
Received:  September 29, 2023.     Revised: October 31, 2023.                                                                                        278 

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024           DOI: 10.22266/ijies2024.0229.26 

 

 
Optimal Location and Sizing of Hybrid Photovoltaic Public Charging Stations in 

Reconfigurable Feeders Using Levy Flight Honey Badger Algorithm  

 

Srinivasarao Thumati1*          S Vadivel2          M Venu Gopala Rao3 

 
1Department of Electrical Engineering, Faculty of Engineering and Technology, Annamalai University, 

Annamalai nagar – 608002, Tamil Nadu, India 
2Department of Electrical and Electronics Engineering, Government Polytechnic College, 

Keelapalur, Ariyalur-621707, Tamil Nadu, India 
3Department of Electrical and Electronics Engineering, QIS College of Engineering and Technology, 

Ongole-523272, Andhra Pradesh, India 

* Corresponding author’s Email: srinuthumati@gmail.com 

 

 
Abstract: Rapid electric vehicle (EV) adoption has increased the need for public charging infrastructure. Public 

charging station (PCS) placement and size must be determined to enable efficient and sustainable charging services. 

This work proposes a novel method for optimal design and allocation of hybrid photovoltaic systems (HPVs) and 

PCSs in reconfigurable feeders. A novel LFHBA combines the strengths of the levy flight (LF) exploration 

technique and the honey badger algorithm (HBA) to solve the multi-objective function focused on distribution loss 

reduction, improve voltage profiles, and improve reliability index. To test the suggested technique, modified IEEE 

69-bus distribution feeders are simulated with varied EV load penetrations. LFHBA is compared to basic HBA, 

butterfly optimization algorithm (BOA), pelican optimization algorithm (POA), pathfinder algorithm (PFA) in 

computing performance. The comparison analysis shows that LFHBA has lower target values and greater 

convergence. Reconfigurable feeder topology permits distribution network design changes, improving system 

dependability and minimizing power losses. In comparison to base case, EV penetration causes to raise the losses by 

26.65%, by optimal allocation of PCSs alone causes to reduce the losses by 38.82%, optimal allocation of PVs and 

ONR causes reduce losses by 92.19%, whereas, simultaneous allocation of PCSs, and HPVs results to reduce losses 

by 96.47%. This study emphasizes the need of optimizing PCS placement and capacity with HPVs for efficient and 

sustainable charging services. As shown by its greater performance over other optimization methods, the LFHBA 

algorithm helps achieve these goals. Reconfigurable feeders and renewable energy sources improve system 

dependability and power losses, increasing EV charging infrastructure.   

Keywords: Electric vehicles, Honey badger algorithm, Levy flight, Photovoltaic systems, Network reconfiguration, 

Public charging stations.  

 

 

1. Introduction 

With the rapid increase in the adoption of 

electric vehicles (EV) for handling global warming 

and CO2 emissions, the development of an efficient 

and reliable public charging infrastructure has 

become a priority [1]. To handle the effect of the 

stochastic behaviour of the EV load penetration in 

electrical distribution feeders, there is a need for 

optimised combined operational and planning 

studies.  The optimal placement and sizing of power 

quality devices like soft open points (SOPs) [2] and 

distribution static compensator (DSTATCOM) [3] 

are inevitable for ensuring improved performance of 

distribution networks under EV load penetration. 

Many researchers have attempted to improve the 

performance of distribution feeders using optimal 

network reconfiguration (ONR) [4-6], optimal 

allocation of distribution generation (OADG) [7-12] 

and optimal allocation of charging stations (OACS) 

[13-17]. Other studies have focused on simultaneous 

approaches using (i) ONR and OADG [18-20], (ii) 
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ONR and OACS [21-23], and (iii) OADG and 

OACS [24-26] respectively.   

In [4], simultaneous OADG and OACS problem 

is solved by focusing loss reduction and voltage 

stability enhancement. In [5], the honey badger 

algorithm (HBA) reconfigures networks and 

integrates renewable DGs for EV load penetration. 

Their research optimised electric vehicle penetration. 

Time varying acceleration coefficient (TVAC)-

binary particle swarm optimization (BPSO) was 

created for the ONR problem in [6]. This research 

shows the algorithm's performance and the potential 

to improve the distribution network operation. An 

artificial electric field algorithm-pattern search 

(AEFA-PS) is used for many-criteria ONR, 

including power quality and energy not supplied [7]. 

Various parameters were used to optimise the 

network reconfiguration.  

The OADG problem is addressed in [8]. 

Heuristics reduce annual energy losses and the 

voltage deviation index. The integration of RES into 

distribution networks is important. The radial power 

distribution system with distributed generation 

allocation was optimised in [9]. An efficient honey 

badger algorithm (HBA) is used. Their work 

improves the power distribution efficiency. The 

distribution network RES allocation is optimised by 

the single- and multi-objective modified aquila 

optimiser (AO) in [10]. The artificial hummingbird 

algorithm (AHA) optimises RES allocation under 

uncertainty in [11]. A hybrid optimisation-based 

approach for single- and multi-objective optimal 

distribution network with OADG problem was 

solved in [12]. It specialise in multi-optimisation 

approaches for optimal solutions. Adaptability 

supports various aims and network arrangements.  

Electric vehicle (EV) charging stations were 

optimised in [13]. They employed a cost model and 

advanced genetic algorithm (GA). This work 

reduces costs, aiding charging infrastructure 

planning. EV charging infrastructure planning, 

including integrated transportation and power 

distribution networks, was examined in [14]. While 

not proposing a new algorithm, their paper explains 

the difficulties and methods of this complex field. In 

[15], artificial intelligence (AI) analyzes grid-

connected EV charging the techno-economic and 

environmental consequences of grid-connected EV 

charging stations. The whale optimisation algorithm 

(WOA) determines the location and size of EVs in 

[16]. An improved optimisation strategy makes their 

solution to this essential problem more efficient and 

effective. In [17], intra-city public charging-station 

planning was optimised. Their optimisation 

algorithm is not explained explicitly, but their work 

developed a city-charging infrastructure, which is 

essential for EV adoption in cities.  

In [18], the study addressed simultaneous ONR 

and OADG problem, and optimal shunt capacitors. 

Their key contribution was to address numerous 

factors simultaneously. The metaheuristic method 

for simultaneous network reconfiguration and 

distributed generation allocation was enhanced in 

[19]. This work improved the optimisation. System 

performance is improved by network 

reconfiguration and DG allocation in the objective 

function. Artificial ecosystem-based optimization 

(AEO) was used to reconfigure distribution 

networks with DG and capacitors in [20]. This novel 

optimisation approach was applied in the case study. 

An investment study for optimal EVCSs planning 

on a reconfigured imbalanced radial distribution 

system was conducted in [21]. Their investment-

focused contributions use an unclear optimisation 

strategy. A comparison of grid reactive voltage 

regulation and network reconfiguration for EV 

penetration was described in [22]. Its main 

contribution was to compare various solutions to 

optimise the impact of the EVs on distribution 

network. In [23], the stochastic optimal sizing of 

plug-in EV parking lots in reconfigurable power 

distribution networks was analysed. They used 

stochastic optimisation to size the charging 

infrastructure under uncertainty. Student psychology 

optimization algorithm (SPOA) and AdaBoost 

algorithm, (SPOA2B) optimises DGs and EVCSs 

allocation [24]. The unique allocation method is the 

main contribution of this study. In [25], the optimal 

allocation of plug-in EVCSs and DGs in distribution 

networks was presented. A dynamic planning 

technique for EV charging stations considers 

dispersed generation and electronic units into 

account in [26]. They proposed a revolutionary 

charging-station distribution strategy. 

From this literature, it is evident that the ONR, 

OADGs and OACSs can ensure efficient operation 

in distribution networks. Also, various optimization 

techniques and meta-heuristic approaches were 

employed. However, it can be finding that the 

combined approach of ONR, OADG and OACS is 

not focused and has been the major motivation for 

this research. This paper presents a comprehensive 

study on the optimal location and sizing of hybrid 

photovoltaic public charging stations in 

reconfigurable feeders. The proposed methodology 

combines the levy flight (LF) exploration strategy 

and the honey badger optimization (HBA) algorithm 

to determine the optimal location and sizing of PCSs 

and HPVs. The LF introduces stochasticity and 

long-range jumps, while the HBA enhances the 
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exploration and exploitation capabilities. The 

reconfigurable feeder topology allows for changes in 

the distribution network configuration to improve 

system performance. In comparison to the literature, 

this work claims the following contributions.  

 

• The work introduces the LFHBA, a hybrid 

algorithm that optimizes the design and 

allocation of HPVs and PCSs in reconfigurable 

feeders by integrating levy flight exploration and 

honey badger algorithm (HBA). 

• LFHBA utilizes multi-objective optimization to 

reduce distribution losses, improve voltage 

profiles, and improve reliability, enabling 

efficient and sustainable deployment of PCSs 

and HPVs for EV adoption. 

• LFHBA outperforms other optimization 

approaches including HBA, BOA, POA, and 

PFA in optimizing PCS location and capacity, 

with lower goal values and greater convergence. 

• Reconfigurable feeders and renewable energy 

sources like HPVs minimize power losses and 

increase system reliability. Our analysis reveals 

that optimizing PCS and HPV distribution may 

considerably minimize losses, making it vital for 

efficient and sustainable EV charging 

infrastructure. 

 

The remaining paper sections follow this 

structure: Section 2 details the hybrid photovoltaic 

public charging station model and its components. 

In section 3, the study's problem, variables, 

restrictions, and goals are stated. The LFHBA (low-

frequency harmonic bat algorithm) is used to solve 

the multi-objective function in section 4, explaining 

its method and efficacy. Section 5 discusses and 

compares case studies, highlighting their results and 

consequences. Section 6 concludes with a summary 

of major findings, study contributions, and future 

research directions. 

2. Modelling of theoretical concepts 

This section presents the mathematical model for 

the hybrid photovoltaic public charging station and 

the associated modelling for the load flow study. 

2.1 Composite load modeling   

Present distribution feeders are experiencing and 

associating with multiple types of consumers at 

every location such as residential, industrial, 

commercial, and electric vehicles etc. Thus, there is 

a need for developing composite load model in 

response to voltage profile sensitivities. In the 

present work, at every node, 50% of residential, 

30% of commercial and 20% of industrial loads are 

considered. In addition, EV load penetration is 

included. The modified net-effective loading of a 

bus-i is given by: 

 

𝑃𝑑𝑖(𝑛) = 𝑃𝑑𝑖(0){0.5𝑉𝑖
0.92 + 0.3𝑉𝑖

1.51 + 0.2𝑉𝑖
0.18 +

𝜆𝑒𝑣𝑉𝑖
2.59}, ∀𝑖 = 2: 𝑛𝑏𝑢𝑠                         (1) 

 

𝑄𝑑𝑖(𝑛) = 𝑄𝑑𝑖(0){0.5𝑉𝑖
4.04 + 0.3𝑉𝑖

3.4 + 0.2𝑉𝑖
6 +

𝜆𝑒𝑣𝑃𝑑𝑖(0)𝑡𝑎𝑛(𝑎𝑐𝑜𝑠𝜃𝑒𝑣)𝑉𝑖
4.06}, ∀𝑖 = 2: 𝑛𝑏𝑢         (2)    

2.2 Public charging station  

The public charging station (PCS) is designed to 

facilitate multiple level-1 and level-2 charging ports 

and thus, the real power rating of PCS is given by:  

 

𝑃𝑑(𝑒𝑣) = 𝑛𝑐𝑝𝑙1 × 𝑃𝑟(𝑙1) + 𝑛𝑐𝑝𝑙2 × 𝑃𝑟(𝑙2)  (3) 

 

In order to accommodate total EV load 

penetration in the feeder, the required PCS can be 

estimated by: 

 

𝑛𝑝𝑐𝑠 =
1

𝑃𝑝𝑐𝑠
{∑ [𝑃𝑑𝑖(0)𝜆𝑒𝑣𝑉𝑖

2.59]𝑛𝑏𝑢𝑠
𝑖=1 }             (4) 

 

By having PCS at a specific bus-i, the net-

effective loadings expressed in Eqs. (1) and (2) are 

modified as: 

 

𝑃𝑑𝑖(𝑛) = 𝑃𝑑𝑖(0){0.5𝑉𝑖
0.92 + 0.3𝑉𝑖

1.51 + 0.2𝑉𝑖
0.18} +

𝑃𝑑(𝑒𝑣)𝑉𝑖
2.59, ∀𝑖 = 1: 𝑛𝑝𝑐                (5) 

 

𝑄𝑑𝑖(𝑛) = 𝑄𝑑𝑖(0){0.5𝑉𝑖
4.04 + 0.3𝑉𝑖

3.4 + 0.2𝑉𝑖
6} +

𝑃𝑑(𝑒𝑣)𝑡𝑎𝑛(𝑎𝑐𝑜𝑠𝜃𝑒𝑣)𝑉𝑖
4.06, ∀𝑖 = 1: 𝑛𝑝𝑐 (6) 

 

For other buses, the net-effective loadings are 

determined by: 

 

𝑃𝑑𝑖(𝑛) = 𝑃𝑑𝑖(0){0.5𝑉𝑖
0.92 + 0.3𝑉𝑖

1.51 + 0.2𝑉𝑖
0.18},  

∀𝑖 = 2: 𝑛𝑏𝑢𝑠, 𝑖 ≠ 𝑛𝑝𝑐𝑠         (7) 

 

𝑄𝑑𝑖(𝑛) = 𝑄𝑑𝑖(0){0.5𝑉𝑖
4.04 + 0.3𝑉𝑖

3.4 + 0.2𝑉𝑖
6} +

𝑃𝑑(𝑒𝑣)𝑡𝑎𝑛(𝑎𝑐𝑜𝑠𝜃𝑒𝑣)𝑉𝑖
4.06, ∀𝑖 = 2: 𝑛𝑏𝑢𝑠, 𝑖 ≠ 𝑛𝑝𝑐𝑠 

(8) 

2.3 Hybrid photovoltaic system   

Photovoltaic systems (PVs) inject real power at 

a bus, but feeders must optimize reactive power 

compensation. Hybrid photovoltaic systems (HPVs) 

are connected to reactive power compensators such 
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as capacitor banks (CBs). Thus, HPV integration 

yields net-effective bus loading: 

 

𝑃𝑑𝑖(𝑛) = 𝑃𝑑𝑖(𝑛) − 𝑃ℎ𝑝𝑣,𝑖, ∀𝑖 = 1: 𝑛ℎ𝑝𝑣  (9) 

 

𝑄𝑑𝑖(𝑛) = 𝑄𝑑𝑖(𝑛) − 𝑄ℎ𝑝𝑣,𝑖, ∀𝑖 = 1: 𝑛ℎ𝑝𝑣        (10) 

3. Problem formulation  

The multi-objective optimization problem (𝑂𝐹) 

is developed to handle simultaneously loss ( 𝑓1 ), 

voltage profile (𝑓2) and reliability (𝑓3).  

 

𝑂𝐹 = 𝑓1 + 𝑓2 + 𝑓3               (11)   

 

𝑓1 = 𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐼𝑏
2𝑟𝑏

𝑛𝑏𝑟
𝑏=1                            (12) 

 

𝑓2 = 𝐴𝑉𝐷 =
1

𝑛𝑏𝑢𝑠
√∑ |1 − 𝑉𝑖|2𝑛𝑏𝑢𝑠

𝑖=1              (13) 

 

𝑓3 = 𝑆𝐴𝐼𝐹𝐼 = (∑ 𝑓𝑟(𝑘)𝑘 𝑁𝑏(𝑘)) 𝑛𝑏𝑢𝑠⁄              (14) 

 

The overall objective function is subjected to the 

following constraints:  

 

𝐼𝑏 ≤ 𝐼𝑏,𝑚𝑎𝑥                (15) 

 

𝑉𝑖,𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖,𝑚𝑎𝑥                           (16) 

 

(𝑛𝑏𝑟 + 𝑛𝑡𝑙) = 𝑛𝑏𝑢𝑠 − 1 & |𝐴̅| ≠ 0              (17) 

 

 ∑ 𝑃ℎ𝑝𝑣,𝑖
𝑛ℎ𝑝𝑣
𝑖=1 ≤ ∑ 𝑃𝑑𝑖(𝑛)

𝑛𝑏𝑢𝑠
𝑖=1                (18) 

 

∑ 𝑄ℎ𝑝𝑣,𝑖
𝑛ℎ𝑝𝑣
𝑖=1 ≤ ∑ 𝑄𝑑𝑖(𝑛)

𝑛𝑏𝑢𝑠
𝑖=1                                (19) 

4. Solution methodology 

In this section, the theoretical concept of HBA 

and its improved variant using levy flights is 

explained mathematically. Further, its application to 

solve optimization problem is discussed.   

4.1 Honey badger algorithm 

Hashim et al. [27] introduced the honey badger 

algorithm (HBA), a meta-heuristic optimization that 

includes exploration and exploitation. The HBA 

phases are mathematically defined.  

The initial population using Eq. (20) generates n 

honey badgers for HBA.  

 

𝑥𝑖 = 𝑙𝑏𝑖 + 𝑟1 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖)                           (20) 

 

where 𝑖 = 1, … , 𝑛  and 𝑗 = 1, … , 𝑑 , 𝑙𝑏𝑖  and 𝑢𝑏𝑖 

are the lower and upper boundaries for the search 

variables, 𝑟1 is uniformly randomized number, 𝑥𝑖  is 

the location of ith honey badger, n and d are the size 

of population and their dimensions, respectively.  

Digging and honey are the next stages of HBA, 

which are comparable to the exploration and 

exploitation phases in conventional meta-heuristic 

algorithms.  

Honey badger location is updated during the 

digging phase (exploration) utilizing smell strength 

and changes in flying direction, as provided by: 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑏,𝑡 + 𝑑𝑓𝑟2𝜎𝑑𝑖|𝑐𝑜𝑠(2𝜋𝑟3)[1 − 𝑐𝑜𝑠(2𝜋𝑟4)]| 

+ + 𝑓𝑑𝛾𝐼𝑖 × 𝑥𝑖
𝑏,𝑡

                  (21) 

 

where 𝑥𝑖𝑗
𝑡+1 is the next position of HB, 𝑟2, 𝑟3 and 

𝑟4 are the random numbers, 𝑑𝑖 is the distance of ith 

HB with best prey at time-t, 𝑥𝑖
𝑏,𝑡

 is the best prey, 

𝛾 ≥ 1  to define the ability of honey badger to 

explore the food and is set to 6, 𝜎  is a dynamic 

decreasing factor to tune exploration to exploitation, 

𝐼𝑖  and 𝑑𝑓  are the smell intensity and changes in 

flying direction, respectively. Mathematically,  

 

𝐼𝑖 = 𝑟5 ×
𝑠𝑐

4𝜋𝑑𝑝
2                (22) 

 

𝑑𝑓 = {
+1 𝑖𝑓 𝑟6 ≤ 0    
−1 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

               (23) 

 

𝜎 = 𝜏 × 𝑒(𝑡/𝑇), 𝜏 > 1               (24) 

       

where𝑠𝑐 = (𝑥𝑖
𝑡 − 𝑥𝑖

𝑡+1)
2
 is the prey strength of 

concentration and 𝑑𝑖 = (𝑥𝑖
𝑏,𝑡 − 𝑥𝑖

𝑘)  is the distance 

between best prey and present HB, respectively, 𝑟5 

and 𝑟6  are the random numbers, t and T are the 

number to represent present and maximum iteration, 

respectively; 𝜏 is a constant equal to 2.  

During the honey phase (exploitation), honey 

badgers use follower behaviour to go to a beehive 

by following a guide honey badger. This situation 

can be expressed mathematically as: 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑏,𝑡 + 𝐼𝑖𝑟7𝜎𝑑𝑓                           (25) 

 

Based on spatial search information of 𝑑𝑓 , Eq. 

(25) helps to surrounds nearly to best prey 𝑥𝑖
𝑏,𝑡

. At 

this stage, the direction of search is influenced by 

dynamic behaviour 𝜎 and 𝑑𝑓.   

4.2 Levy flight 

Levy flight is a type of chaotic system in which 
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the probability function controls the size of the leap. 

In our line of work, we use the Levy flight as in [28, 

29].  

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑏,𝑡 + 𝐿𝑒𝑣𝑦(𝑑) + 𝑥𝑟
𝑡 + 𝑟8(𝑦 − 𝑥)         (26) 

 

The suggested method to change solution 𝑥𝑖 uses 

the LF or HBA operators. Utilizing the probability 

𝑝𝑖  associated with each 𝑥𝑖   allows for this. The 

following equations state that the LF will be used if 

the probability of 𝑝𝑖 is larger than 0.5.  

5. Results and discussion 

To assess the efficacy of the proposed 

methodology, a series of case studies are conducted 

utilizing the IEEE 69-bus distribution network as the 

testing ground. Through these case studies, the 

results obtained from the LFHBA are compared 

against alternative optimization techniques, thereby 

showcasing the superior performance of the LFHBA. 

Furthermore, the impact of various factors on the 

optimal solutions is investigated. This includes 

analyzing the influence of load variations and solar 

generation profiles on the outcomes. By examining 

these variables, a more comprehensive 

understanding of the proposed methodology's 

robustness and adaptability is achieved. 

In accordance with the composite load 

modelling approach outlined in section 2.1, the 

performance of the network is evaluated, serving as 

case 1. The resulting net effective load is determined 

to be 3629.56 kW, accompanied by a reactive power 

of 2210.57 kVAr. Additionally, the losses incurred 

are calculated as 163.48 kW and 75.73 kVAr, 

respectively. Furthermore, the average voltage 

deviation (AVD) is recorded as 0.004, while the 

system average interruption frequency index 

(SAIFI) is registered as 1.8174.  

5.1 Optimal allocation of PCSs  

The network performance is re-evaluated for 

50% EC load penetration in the network. The net 

effective load becomes 5307.66 kW and 2576.24 

kVAr, respectively. Further, the losses are raised to 

331.316 kW and 153.07 kVAr, respectively. In 

addition, AVD and SAIFI are registered as 0.0057 

and 1.8174, respectively. The increased values of 

losses and AVD indicate decrement in network 

performance. However, there is no change in 

network configuration, SAIFI remains same. This 

status is treated as case 2.           

In designing of a PCS, 30 level-1 charging ports 

of 11 kV and 20 level-2 charging ports of 22 kV are 

considered and thus, the total power rating becomes 

770 kW with a lagging power factor of 0.95. Further, 

the availability of PCS is treated as 3/4th of the day 

and overlapping scenario with other PCSs is treated 

as 15%. By all these aspects, the required PCS are 

determined as 3. In order to ensure easy reachability 

for all buses, the search space for optimal locations 

for three PCSs is divided respectively as buses 2 to 

35, buses 36 to 50 and buses 51 to 69. The beast 

locations obtained by LFHBA are buses 3, 36 and 

53, respectively.  

Thus, the net effective load becomes 4399.43 

kW and 2463.58 kVAr, respectively. Further, the 

losses are raised to 202.7 kW and 96.4 kVAr, 

respectively. In addition, AVD and SAIFI are 

registered as 0.0045 and 1.8174, respectively. This 

status is treated as case 3. 

5.2 Optimal configuration, PVs and PCSs 

In this case, the network is assumed to have 

three PCSs at their respective optimal locations as 

determined in section 5.1, and further, three PVs are 

proposed to integrate simultaneously changing the 

network configuration optimally. By implementing 

LFHBA, the best locations of PVs are determined as 

buses 9, 26, and 61, correspondingly, their best sizes 

are 923.98 kW, 514.95 kW and 1151.03 kW, 

respectively. In addition, the best switches to open 

are 14, 56, 61, 69 and 70, respectively. Thus, the net 

effective load becomes 1809.48 kW and 2463.58 

kVAr, respectively. Further, the losses are raised to 

25.886 kW and 25.474 kVAr, respectively. In 

addition, AVD and SAIFI are registered as 0.0009 

and 1.3783, respectively. This status is treated as 

case 4.     

5.3 Optimal configuration, HPVs and PCSs 

This case is extension to section 5.2 by 

integrating hybrid PVs also simultaneously. By 

implementing LFHBA, the best locations of PVs are 

determined as buses 61, 64, and 8, correspondingly, 

their best sizes are 1326.48 kW, 160 kW and 858.59 

kW, respectively. The best CB sizes are 592.01 

kVAr, 335.96 kVAr and 456.75 kVAr, respectively. 

In addition, the best switches to open are 12, 26, 55, 

69 and 70, respectively. Thus, the net effective load 

becomes 2054.34 kW and 1078.85 kVAr, 

respectively. Further, the losses are raised to 11.683 

kW and 11.639 kVAr, respectively. In addition, 

AVD and SAIFI are registered as 0.00075 and 

1.3072, respectively. This status is treated as case 5. 

The results of all cases are listed in Table 1 for 

comparative analysis. Among all, case 5 has 

improved the network performance significantly. 
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Table 1. Comparison of all case studies 

Case Pload (kW) Qload (kVAr) Ploss (kW) Qloss (kVAr) AVD SAIFI 

1 3629.56 2210.57 163.48 75.73 0.004 1.8174 

2 5307.66 2576.24 331.316 153.07 0.0057 1.8174 

3 4399.43 2463.58 202.7 96.4 0.0045 1.8174 

4 1809.48 2463.58 25.886 25.474 0.0009 1.3783 

5 2054.34 1078.85 11.683 11.639 0.00075 1.3072 

 

Table 2. Comparison of LFHBA with literature works 

Ref 

Case 1: ONR Case 2: PVs Case 3: ONR + PVs 

Open Switches  
Ploss  

(kW) 
Size/ Loc 

Ploss  

(kW) 
Open Switches  Size/Loc 

Ploss  

(kW) 

Base  - 225 - 225 - - 225 

CTLHSO [41] 14, 56, 61, 69, 70 98.57 

526.8/ 11 

379.6/ 18 

1719/ 61 

69.388 14, 56, 61, 69, 70 

537.6/ 11 

1441.5/ 61 

490/ 64 

35.145 

ESCA [42] 14, 55, 61, 69, 70 98.6 

760.4/ 12 

760.4/ 62 

760.4/ 61 

74.4 12, 19, 57, 63, 69 

436/ 11 

1300/ 61 

461.6/ 65 

36.95 

BOA 69, 70, 14, 57, 61 98.59 

602.2/ 11 

380.4/ 18 

2000/ 61 

72.44 69, 61, 70, 58, 12 

1749.6/ 61 

156.6/ 62 

409/ 65 

40.49 

POA 14, 55, 61, 69, 70 98.62 

408.5/ 65 

1198.6/ 61 

225.8/ 27 

77.85 69, 63, 70, 55, 13 

1127.2/ 61 

275/ 62 

415.9/ 65 

39.25 

PFA 69, 18, 13, 56, 61 99.35 

101.8/ 65 

369/ 64 

1302.4/ 63 

86.77 69, 61, 17, 58, 13 

1066.6/ 61 

352.5/ 60 

425.7/ 62 

40.3 

HBA 14, 58, 61, 69, 70 98.58 

1410/ 61 

417/ 17 

604/ 11 

72.626 14, 58, 70, 69, 63 

147.2/ 61 

538/ 11 

673/ 17 

37.11 

LFHBA 69, 70, 14, 56, 61 98.56 

526.8/ 11 

380.4/ 18 

1719/ 61 

69.44 14, 55, 61, 69, 70 

406.2/ 12 

1400.4/ 61 

474.6/ 64 

35.355 

 

 

6. Comparative study  

In this section, the computational efficiency of 

LFHBA is compared with basic HBA, butterfly 

optimization algorithm (BOA) [30], pelican 

optimization algorithm (POA) [31], pathfinder 

algorithm (PFA) [32]. Simulations are performed on 

IEEE 69-bus (i.e., without EV penetration and 

composite load models). The case study is repeated 

by each algorithm for 50 independent times to 

quantify their convergence features statistically. The 

comparative results are given in Table 2. Three Case 

studies are compared here.  

In case 1, by performing only ONR, the network 

performance is evaluated. As seen in Table 2, the 

results of LFHBA are highly competitive with 

comprehensive teaching learning harmony search 

optimization algorithm (CTLHSO) [41] and 

enhanced sine–cosine algorithm (ESCA) [42]. 

Further, optimal switches given by LFHBA are 69, 

70, 14, 56, and 61, consequently, the losses are 

reduced to 98.56 kW from 225 kW. In comparison 

to BOA, POA, PFA and HBA, the results of 

LFHBA are well superior with low objective 

function.  

In case 2, only three PVs are optimally 

integrated. The best locations and sizes are 526.8 

kW (11), 380.4 kW (18) and 1719 kW (61), 

respectively. The losses are reduced to 69.44 kW.  

In case 3, simultaneous allocation of PVs and 

ONR problem is solved. The best locations and sizes 

are 406.2 kW (12), 1400.4 kW (61) and 474.6 kW 

(64), respectively. Further, optimal switches given 

by LFHBA are 14, 55, 61, 69, and 70, consequently, 

the losses are reduced to 35.355 kW from 225 kW. 

In case 2 and case 3, the results of LFHBA are 

slightly higher than CTLHSO [3], but, better than 

ESCA [4] as well as to other compared algorithms. 

Although the selected algorithms competitively 

optimised the proposed problem, according to the no 

free lunch (NFL) theorem, there is no single 
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algorithm for solving all types of real-time 

optimisation problems. Thus, researchers are still 

motivated to develop new algorithms such as the 

puzzle optimisation algorithm (POA) [33], 

stochastic komodo algorithm (SKA) [34], extended 

stochastic coati optimiser (ESCO) [35], guided 

Pelican algorithm (GPA) [36], swarm magnetic 

optimiser (SMO) [37], walk-spread algorithm 

(WSA) [38], four directed search algorithms 

(FDSA) [39], and artificial rabbit optimisation 

(ARO) [40] are such recent works. In this regard, 

there is a need for further comparative studies using 

state-of-the-art metaheuristics. This study can be 

further extended to a comparative study.   

7. Conclusion  

The proposed LFHBA effectively located and 

sized hybrid photovoltaic public charging stations in 

reconfigurable feeders. The charging infrastructure 

has become more sustainable with renewable energy 

sources, decarbonising the transportation and energy 

sectors. Loss reduction tendencies arise when 

comparing the basic case to the EV penetration 

scenarios. The losses increased by 26.65% with EVs. 

Optimising power conditioning systems (PCSs) 

alone reduces losses by 38.82%. Optimal network 

reconfiguration (ONR) with smart PV allocation can 

reduce losses by 92.19%. Integrating renewable 

energy and improving the network architecture have 

a significant impact. The best result was a 96.47% 

loss reduction by allocating PCSs and HPVs 

together. This demonstrates how energy storage and 

optimal power allocation work together. 

Comprehensive methods that consider numerous 

aspects and technologies are crucial, as these data 

show. By optimising the PCS, PV, ONR, and HPV 

allocation, losses may be reduced, creating a more 

efficient and sustainable power distribution system. 

Notations 

𝑃𝑑𝑖(0) Real power loads of bus-i for nominal 

voltage profile 
𝑄𝑑𝑖(0) Reactive power loads of bus-i for nominal 

voltage profile 
𝑃𝑑𝑖(𝑛) Net effective real power loadings of bus-i 

with composite loads 
𝑄𝑑𝑖(𝑛) Net effective reactive power loadings of bus-

i with composite loads 
𝑉𝑖  voltage magnitude of bus-i 
𝜆𝑒𝑣  EV load penetration 
𝜃𝑒𝑣  Power factor AC/DC converter of EV 

charging station 
𝑃𝑑(𝑒𝑣) total real power demand of a PCS 

𝑛𝑐𝑝𝑙1  Number of level-1 charging ports in a PCS 

𝑛𝑐𝑝𝑙2 Number of level-2 charging ports in a PCS 

𝑃𝑟(𝑙1) Rated power of level-1 charging port 

𝑃𝑟(𝑙2) Rated power of level-2 charging port 

𝑛𝑏𝑢𝑠 Number of buses in the feeder 
𝑛𝑝𝑐𝑠 Number of PCSs in the feeder 
𝑃ℎ𝑝𝑣,𝑖  Real power injections at bus-i due to HPV 

𝑄ℎ𝑝𝑣,𝑖  Reactive power injections at bus-i due to 

HPV 
𝑛ℎ𝑝𝑣 Number of HPVs in the feeder 
𝑃𝑙𝑜𝑠𝑠  Real power loss 
𝐴𝑉𝐷 Average voltage deviation 
𝑆𝐴𝐼𝐹𝐼 System average interruption frequency index 
𝐼𝑏  Branch current 
𝑟𝑏 Resistance of branch 

𝑓𝑟(𝑏) Failure rate of a branch 

𝑁𝑏(𝑘) Number of buses disconnected due to failure 

a branch-k 

𝑛𝑏𝑟 Number of branches 

𝑛𝑡𝑙 Number of tie-lines 

|𝐴̅| Determinant of bus-incident matrix 
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