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Abstract: The prediction of human activities has garnered significant attention, owing to their relevance in diverse 

applications spanning healthcare, robotics, and user-computer interaction. This paper addresses the imperative need 

for a comprehensive multi-step prediction system tailored to accommodate these varied domains. The proposed 

framework comprises three key stages. Firstly, wavelet transform (WT) is employed for data pre-processing to 

eliminate noise and render the data amenable for time series analysis, the second phase of the framework involves the 

utilization of a hybrid model combining Long Short-Term Memory (LSTM) and Convolutional 1D (CONV1D) layers, 

denoted as LSTM-CONV1D designed to effectively address the complexities involved in extracting relevant features 

and tackling data imbalance issues. The LSTM component is employed for human activity classification based on 

sensor data, taking into account the sequential nature of activities. Concurrently, the CONV1D component is utilized 

for feature extraction. In the third phase, a method is introduced for predicting future activity levels and steps. This 

method incorporates a function that takes the output of the trained LSTM-CONV1D model as an input sequence. The 

performance of the proposed model is rigorously evaluated across four benchmark datasets based on sensor data: UCI-

HAR (Accuracy: 99.03%), M-health (Accuracy: 93.21%), WISDM (Accuracy: 89.43%), and PAMAP2 (Accuracy: 

86.85%). Notably, these results represent the state-of-the-art performance characterized by its simplicity attributed to 

the utilization of a single-layer LSTM and CONV1D. Furthermore, an additional evaluation is conducted on the UCI-

HAR dataset with an accuracy of 98.92, wherein the LSTM time series function iteratively generates predictions for 

future time steps, following the same pre-processing steps. 

Keywords: Deep learning (DL), Human activity recognition (HAR); Convolution neural network (CNN); Long short-

term memory (LSTM); Machine learning (ML), Wavelet transform (WT), Human activity prediction (HAP). 

 

 

1. Introduction 

Predicting future activity in the absence of 

extensive data poses a formidable challenge, 

particularly in domains like human movement 

prediction. Existing classification models 

predominantly focus on forecasting near-term 

outcomes while largely neglecting the explicit 

consideration of future events. To address this crucial 

gap, the development of a scalable model capable of 

adapting to temporal and spatial variations and 

accounting for the correlation among sequential 

human movements is imperative. The UCI-HAR 

dataset, a widely recognized benchmark in this 

domain, serves as a pivotal foundation for our 

research benchmarks. (WT) facilitates the 

examination of signals at varying resolutions by 

decomposing time-series data into diverse scales and 

frequencies. Within the context of UCI-HAR, (WT) 

plays a pivotal role in extracting activity-specific 

features and enabling the classification of activities 

undertaken by subjects. Predicting the future, 

especially when confronted with multiple probable 

scenarios, presents another formidable challenge. 

Consequently, modeling sequential dependencies 

within data while concurrently predicting various 

conceivable long-term predictions becomes a 

pressing concern, several factors encompass data 
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(c) 

Figure. 1: (a) UCI-HAR analysis sensor measurement 

“original signal” and (b) Approximation and detailed 

coefficients, and (c) Reconstructed signal using (WT) 

 

 

complexity, dataset size, computational resources, 
and performance criteria. This paper introduces 

several contributions to the field. Firstly, it pioneers 

the application of a potent feature extraction method 

previously unexplored in the realm of human activity 

prediction. Secondly, we present the architecture of a 

robust model that combines (LSTM) and (CONV1D) 

models trained on four distinct datasets. Lastly, we 

propose a novel framework that incorporates a 

temporal-spatial model featuring an (LSTM) layer, 

specifically designed for future event prediction. In 

our approach, (DWT) is applied to the original sensor 

data, as depicted in Fig. 1. This process involves 

transforming data generated by sensors (a) into 

approximation coefficients with detailed levels (b) 

and subsequently reconstructing the signal using 

(DWT) (c). This procedure eliminates noise while 

preserving the temporal sequence inherent in time 

series data.  

The key contributions include: 

1-Unified multidata set framework: It can predict 

human activities across four different datasets. It 

employs consistent methods for preprocessing and 

modeling, enhancing versatility and facilitating fair 

comparisons. 

2- Time complexity reduction: Single layer model 

optimized for reducing time complexity. This model 

enables quick identification of the next step in human 

activities, enhancing real-world applicability. 

3- Versatile and efficient framework: The proposed 

framework comprises two sections—one for 

predicting future activities using the UCI-HAR. 

2. Literature review 

Predicting future events presents challenges, 

particularly when data is limited. Consequently, 

classification models often focus on short-term 

predictions, such as human movements, without 

explicitly addressing future events. To bridge this gap, 

the need arises for a scalable model that can adapt to 

temporal and spatial variations and effectively 

capture the sequential correlation of human 

movements. 

In their research, the authors [1] offer a definition 

for gait analysis, defining it as the study of human 

locomotion. This analysis is facilitated by 

accelerometers, which quantify linear acceleration 

related to physical activity, and gyroscopes, which 

measure angular velocity [2]. The authors employ a 

hybrid model combining (CNN) and Bidirectional 

(BiLSTM) for classification, achieving an impressive 

accuracy of 96%. (HAR) [3] is depicted as a pattern 

recognition task, encompassing four crucial phases: 

data collection, data pre-processing, feature 

extraction, and activity classification. Another study 

by authors [4] introduces a CNN-LSTM hybrid 

model to enhance smartphone-based human activity 

recognition accuracy. Fine-tuning hyperparameters 

through Bayesian optimization results in a 2.24% 

improvement in classification accuracy. In [5], an 

ensemble learning algorithm utilizing smartphone 

sensor data achieved a prediction accuracy of 96.7% 

using the F1 measure. Additionally, [6] proposes a 

Two-Dimensional (2D-CNN) for qualitative human 

activity recognition, achieving accuracy ranging 

from 96.57% to 99.28% along with high Cohen's 

kappa values. 

time 
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Authors in [7] present a model involving a deep 

neural network-based CNN and a gated recurrent unit 

(CNN-GRU) and evaluate its performance using the 

UCI-HAR, WISDM, and PAMAP2 datasets, yielding 

accuracy rates of 96.20%, 97.21%, and 95.27%, 

respectively. Parallel LSTM layers combined with 

the convolution layer, as proposed in [8], demonstrate 

their effectiveness. Moreover, [9] introduces a CNN-

based approach for human activity recognition with 

the WISDM dataset, achieving a prediction accuracy 

of 89.67% across six distinct activities. In [10], an 

optimization technique cantered on crop prediction 

surpasses conventional approaches when tested with 

public datasets. The rise of wearable devices like 

smartwatches and wristbands has enabled the capture 

and analysis of individuals' daily physical activity, 

transcending environmental constraints [11]. 

Furthermore, the integration of fusion techniques into 

classification models [12] enhances accuracy using 

cardiac datasets. However, traditional approaches 

encounter challenges in representing intricate 

activities and processing multi-channel data due to 

their limited adaptability. Consequently, (DL) 

techniques, including (CNNs) [14, 15], have garnered 

increased attention in this domain. 

3. Methodology and system design: 

Methods and sequence of procedures to be 

proposed for doing our framework are described in 

this section:  

3.1 Sensor-based datasets: 

The following datasets are used to train our 

models for predicting the next step of activity based 

on sensor data from a wearable device: 

A -UCI human activity recognition using 

smartphones dataset: This dataset contains recordings 

of 30 subjects performing six different activities 

(walking, walking upstairs, walking downstairs, 

sitting, standing, and laying) while wearing a 

smartphone on their waist. The dataset includes raw 

sensor data from the phone's accelerometer and 

gyroscope and pre-processed features such as mean, 

standard deviation, and correlation coefficients. 

B-WISDMV2.0 (wireless sensor data mining) 

dataset: This dataset contains accelerometer and 

gyroscope data from both smartphones and 

smartwatches, collected from 51 participants 

performing six different activities (walking, jogging, 

climbing stairs, sitting, standing, and lying down). 

The dataset includes raw sensor data as well as pre-

processed features such as mean, standard deviation, 

and frequency-domain features. 

 

 
Table 1 Comparison of model with datasets 
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C-Mhealth (mobile health): dataset is a collection of 

sensor data collected from a wearable sensor system 

that was used to monitor the physical activity of 

patients suffering from Parkinson's disease. The 

dataset includes accelerometer and gyroscope data, as 

well as heart rate data, collected from 10 patients over 

a period of several months.  

D-PAMAP2 (physical activity monitoring dataset): 

This dataset contains accelerometer, gyroscope, and 

magnetometer data collected from a wearable sensor 

system worn by 9 subjects performing 18 different 

activities, including basic daily activities (e.g., sitting, 

standing, walking) and sports activities (e.g., cycling, 

rowing, boxing). 

Table 1 shows some use cases, with one or two 

dataset out of all results and methods used. 

3.2 Apply window function to (DWT): 

The pre-processing procedure applies the window 

function to of (DWT) based four datasets that apply 

equations. The following detailed steps applying: 

 

|----> Load the dataset 

|       |----> Drop columns of  'activity' and 

'Participants' 

|       |----> Scale the data using Min-Max scaling 
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|       |----> Apply discrete wavelet transform 

|       |       |----> Apply a window function (Hann, 

Hamming, or Blackman) 

|       |       |----> Perform the wavelet transform using 

sym4 wavelet 

|       |----> Split the data into training and test sets 

|       |----> Encode the labels using LabelEncoder 

|       |----> Reshape the input data to include an 

additional dimension 

|----> Build the model 

|       |----> Add LSTM layer with 128 units and 

'relu' activation 

|       |----> Add Conv1D layer with 128 filters, 

kernel size=5, and 'relu' activation 

|       |----> Add MaxPooling1D layer with pool 

size=2 

|       |----> Add Flatten layer to convert 2D data to 

1D 

|       |----> Add Dense layer with 128 units and 'relu' 

activation 

|       |----> Add BatchNormalization layer 

|       |----> Add Dropout layer with dropout rate of 

0.3 

|       |----> Add Dense layer with softmax activation 

for multi-class classification 

|     |compile, learning rate (lr) declaration then 

traing and adjust (lr). 

|----> Predict on test set and convert one-hot 

encoded predictions to class labels 

3.2.1. Windowing and (DWT) for UCI-HAR: 

Eq. (1) shows the mathematical of the proposed 

Pre-processing as follows: 

 

DWT(x, ψj,k, φj,k) = Σk Ψj,k * (x, ψj,k) + Σk Φj,k  

* (x, φj,k)            (1) 

 

In this equation, x represents the input signal, which 

can be a time-domain signal from the UCI-HAR 

dataset, ψj,k represents the wavelet function (e.g., 

Daubechies wavelet) at scale j and translation k. This 

wavelet function captures the detail coefficients, 

representing high-frequency components of the 

signal. φj,k represents the scaling function (low-pass 

filter) at scale j and translation k. This scaling 

function captures the approximation coefficients, 

representing the low-frequency components of the 

signal. (x, ψj,k) and (x, φj,k) denotes the inner 

product of the input signal x with the wavelet and 

scaling functions, respectively.  The equation 

computes the DWT by decomposing the input signal 

into a linear combination of wavelet and scaling 

functions at different scales and translations. The 

resulting coefficients represent the signal's frequency 

content at different resolutions. DWT is often 

implemented using efficient algorithms such as the 

Mallat algorithm or the lifting scheme. To adapt the 

equation to the UCI-HAR dataset, replace x with the 

specific time-domain signal from the dataset and 

select appropriate wavelet (ψj,k) and scaling (φj,k) 

functions based on analysis requirements. 

3.2.2. (DWT) for m-health dataset: 

Eq. (2) shows the mathematical of the proposed 

pre-processing is as follows: 

 

DWT(x, ψj,k, φj,k) = Σk ψj,k * (x, ψj,k) + Σk φj,k  

* (x, φj,k)             (2) 

 

In this equation: The input signal, denoted by x, 

represents the time-domain data from the m-health 

dataset. The wavelet function at scale j and 

translation k is represented by ψj,k. This function 

captures the detail coefficients, indicating high-

frequency components. The scaling function at scale 

j and translation k is represented by φj,k. This 

function captures the approximation coefficients, 

reflecting low-frequency components. 

(x, ψj,k) and (x, φj,k) represents the inner product 

of the input signal x with the wavelet and scaling 

functions, respectively. 

By applying this equation, the (DWT) 

decomposes the input signal into a linear combination 

of wavelet and scaling functions at different scales 

and translations. The resulting coefficients provide 

information about the signal's frequency content at 

varying resolutions. The Mallat algorithm or the 

lifting scheme are commonly used for implementing 

the DWT. To adapt this equation to the m-health 

dataset, substitute x with the specific time-domain 

signal from the dataset, and select appropriate 
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wavelet (ψj,k) and scaling (φj,k) functions based on 

specific analysis objectives. 

3.2.3. Apply windowing to (DWT) for WISDM: 

Eq. (3) shows the mathematical of the proposed 

Pre-processing as follows: 

 

DWT(x, ψj,k, φj,k) = Σk ψj,k * (x, ψj,k) + Σk φj,k 

 * (x, φj,k)     (3) 

 

the input signal, denoted as x, represents the time-

domain dataset time series dataset. The wavelet 

function at scale j and translation k is denoted as ψj,k. 

This function captures the detail coefficients, which 

represent high-frequency components of the signal. 

The scaling function at scale j and translation k is 

denoted as φj,k. This function captures the 

approximation coefficients, representing the low-

frequency components of the signal. The notation (x, 

ψj,k) and (x, φj,k) represents the inner product of the 

input signal x with the wavelet and scaling functions, 

respectively. By applying this equation, the (DWT) 

decomposes the input signal into a linear combination 

of wavelet and scaling functions at different scales 

and translations. This decomposition provides 

valuable information about the frequency content of 

the signal at various resolutions. It is important to 

note that efficient algorithms like the Mallat 

algorithm or the lifting scheme are commonly 

employed for the practical implementation of the 

DWT. To utilize this equation with the WISDM time 

series dataset, substitute x with the specific time-

domain signal from the dataset, and select appropriate 

wavelet (ψj,k) and scaling (φj,k) functions based on 

the specific requirements and goals of the analysis. 

3.2.4. PAMAP2 (Physical Activity Monitoring Using 

Smartphones) Dataset 

Eq. (4) shows the mathematical of the proposed 

Pre-processing as follows: 

 

DWT(x, ψj,k, φj,k) = Σk ψj,k * (x, ψj,k) + Σk φj,k  

* (x, φj,k)      (4) 

 

The input signal, denoted as x, represents the time-

domain data from the PAMAP2 dataset. The wavelet 

function at scale j and translation k is represented by 

ψj,k. This function captures the detail coefficients, 

which reflect high-frequency components of the 

signal. The scaling function at scale j and translation 

k is represented by φj,k. This function captures the 

approximation coefficients, representing the low-

frequency components of the signal. The notation (x, 

ψj,k) and (x, φj,k) indicates the inner product of the 

input signal x with the wavelet and scaling functions, 

respectively. By applying this equation, the DWT 

decomposes the input signal into a linear combination 

of wavelet and scaling functions at different scales 

and translations. This decomposition provides 

valuable information about the signal’s frequency 

content at various resolutions. The Mallat algorithm 

or the lifting scheme is commonly used for the 

practical implementation of the DWT. To adapt this 

equation to the PAMAP2 dataset, substitute x with 

the specific time-domain signal from the dataset, and 

select suitable wavelet (ψj,k) and scaling (φj,k) 

functions based on the particular analysis goals and 

requirements. 

3.3 Framework design: 

Build a system for predicting future human 

activities using wearable sensors with (DL), there are 

several components involved, as well as system 

architecture. The exact implementation details may 

vary depending on the application and available 

resources.  In general, the structure of the system is 

described in Fig. 1, LSTM layer to output a sequence 

rather than a single value, in order to predict the 

labels of the future sequence that contains the (k+1)th, 

(k+2)th, and (k+3)th activities, the utilize activity 

features extracted from the kth, (k-1)th, and (k-2)th 

activities. Similarly, when forecasting the labels of 

the future sequence that contains the (k+2)th, (k+3)th, 

and (k+4)th activities, the use of activity features 

obtained from the (k+1)th, kth, and (k-1)th activities, 

the use of activity features obtained from the  

(k+1)th,(k+2)th, and kth activities and so on. The 

proposed structure of the system is described in 

Figure 1: and represents the hidden state hi for each 

time step. The Conv1D layer conducts a convolution 

operation between the input and a set of filters, 

followed by a ReLU activation function. LSTM unit 

in the layer contains a set of internal hidden state 

variables, including cell state c(t) and hidden state 

h(t), which are updated at each time step t based on 

the input x(t) and the previous state h(t-1).  

A refers to activity, i represents the loop for all 

activities, j is used to group similar activities, for ki 

collects all related actions as activity groups Activity 

1= Aj1+j2+…+j(i-1) +1 to Activity k= 

Aj1+j2+…+j(i-1) +ni. and for kk collects all related 

activity as separated groups: Activity 1= 

Ak1+jk2+…+j(k-1) +1 to Activity k= 

Ak1+k2+…+j(k-1) +n(k). Finally prediction can be 

mathematically calculation as: Prediction = 

Aj1+j2+…+j(i-1)+x 

 

 



Received:  September 2, 2023.     Revised: October 10, 2023.                                                                                         986 

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023           DOI: 10.22266/ijies2023.1231.81 

 

 
Figure. 2 Architecture of proposed framework 

 

 

Figure. 3 Proposed method for algorithm 2 

 
Algorithm 1: Proposed Future Human Activity 

FUNCTION predict_future_activity(model, 

input_sequence, steps_ahead): 

 predicted_sequence = zeros(shape=(steps_ahead, 

input_sequence.shape[1])) 

    FOR i = 0 TO steps_ahead-1: 

yhat = model.predict(input_sequence.reshape(1, 

input_sequence.shape[0], 

input_sequence.shape[1]))[0] 

predicted_sequence[i] = yhat 

input_sequence = 

concatenate([input_sequence[1:], yhat.reshape(1, 

-1)], axis=0) 

RETURN predicted_sequence 

predicted_sequence = 

predict_future_activity(model, input_sequence, 

steps_ahead) 

predicted_label = 

le.inverse_transform([argmax(predicted_sequence

[0][-1])]) 

PRINT("Predicted activity:", predicted_label[0]) 

 

 

Fig. 2 displays a robust real-time suggested 

system capable of predicting future human activity 

using hidden state h(t), which is updated at each time 

step t based on the input x(t). 

Algorithm 1 is known as 

"predict_future_activity." It takes three primary 

inputs: a pre-trained LSTM model, an input sequence, 

and the desired number of steps for future prediction. 

The primary objective of this function is to generate 

a sequence comprising predicted future activity 

levels as its output. The algorithm initializes by 

creating an empty array labelled 

"predicted_sequence," which is dimensioned to align 

with the output specifications of the LSTM layer. It 

then employs the LSTM layer's output to extract 

localized features, considering the parameters 

"steps_ahead" and "num_features." Subsequently, 

the algorithm utilizes a for loop to predict the 

forthcoming activity level for each step into the set of 

internal hidden state variables, including cell hidden  

state. The LSTM unit in the layer contains a state 

c(t) and future, and the previous state h(t-1). One-step 

prediction assigned to algorithm 2. Each T0 in Fig. 3 

output a one-step prediction added to the last record 

in the original dataset. 

The predicted activity is added to the predicted 

sequence and the input sequence is shifted by one 

step and appended with the predicted activity in Fig. 

3. After the predict_future_activity function is called 

and the predicted_sequence is obtained, the predicted 

label is extracted from the first step of the predicted 

sequence using argmax and inverse_transform. 

Finally, the predicted label is printed on the console. 

Algorithm 2 represents future prediction LSTM 

represented in Fig. 2 and results in Table 4, below 

depending on sequences of predicted activity to be 

added (updated) dataset after the last records, 

Evaluation can be done with the database by applying 

the same proposed method. 
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Algorithm 2: Proposed n-steps human activity 

function predict_future_activity(model, 

input_sequence, steps_ahead): 

1. For i in range(steps_ahead): 

 a. Predict the next activity level by calling 

model.predict() on the input sequence. 

 b. Append the predicted activity to the end of the 

input sequence using np. append(). 

c. Remove first element of the input sequence 

using np. delete() to shift the input sequence by 

one step. 

 2. Return the final predicted sequence. 

main program: 

1. Load the trained and test set 

2. Select the first row of the test set (X_test) and 

reshape it into a 2D array with shape (1, 

window_size, num_features). 

 3. Set the values of steps_ahead. 

4. Call predict_future_activity with the model. 

5. Convert the predicted sequence to the original 

labels  

7. Create a new input sequence X_new with a 

range of values from 0.5 to 1.6. 

8. Reshape X_new into a 3D array with shape (1, 

X_new.shape[0], 1). 

9. Predict the activity level for the next day by 

calling model.predict() on X_new. 

10. Print the predicted activity level. 

4. Experimental results 

Paper's results prove the robustness of the model, 

as detailed in the methodology and system structure 

section. The model's primary objective is to emulate 

human logic, and in this regard, by showing an 

evaluation involving two distinct methods on the 

UCI-HAR dataset to validate our approach. To 

determine the model's efficiency and generalizability, 

we subjected it to rigorous testing on three additional 

datasets: Mhealth, WISDM, and PAMP2. These 

datasets were acquired using consistent data 

collection procedures to ensure comparability. Our 

data pre-processing involved the utilization of 

wavelet transformation to effectively handle time 

series data. For multiclass classification, a linear 

encoder was employed. The ensuing Figs. 4, 5, 6, and 

7, comprising aspects (a) and (b), present key 

performance metrics, namely loss, validation loss, 

accuracy, and validation accuracy, providing a visual 

representation of our model's performance across 

various datasets and evaluation criteria, thus 

enhancing the recognition of different activities and 

deepening the comprehension of human movement 

patterns, with the following parameters: LSTM with  

 

 
(a) 

 
(b) 

Figure. 4: (a) UCI-HAR (loss, val_loss) and (b) UCI-

HAR (accuracy, val_accuracy) 

 

 

32 units, Conv1D= 32 filters, kernel size 3, and ReLU 

activation, MaxPooling1D=2,Dense= 64 units and 

ReLU activation, Dropout=0.5, Epochs= 100, 

batch_size=128, n_samples equal to Number of 

samples in the input data, n_channels equal to 

Number of input data channels (features). 

Methods based UCI-HAR dataset's previous 

accuracy in [20-24]: 93.18, 95.49, 95.58, and 95.4 

respectively. The PAMP consists of data collected 

from wearable sensors during various physical 

activities. Table 2 contains the results-based UCI-

HAR for implementing Algorithm 2 with three 

various metrics. 
In Table 2 Precision: 0.9861, Recall: 0.9861, and 

F1-score: 0.9861 were evaluated based on UCI-HAR, 

epochs 22 which appears high scores compared to 

results of the state-of-the-art in Table 4 by linking the 

physical sequence of activities with the temporal-

spatial steps involved in them.  
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(a)                                                                 (b) 

Figure 5: (a) Mhealth (loss, val_loss) and (b)Mhealth (accuracy, val_accuracy) 

 

           
(a)                                                                                 (b) 

Figure. 6: (a) WISDM (loss, val_loss) and (b) WISDM V2.0 (accuracy, val_accuracy) 

 

           
(a)                                                                                  (b) 

Figure. 7: (a) Pamp2 datasets (accuracy, val_accuracy) and (b) Pamp2 datasets (accuracy, val_accuracy) 
 

Table 3 shows the results of using algorithm 1 to 

predict future human activity. Table 4 contains results 

showing the comparison based on UCI-HAR. 

Table 5 presents a comparative analysis of the 

most recent and closely related articles, methods with 

accuracy referenced as supervised [28], Pseudo label 

[29], temporal ensemble [30], auto encoder [31], 

relation prediction [32], and semi-supervised [33] 

respectively, the datasets, methods, and 

corresponding test results in the table as follow: 

Primarily Table 5 focuses on semi-supervised 

learning [33] as the last paper published, also the best 

results compared with the state of the arts, one main  
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Table 2 Results of proposed algorithm 2  

Metrics Results 

F1-score 0.9861 

Test Accuracy 0.9892 

Confusion 

Matrix generated 

[[703   0   0   0   0   0] 

 [  0 626   2   0   0   0] 

 [  0   2 576   0   0   0] 

 [  0   0   0 701  10   0] 

 [  0   0   0  45 735   0] 

 [  0   0   0   0   0 779]] 

 
Table 3 Results of proposed methods  

Dataset Method Accuracy 

UCI-HAR 

Epoch 77 

Modifie

d 

(DWT)  

with 

LSTM+

CON1D 

Accuracy: 0.9852, figure 4 

shows evaluation metrics 

Mhealth 

Epoch 88 

Accuracy: 0.9321, figure 5 

shows evaluation metrics 

WISDM 

Epoch 162 

Accuracy: 0.8943, Figure6 

shows evaluation metrics 

PAMAP2  

Epoch 79 

Accuracy: 86.85% and Figure 

7 shows evaluation metrics 

 
Table 4 Comparison models based UCI-HAR  

Model  Ye

ar 

Accu-

racy 

Difference point(s) 

BiLST

M [25] 

2
0

2
3

 95.79 1- Higher complexity o(n^2) 

2- Dropout = 0.3, 0.2 and L2 

regularizer = 1e-2. 

 Bi-

LSTM 

[26] 

2
0

2
3
 97.96 1- Higher complexity o(n^2) 

2- Only five daily activities 

3- Predict future activity.  

Tempor

al 

Conv-

LSTM 

[27] 

2
0

2
2
 91.6 1-A hybrid architecture was 

employed, with parallel 

feature learning pipelines. 

2-High complexity o(n^2) 

3- sliding and size window. 

Our 

model 

  98.92  1-Less complexity (single 

layer O(n) LSTM and 

CONV1D) 

2- Optimizer: Adam, Batch 

size:64, lr:0.1, training data 

0.7 and 0.8. 

 

strength of our same methodology applied to all 

datasets, is less complexity due to the use of multiple 

methods to build framework. In the case of the 

mHealth dataset, study [33] suggests re-categorizing 

label data into six classes to address the challenges 

posed by complicated activities while in our work all 

datasets were pre-processed without changing. 

5. Conclusion: 

This paper utilizes comprehensive visual 

characteristics and principal considerations to  

 
 

Table 5 Comparison of varying methods  

Dataset Method 20 % Test set 

 

UCI-HAR  

 

Epochs=200 

Supervised  91.8 

Pseudo label  92.7 

Temporal Ensemble  93.2 

Auto Encoder 91.5 

Relation Prediction 92.4 

Semi-supervised 93.5 

Our method 0.9903 

WISDM Supervised 83.4 

Pseudo label 86.1 

Temporal Ensemble 87.1 

Auto Encoder 84.9 

Relation Prediction 86.0 

Semi-supervised 88.1 

Our method 92.46 

PAMAP2 

Epochs=55 

Supervised 83.2 

Pseudo label 84.2 

Temporal Ensemble 83.8 

Auto Encoder 84.2 

Relation Prediction 84.6 

Semi-supervised 85.4 

Our method 0.8552 

mHealth 

epochs=89 

Supervised 95.6 

Pseudo label 95.8 

Temporal Ensemble 94.5 

Auto Encoder 96.3 

Relation Prediction 95.8 

Semi-supervised for 6 

classes out of 12 

97.5 

Our method 94.48 

 

concurrently predict individuals' paths and activities 

by presenting two different methodologies with a 

new procedure for applying a windowing function to 

the (WT), first algorithm is a novel proposed 

framework that implies temporal-spatial with the 

LSTM-CONV1D model is (DL) for handling 

sequences of activities and validated via four 

different datasets to satisfy supervision from 

heterogenous based sensor sources. Second, are 

presented in this work, the predict_future_activity 

function can be used to make predictions for future 

time steps based on a given input sequence based on 

the UCI-HAR.  

Future work planning to apply the proposed 

method to other relevant datasets, following the same 

methodology phases outlined. The main finding of 

the proposed framework can be efficiently used for 

the smarthome and fall system. 
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