object counts and 
shadows enhanced dataset complexity. Fig. 1 
displays some fruit images from the Ubaya-
IFDS3000 dataset. 
 

 
Figure. 1 Some fruit images in Ubaya-IFDS3000 

dataset 

 
Figure. 2 Some fruit images in Ubaya-IFDS5000 

dataset 

2.2 Ubaya-IFDS5000 dataset 

This study introduces Ubaya-IFDS5000, a novel 
Indonesian fruit image dataset, serving as the second 
dataset. Comprising 25 diverse Indonesian fruits, 
including ana apple, bilimbi, cantaloupe, cucumber, 
green water apple, cashew, star apple, long 
watermelon, manalagi apple, matoa, melon, 
mulberry, palmyra palm fruit, papaya, passion fruit, 
pomegranate, pomelo, rambutan, strawberry, sugar 
apple, timun krai, timun suri, tomato, watermelon, 
and watery rose apple. the dataset was sourced from 
traditional markets in Surabaya and Sidoarjo, East 
Java, Indonesia. All images were acquired using the 
same setup as in Ubaya-IFDS3000 dataset. The 
dataset contained a total of 5000 images, with 200 
images per class. A Canon EOS 80D camera was 
used to capture all images in RGB color space, with 
a dimension of 2976×1984 pixels and a resolution of 
72 dpi and saved as a JPEG file. Some images from 
the Ubaya-IFDS5000 can be seen in Fig. 2. 

2.3 Supermarket produce dataset 

Supermarket produce dataset [10] is the third 
image dataset used in this study. The dataset consists 
of 15 classes of fruits and vegetables, including 
agata potato, asterix potato, cashew, diamond peach, 
fuji apple, granny smith apple, honeydew melon, 
kiwi, nectarine, onion, orange, plum, spanish pear, 
taiti lime, and watermelon, as shown in Fig. 3. This 
dataset has a total of 2633 images with 75 to 264 
images per class. Each image was captured on a 
white or clear background using a Canon PowerShot 
P1 camera with the dimension of 1024×768 pixels in 
RGB color space. The illumination of each image in 
the dataset was different when it is recorded. Each 
image in the dataset contains a different number of 
objects. The dataset contained images in diverse 
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Figure. 3 Some fruit and vegetable images from 

Supermarket produce dataset 
 
poses, some with objects enclosed in plastic bags, 
intensifying specular reflection. Shadows and 
partially obscured objects, adding realism, were 
deliberately included in the dataset. 

2.4 Feature extraction 

In this study, five MPEG-7 color and texture 
features, namely color layout (CL), color structure 
(CS), scalable color (SC), edge histogram (EH), and 
homogeneous texture (HT), were directly acquired 
from the whole pixels in each fruit image. No 
preprocessing or segmentation steps were used in the 
extraction of these features. The color feature is 
selected as the one to use since it is a visual feature 
frequently utilized in object recognition. 
Additionally, color is resistant to being translated, 
rotated, and viewed from different angles. On the 
other hand, texture not only contains the structural 
information of the surface but also conveys the 
visual pattern of the surface [42].  

Color layout refers to how colors are distributed 
over an image in the spatial domain. It is extracted in 
the YCbCr color space. Firstly, the image is divided 
into 64 equal blocks to ensure resolution invariance. 
The averages of pixel intensities in each channel are 
calculated as representative colors from each block 
to produce three 8×8 tiny images. The tiny images 
were transformed into frequency domain using 
discrete cosine Fourier transform (DCT). A zigzag 
scanning is carried out to select the first few DCT 
coefficients. The chosen coefficients are then 
subjected to a nonlinear quantization process to 
produce color layout features having a length of 120, 
64 from the Y channel, 28 from the Cb channel, and 
28 from the Cr channel. 

The color structure of an image is an expression 
of the spatial color structure present in a particular 
location as well as the overall color distribution of 
the image. The spatial color structure information 
makes the feature sensitive to the specific image 
characteristics that are not visible by employing an 
ordinary color histogram. This feature is obtained in 

HMMD color space. The entire image is scanned 
with an 8×8 structuring element to produce a 256-
bin histogram. The value of each bin is updated at 
each place in the image by counting the number of 
occurrences of a particular color within the 
structuring element. 

Scalable color is extracted in HSV color space 
by constructing a 256 bins color histogram. The 
color space is uniformly quantized to 256 colors 
consisting of 16 levels H channels, four S channels, 
and four V channels. The histogram is normalized 
and then mapped into a 4-bit integer representation 
to give great weight to small values that occurred 
with a higher probability. After that, a Haar 
transform is applied to encode the histogram. This 
process is used to facilitate the scalability of the 
descriptor.  

The spatial edge distribution of an image can be 
described using an edge histogram. Before the edge 
histogram can be extracted, the image is initially 
partitioned into 4×4 nonoverlapping big blocks. The 
edge information on each block is computed and 
categorized into five groups: vertical, horizontal, 45° 
diagonal, 135° diagonal, and isotropic. This is 
accomplished with the assistance of four directional 
selective edge detectors and one isotropic edge 
detector. As a result, the edge histogram feature 
contains five bins on each block. Therefore, there 
are 80 bins across the image. 

The direction, hardness, and frequency of the 
pattern in the image can be characterized by a 
homogeneous texture feature. This feature is suitable 
for quantifying the texture of the image with a 
homogeneous characteristic. The 2D frequency 
space of the image is firstly segmented into 30 
channels by five octave segments in the radial 
direction and six equal segments in the angle 
direction at the interval of 30 degrees before the 
homogeneous texture extraction. A Gabor-filtered 
Fourier transform is employed in each frequency 
channel. The mean energy and the deviation of 
energy are calculated from the filter output in each 
channel to produce a 60-bin histogram. The 
histogram is then concatenated with one bin 
histogram from the mean of pixel intensities and one 
bin histogram from the standard deviation of pixel 
intensities to obtain a 62-bin histogram. This study 
selects some fusion of MPEG-7 color and texture 
features according to the features used in fruit 
classification proposed in [9]. All fusions are 
tabulated in Table 1. 
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Table 1. The fusion of MPEG-7 color and texture features 
used for classification 

𝒊𝒊 Features 
fusion (𝑭𝑭𝒊𝒊) 

𝒊𝒊 Features 
fusion (𝑭𝑭𝒊𝒊) 

1 CS 13 CS+CL+HT 
2 SC 14 CS+CL+EH 
3 CS+SC 15 CS+HT+EH 
4 CS+CL 16 SC+CL+HT 
5 CS+HT 17 SC+CL+EH 
6 CS+EH 18 SC+HT+EH 
7 SC+CL 19 CS+SC+CL+HT 
8 SC+HT 20 CS+SC+CL+EH 
9 SC+EH 21 CS+SC+HT+EH 
10 CS+SC+CL 22 CS+CL+HT+EH 
11 CS+SC+HT 23 SC+CL+HT+EH 
12 CS+SC+EH 24 CS+SC+CL+HT+EH 

2.5 Low variance features selection 

The essential goals of feature selection are data 
cleaning, developing models that are less 
complicated and easier to understand, as well as 
improving classification accuracy. Several feature 
selection methods have been proposed and can be 
divided into four groups: statistical based, similarity 
based, sparse learning based, and information 
theoretical based. The technique applied during the 
feature selection process serves as the basis for this 
categorization [44].  

Statistical based feature selection employs some 
statistical measures to extract the characteristics of 
features while selecting the important features. This 
method works independently from the learning 
algorithm. Therefore, it is more efficient compared 
to other methods. This study employs a simple 
statistical based feature selection that relies on 
variance, called low variance feature selection 
(LVFS) [44]. The importance of each feature is 
ranked based on its variance. A feature with a larger 
variance is considered more important than a feature 
with a smaller variance. A threshold value T needs 
to be determined first before feature selection. A 
feature with a variance less than T is considered 
unimportant and will be removed from the feature 
set. In this study, the value of T is determined using 
Grey Wolf Optimizer in the range [0,10], such that 
the best classification performance is achieved. 
Furthermore, this study uses the implementation of 
LVFS in Scikit-learn library [45] to perform feature 
selection. 

2.6 Support vector machine 

Support vector machine (SVM) is a classifier 
used initially for binary classification problems. 
Suppose the training data for the binary 

classification problem consists of the input feature 
vectors 𝐱𝐱1,𝐱𝐱2, … , 𝐱𝐱𝑁𝑁  and the corresponding 
expected output 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑁𝑁, where 𝐱𝐱𝑖𝑖 ∈ ℝ𝑚𝑚,   𝑦𝑦𝑖𝑖 ∈
{−1,1}  for 𝑖𝑖 = 1,2, . . ,𝑁𝑁  and 𝑁𝑁  is the number of 
training data. SVM aims to find a hyperplane as in 
Eq. (1), 
 

𝑦𝑦(𝐱𝐱) = 𝐰𝐰𝑇𝑇𝜙𝜙(𝐱𝐱) + 𝑏𝑏 (1) 
 
that can be used to classify an unknown input feature 
vector 𝐱𝐱 by sign(𝑦𝑦(𝐱𝐱) ), where 𝐰𝐰 ∈ ℝ𝑚𝑚  and 𝑏𝑏 ∈ ℝ 
are SVM parameters, and 𝜙𝜙  is a feature space 
mapping. The values 𝐰𝐰  and 𝑏𝑏  are determined by 
maximizing margin, which is the distance between 
𝐰𝐰𝑇𝑇𝜙𝜙(𝐱𝐱) + 𝑏𝑏 = 0 and the closest of the input feature 
vectors in training data [46]. 

The problem finding the optimum values of 𝐰𝐰 
and 𝑏𝑏  can be formulated using the optimization 
problem in Eq. (2) and (3),  
 

min
𝐰𝐰,𝑏𝑏,𝜉𝜉1,𝜉𝜉2,…𝜉𝜉𝑁𝑁

1
2
‖𝐰𝐰‖ + 𝐶𝐶 ∑ 𝜉𝜉𝑖𝑖𝑁𝑁

𝑖𝑖=1  (2) 

 
subject to 
 

𝑦𝑦𝑖𝑖(𝐰𝐰𝑇𝑇𝜙𝜙(𝐱𝐱𝑖𝑖) + 𝑏𝑏 ) ≥ 1 − 𝜉𝜉𝑖𝑖,   𝜉𝜉𝑖𝑖 ≥ 0 (3) 
 
where 𝜉𝜉𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑁𝑁 are slack variables defined as 
distance between expected output 𝑦𝑦𝑖𝑖  and predicted 
output 𝑦𝑦(𝐱𝐱𝑖𝑖), and 𝐶𝐶 > 0 is regularization parameter 
to control trade of between the slack variables and 
the margin. The above optimization problem can be 
formulated as dual problem as in Eq. (5) and (6),  
 

max
𝛼𝛼1,𝛼𝛼2,…𝛼𝛼𝑁𝑁

∑ 𝛼𝛼𝑖𝑖𝑁𝑁
𝑖𝑖=1 −

1
2
∑ ∑ 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑁𝑁

𝑗𝑗=1 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝐾𝐾�𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑗𝑗�𝑁𝑁
𝑖𝑖=1  (5) 

 
subject to 
 

0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶,∑ 𝛼𝛼𝑖𝑖𝑁𝑁
𝑖𝑖=1 𝑦𝑦𝑖𝑖 = 0 (6) 

 
where 𝐾𝐾�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� = 𝜙𝜙(𝐱𝐱𝑖𝑖)𝑇𝑇𝜙𝜙�𝐱𝐱𝑗𝑗�  is the kernel 
function and 𝛼𝛼1,𝛼𝛼2, …𝛼𝛼𝑁𝑁 are the dual coefficients.  

SVM can be extended to the multiclass problem 
by combining some binary SVM classifiers using 
either one versus one or one versus rest approaches. 
This study uses a one versus one approach by 
contracting 𝑘𝑘(𝑘𝑘 + 1)/2 binary SVM classifiers on 
all combinations of two classes. The kernel function 
used in this study is the radial basis function as in  

 
𝐾𝐾(𝐱𝐱, 𝐱𝐱′) = exp(−𝛾𝛾‖𝐱𝐱 − 𝐱𝐱′‖) (7) 
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Eq. (7), where 𝛾𝛾  is a kernel coefficient. The 
accuracy of SVM depends on the values of hyper-
parameters 𝐶𝐶 and 𝛾𝛾 provided by the user. Therefore, 
the values of 𝐶𝐶 and 𝛾𝛾 need to be optimized to obtain 
the best classification performance. In this study, 
Grey Wolf Optimizer was also employed to obtain 
the best values of 𝐶𝐶 and 𝛾𝛾 from the range [1,1000] 
and [0.01,1], respectively. This study also used the 
implementation of multiclass SVM in Scikit-learn 
library to train the SVM model. 

2.7 Grey wolf optimizer  

Grey wolf optimizer (GWO) is a metaheuristic 
optimization algorithm that takes inspiration from 
grey wolves (Canis lupus) [35]. It works by 
imitating the social hierarchy and hunting strategy of 
grey wolves found in their natural environment. The 
social hierarchy is simulated using four types of 
grey: alpha, beta, delta, and omega. The alpha wolf 
is the group leader who decides on prey hunting. 
The beta wolf is on the second level that helps the 
alpha wolf make decisions or do other activities. The 
third level is the delta wolf with the job of caretakers, 
hunters, elders, sentinels, and scouts. The omega 
wolf consisted of wolves, not in alpha, beta, and 
delta. In each iteration of the GWO algorithm, the 
best solution is modelled as the alpha wolf (𝛼𝛼). The 
second and third best solutions are the beta wolf (𝛽𝛽) 
and the delta wolf (𝛿𝛿), respectively. The remaining 
possible solutions are all considered to be the omega 
wolf (𝜔𝜔) . 𝛼𝛼,𝛽𝛽, and  𝛿𝛿  wolves act as guides during 
optimization process and their movement will be 
followed by 𝜔𝜔 wolves. 

The GWO algorithm employs a three-step 
hunting strategy: searching, encircling, and attacking 
prey to find the best solution. Suppose 𝐏𝐏(𝑖𝑖)  and 
𝐏𝐏𝑝𝑝(𝑖𝑖) are the position vector of a grey wolf and the 
prey at 𝑖𝑖𝑡𝑡ℎ  iteration. The encircling behavior of a 
grey wolf can be modelled using Eq. (8) - (11), 
 

𝐀𝐀 = 2𝑎𝑎𝐫𝐫1 − 𝑎𝑎 (8) 
 

𝐂𝐂 = 2𝐫𝐫2 (9) 
 

𝐃𝐃 = �𝐂𝐂.𝐏𝐏𝑝𝑝(𝑖𝑖) − 𝐏𝐏(𝑖𝑖)�  (10) 
 

𝐏𝐏(𝑖𝑖 + 1) = 𝐏𝐏𝑝𝑝(𝑖𝑖) − 𝐀𝐀.𝐃𝐃   (11) 
 
where 𝐀𝐀 and 𝐂𝐂 are coefficient vectors, 𝑎𝑎 is a scalar 
with its value linearly decreased from 2 to 0 during 
the iteration process, 𝐫𝐫1, 𝐫𝐫2 are random vectors with 
elements falling in the range [0,1] , | | is the 
element-wise absolute value of the vector, and the 

dot (.) operator is the element-wise vector 
multiplication. 

The position of the best solution is unknown in 
the actual case. Therefore, during the hunting 
process, the movement of a grey wolf will be guided 
by 𝛼𝛼,𝛽𝛽, and 𝛿𝛿  wolves. This condition assumes that 
𝛼𝛼,𝛽𝛽, and 𝛿𝛿 wolves have more information about the 
prospective prey location. Eq. (12) - (14) are used to 
describe the movement of the grey wolf in each 
iteration based on the position of 𝛼𝛼,𝛽𝛽, and 𝛿𝛿 wolves, 
 

𝐃𝐃𝑗𝑗 = �𝐂𝐂𝑗𝑗.𝐏𝐏𝑗𝑗(𝑖𝑖) − 𝐏𝐏(𝑖𝑖)� (12) 
 

𝐏𝐏�𝑗𝑗 = 𝐏𝐏𝑗𝑗(𝑖𝑖) − 𝐀𝐀𝑗𝑗.𝐃𝐃𝑗𝑗 (13) 
 

𝐏𝐏(𝑖𝑖 + 1) = 1
3
�𝐏𝐏�𝛼𝛼 + 𝐏𝐏�𝛽𝛽 + 𝐏𝐏�𝛿𝛿� (14) 

 
where 𝐀𝐀𝒋𝒋  and 𝐂𝐂𝒋𝒋 , for 𝑗𝑗 = 𝛼𝛼,𝛽𝛽, 𝛿𝛿 , are coefficient 
vectors as defined in Eq. (10) and Eq. (11), 
respectively, and 𝐏𝐏𝛼𝛼(𝑖𝑖), 𝐏𝐏𝛽𝛽(𝑖𝑖),𝐏𝐏𝛿𝛿(𝑖𝑖) are the position 
of 𝛼𝛼,𝛽𝛽, and 𝛿𝛿 wolves at 𝑖𝑖𝑡𝑡ℎ iteration, respectively.  

In this study, GWO was used to determine the 
value of threshold 𝑇𝑇  in LVFS and the value of 
hyperparameters 𝐶𝐶 and 𝛾𝛾 in SVM such that the best 
classification accuracy of SVM can be achieved in 
classifying fruit images. Therefore, the position 
vector of a grey wolf will consist of 𝑇𝑇,𝐶𝐶, and 𝛾𝛾, as in 
Eq. (15). 
 

𝐏𝐏 = (𝑇𝑇,𝐶𝐶, 𝛾𝛾) (15) 
 

The number of grey wolf population (𝑁𝑁) used to 
search for the best solution was five wolves with the 
maximum iteration of 10. GWO will search for the 
best solution 𝐏𝐏  by maximizing classification 
accuracy with the objective function as in Eq. (16), 
 

𝑓𝑓(𝐏𝐏) = 1 − 𝑎𝑎𝑎𝑎𝑎𝑎(𝐏𝐏) (16) 
 
where 𝑎𝑎𝑎𝑎𝑎𝑎(𝐏𝐏) is the classification accuracy of SVM 
with 𝐶𝐶 = 𝐏𝐏[2] and 𝛾𝛾 = 𝐏𝐏[3] and LVFS is performed 
with 𝑇𝑇 = 𝐏𝐏[1].  

2.8 Evaluation 

Every dataset was divided into two 
nonoverlapping subsets with a proportion of 1:1, one 
for the training dataset and the remaining for the 
testing dataset. Stratified random sampling without 
replacement is employed to construct five pairs of 
training and testing datasets to ensure that all classes 
have the same proportion in both subsets.   
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The SVM classifier was trained using five 
training datasets, and the performance was evaluated 
using the corresponding testing data set. Five 
accuracies 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 , 𝑡𝑡 = 1,2,3,4,5 were calculated from 
five testing datasets using Eq.  (16), 
 

𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 = 𝐶𝐶𝑡𝑡
𝑇𝑇𝑡𝑡

 × 100% (17) 
 
where 𝐶𝐶𝑡𝑡  and 𝑇𝑇𝑡𝑡  are the number of correctly 
classified images and the total images in the tth 
testing dataset, respectively. Finally, all 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡  were 
summarized using average to represent the 
performance of the SVM classifier.  

3. Results and Discussion 
The summary in Table 2 outlines the 

classification accuracy of enhanced SVM based on 
GWO on three datasets. The data printed in bold 
indicate the top three classification accuracies for 
each dataset. Among the feature fusions analyzed, 
the top three performing feature fusions in terms of 
classification accuracy on the Ubaya-IFDS3000 
dataset are as follows. The feature fusion with the 
highest accuracy, securing the first and second ranks, 
were 𝑭𝑭3  and 𝑭𝑭10  with an average accuracy of 
99.21%. Following closely, 𝑭𝑭11  claimed the third 
rank with average accuracies of 99.16%. These 
features showcase exceptional discriminative 
capabilities, playing a crucial role in achieving the 
outstanding performance of the fruit image 
classification model on the Ubaya-IFDS3000 dataset.  

The exploration of classification accuracy within 
the Ubaya-IFDS5000 dataset revealed a marginally 
lower performance than Ubaya-IFDS3000 dataset, 
ranging from 94.83% to 98.29%. This disparity can 
be attributed to the inherent complexity and diversity 
present in the Ubaya-IFDS5000 dataset, potentially 
posing  chal lenges  for  precise  f rui t  image 
classification. The top three performing feature 
fusions regarding classification accuracy using the 
proposed method in Ubaya-IFDS5000 dataset are as 
follows. Feature fusion 𝑭𝑭19  stood out with an 
impressive average accuracy of 98.29, closely 
followed by 𝑭𝑭11 and 𝑭𝑭10, which exhibited notable 
accuracy scores of 98.18 and 97.71% respectively. 
These feature fusions demonstrated a remarkable 
ability to differentiate between the dataset's diverse 
fruit classes. Interestingly, as can be observed from 
Table 2, the feature fusions that attained the highest 
classification accuracy in the Ubaya-IFDS5000 
dataset differ from those in the Ubaya-IFDS3000 
dataset. This discrepancy shows each dataset's 
unique challenges and intricacies, necessitating  

Table 2. Classification accuracy of optimized SVM 
using GWO 

𝑭𝑭𝒊𝒊 

Average accuracy (%) 
Ubaya- 

IFDS3000 
Ubaya- 

IFDS5000 
Supermarket 

produce 
GWO GWO GWO 

𝑭𝑭1 98.20 95.45 99.67 
𝑭𝑭2 98.61 96.30 99.48 
𝑭𝑭3 99.21 97.43 99.82 
𝑭𝑭4 98.19 95.64 99.65 
𝑭𝑭5 97.89 96.30 99.61 
𝑭𝑭6 97.67 95.40 99.56 
𝑭𝑭7 98.85 96.50 99.67 
𝑭𝑭8 98.60 97.47 99.68 
𝑭𝑭9 98.37 95.04 99.57 
𝑭𝑭10 99.21 97.71 99.85 
𝑭𝑭11 99.16 98.18 99.77 
𝑭𝑭12 98.85 96.26 99.70 
𝑭𝑭13 98.09 96.66 99.59 
𝑭𝑭14 98.08 95.45 99.53 
𝑭𝑭15 96.88 96.09 99.45 
𝑭𝑭16 99.03 97.69 99.64 
𝑭𝑭17 98.55 94.83 99.64 
𝑭𝑭18 98.45 96.87 99.61 
𝑭𝑭19 99.15 98.29 99.76 
𝑭𝑭20 98.77 96.90 99.70 
𝑭𝑭21 98.89 97.51 99.71 
𝑭𝑭22 97.21 96.05 99.53 
𝑭𝑭23 98.59 97.11 99.61 
𝑭𝑭24 98.80 97.60 99.68 

 
distinct features for optimal classification 
performance.  

The classification accuracy results on the 
Supermarket produce dataset exhibited a remarkable 
level of performance, surpassing the outcomes 
observed in the two preceding datasets. The 
achieved classification accuracy showed a consistent 
trend of superiority across the features, ranging from 
99.45% to 99.85%. Particularly noteworthy was the 
top-tier accuracy attained by the proposed method 
by employing feature fusions 𝑭𝑭10, 𝑭𝑭3, and 𝑭𝑭11, with 
remarkable accuracies of 99.85%, 99.82%, and 
99.77%, respectively. Interestingly, the feature 
fusions that produced the highest accuracy on 
Supermarket produce dataset is the same as Ubaya-
IFDS3000 dataset. 

This study also compared classification accuracy 
between the proposed method and optimized SVM 
based on RSO, AOA, TSA, HHO, BO for 
hyperparameter tuning. Table 3 presents a 
comparative analysis of the proposed method against 
other optimization algorithms in terms of accuracy 
across different datasets. In Ubaya-IFDS3000 
dataset with feature fusion CS+SC, optimized SVM  
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Table 3.  Comparison of the proposed method with 
the other optimization algorithms 

Optimization algorithm Accuracy (%) 
Ubaya- IFDS3000 dataset with CS+SC 

RSO 98.32 
AOA 98.91 
TSA 99.13 
HHO 98.91 
BO 98.84 

GWO (this study) 99.21 
Ubaya- IFDS3000 dataset with CS+SC+CL+HT 

RSO 97.27 
AOA 97.97 
TSA 97.82 
HHO 98.25 
BO 96.90 

GWO (this study) 98.29 
Supermarket produce dataset with CS+SC+CL 

RSO 99.79 
AOA 99/79 
TSA 99.82 
HHO 99.83 
BO 99.79 

GWO (this study) 99.85 
 

based on GWO outperforms alternative algorithms 
with an accuracy of 99.21%, surpassing RSO, AOA, 
TSA, HHO, and BO, which scored 98.32%, 98.91%, 
99.13%, 98.91%, and 98.84% respectively. Similarly, 
on the Ubaya-IFDS5000 dataset with feature fusion 
CS+SC+CL+HT, GWO achieves an accuracy of 
98.29%, surpassing RSO, AOA, TSA, HHO and BO, 
which scored 97.27%, 97.97%, 97.82%, 98.25% and 
96.90% respectively. The comparison extends to the 
Supermarket produce dataset with feature fusion 
CS+SC+CL, where GWO demonstrates the highest 
accuracy at 99.85%, surpassing RSO, AOA, TSA, 
HHO and BO, which achieved 99.79%, 99.79%, 
99.82%, 99.83%, and 99.79% accuracy respectively. 
These results underscore the superior performance 
of the proposed GWO method across various 
datasets in fruit image classification. 

The classification performance of the proposed 
method was also compared to other classification 
methods proposed in previous studies in classifying 
fruit images on Ubaya-IFDS3000 and Supermarket 
produce datasets, as shown in Table 4 and Table 5, 
respectively. Previously, two studies have utilized 
the Ubaya-IFDS3000 dataset. The first study 
employed an ensemble of k-nearest neighbors (k-
NN) and Linear Discriminant Analysis (LDA) with 
features CS, SC, CL+EH [6]. The second study used 
an ensemble of optimized Extreme Learning 
Mach ines  (ELMs)  wi th  f ea tu r e s  SC+HT, 
CS+SC+CL, CS+SC+HT [9]. As shown in Table 4, 
the proposed method with features CS+SC,  

Table 4. Comparison of the proposed method with the 
previous studies on Ubaya-IFDS3000 dataset 

Method Accuracy (%) 
Ensemble of k-NN and LDA [6] 97.80 

Ensemble of optimized ELMs [9] 98.03 
Enhanced SVM based on GWO with 

CS+SC (this study) 99.21 

 
demonstrates superior performance. These results 
indicate that the proposed method outperforms the 
previous studies regarding classification accuracy on 
the Ubaya-IFDS3000 dataset. 

For Supermarket Produce dataset, several 
methods have been proposed to classify fruit images 
in this dataset both for traditional machine learning 
and deep learning approaches. For traditional 
machine learning approach, there were SVM-fusion 
with input features global color descriptor (GCH), 
Unser descriptor, and color coherent vector (CCV) 
[10], automatic classifier fusion [11], SVM with an 
improved sum and difference histogram (ISADH) as 
input features [12], SVM with input features fusion 
of color and texture features [16], and SVM with 
input features census transform histogram 
(CENTRIST) and hue saturation histogram [8].  
   For deep learning approach, there were six layers 
of convolutional neural network (CNN) with data 
augmentation and pretrained visual geometry group-
16 (VGG-16)  model  [24] ,  a t tent ion-based 
MobileNetV2 [28], and optimized RNN with 
DenseNet169 as feature extraction [29]. As shown in 
Table 5, the proposed method outperforms the 
results of previous studies in classifying fruit images 
from Supermarket Produce dataset. Even though the 
VGG-16 [24] and optimized RNN [29] produced  

 
Table 5. Comparison of the proposed method with the 

previous studies on Supermarket produce dataset 
Method Accuracy (%) 

SVM-fusion with GCH+Unser+ 
CCV [10] 97.00 

Automatic classifier fusion [11] 98.80 
SVM with ISADH [12] 99.00 

SVM with fusion of color and 
texture features [16] 93.84 

SVM with CENTIRIST+ Hue 
Saturation Histogram [8] 97.23 

AlexNet with data augmentation  
[26] 99.46 

Six layers of CNN with data 
augmentation [24] 99.49 

VGG-16 [24] 99.75 
Attention-based MobileNetV2 [28] 95.75 
DenseNet169+Optimized RNN [29] 99.84 
Enhanced SVM based on GWO with 

CS+SC+CL (this study) 99.85 
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almost the same accuracy as the proposed method, 
these methods required more training data (85% and 
70%, respectively) than the proposed method in this 
study (50%). Furthermore, optimized RNN [29] only 
used 75 samples per class in Supermarket produce 
dataset in the experiment. 

4. Conclusion 
This study proposes an enhanced support vector 

machine (SVM) based on grey wolf optimizer 
(GWO) to classify fruit from images. GWO, inspired 
by the social behavior of grey wolves, has been 
employed successfully for optimizing the 
hyperparameters of SVM and the threshold of low 
variance feature selection. This approach 
demonstrates its potential in improving SVM 
accuracy, using MPEG-7 visual descriptors fusion as 
input features, avoiding the need for preprocessing 
and segmentation steps. The experimental results 
show that the proposed method produced remarkable 
accuracies across three diverse datasets. The top-
performing feature fusions, particularly CS+SC, 
CS+SC+CL+HT, and CS+SC+CL, consistently 
outshine others, yielding impressive average 
accuracies of 99.21%, 98.29%, and 99.85% on the 
Ubaya-IFDS3000, Ubaya-IFDS5000, and 
Supermarket produce datasets, respectively.  

Comparative analyses against alternative 
optimization algorithms and previous studies 
highlight the superiority of the proposed GWO-
based method. Across various datasets, the 
optimized SVM using GWO consistently 
outperforms RSO, AOA, TSA, HHO, and BO, with 
accuracy differences ranging from 0.02% to 1.39%. 
Moreover, when compared to previous studies, the 
proposed method demonstrates superior 
performance on both Ubaya-IFDS3000 and 
Supermarket produce datasets, showcasing its 
efficacy in fruit image classification. In addition to 
the GWO employed in this study for hyperparameter 
optimization, future research can explore alternative 
metaheuristic optimization techniques further to 
enhance the performance of fruit image 
classification models in traditional machine learning 
and deep learning models.  
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