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Abstract: Epilepsy is a neurological disorder. It is a problem of abnormality in brain resulting in seizures, unusual 

behaviours, loss of awareness and sensations. Recently many deep learning-based methods to detect epilepsy from 

multi lead electroencephalogram (EEG) signals have been proposed. Most of these approaches fused the features 

extracted in one dimensional or two-dimensional mode from EEG through aggregation without any cross-reference 

learning. As the result, their performance gain in terms of accuracy is limited and also false positives are higher. 

Learning the cross-correlation information across multiple leads will solve this problem and there has been no works 

exploiting cross correlation learning. Existing approaches on usage of multiple modalities are mostly feature fusion 

or decision fusion approaches without cross correlation learning. This work proposes a cross model attention-based 

learning to learn enriched features from multiple modalities of EEG with aim to increase the accuracy and reduce the 

false positives. The performance of the proposed solution was tested against University of Bonn EEG dataset. Due to 

cross correlation learning from multiple modalities, the accuracy of epilepsy detection in proposed approach has 

increased to 98% which is atleast 2% higher compared to most recent approaches. 

Keywords: Deep learning, Multi modal epilepsy diagnosis, Cross model attention. 
 

 

1. Introduction 

Epilepsy is neurological disorder affecting large 

number of people worldwide. It is characterized by 

seizures. Based on the onset of seizures and etiology 

Epilepsy can be categorized to: Localization-related, 

Idiopathic, Symptomatic and age specific. Though 

the source of many of these categories are unknown, 

in most of these cases, epileptic diseased can live 

without seizures if properly diagnosed and treated 

with anti-epileptic drugs [1]. EEG is the most used 

and the golden standard for diagnosis of epileptic 

seizures. In a typical process of diagnosis, electrodes 

are placed over the patient’s scale regions and 

electrical signals are recorded. These electric signals 

are then analyzed through visual inspection by 

physician to spot any seizures. But this method is 

error prone and some seizures can be missed out or 

diagnosed erroneously. Computer aided diagnosis 

(CAD) is valuable tool to assist expert in accurate 

diagnosis. These CAD tools extract various features 

from the EEG recordings and classify them to 

seizures using machine learning classifiers. 

Conventional machine learning techniques for 

seizure prediction extract handcrafted features from 

EEG signals and classify these features to seizure 

classes. Handcrafted features extracted using various 

methods like principal component analysis (PCA), 

Fourier transform, wavelet transform are classified 

using machine learning classifiers like support 

vector machine (SVM), Hidden Markov model and 

neural networks. Recently deep learning models are 

proposed for epileptic seizure prediction. Deep 

learning models are able to learn intricate features 

from EEG avoiding the need for handcrafted 

features. Deep learning features provide higher 

performance gains compared to conventional 

machine learning models. Deep learning models 

used EEG signal as ID or converted the EEG to 

image through some transformation and used it in 

2D mode for feature extraction. Deep learning 

models like deep belief networks, restricted 

Boltzmann machines, auto encoders, CNN and 
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recurrent neural network (RNN) extract features 

from 1D EEG signals. Various approaches have 

been proposed to convert EEG to 2D representation 

and process it with deep learning models just like 

images. To improve the accuracy, various multi 

modal based deep learning methods have been 

proposed where information from multiple streams 

are used instead of relying on features from 

individual streams alone for increasing the accuracy 

of seizure detection. The problem in these 

approaches is that each modality is processed 

separately at results are ensembled only at last stage 

without cross reference between the modalities. Due 

to this, performance gains in multimodal approaches 

are limited.  

This work proposes a cross model attention-

based decision level fusion to learn enhanced 

features through cross reference learning from 

multiple modalities. As the part of work, scalable 

hierarchical cross model attention learning is 

proposed which can be extended for any number of 

modalities. Features extracted from EEG are 

represented as high level deep learning features and 

these features are enhanced with proposed 

hierarchical cross model attention. The enhanced 

features are classified with multivariate LSTM to 

consider temporal correlation between sequences of 

enhanced features for higher heart disease 

classification accuracy. Following are the novel 

contribution of this work.  

 

(i) A scalable hierarchical cross model attention to 

enrich the multimodality features through cross 

reference learning.  

(ii) Temporal correlation between sequences of 

enriched features through multivariate LSTM. 

(iii) Novel methods to convert EEG signals to deep 

learning high level representations.               

 

Paper organization is as follows. Section II 

presents the existing deep learning solutions for 

epileptic seizure prediction. Section III presents the 

proposed cross model attention based deep learning 

model for seizure prediction. Section IV presents the 

results of proposed solution and comparison to 

existing works. Section V presents the conclusion 

and scope for future research.  

2. Related Work 

Gramacki et al [2] developed a deep learning 

approach using convolutional neural network (CNN) 

for detection of seizure episodes. The approach was 

tested for neonatal seizure in young babies less than 

4 weeks old. The EEG signals were time segmented 

and converted to 2D matrix. This 2D matrix is 

processed by CNN to two classes of seizure or not. 

Temporal correlation of signals over a longer time 

window is not considered in this work. O’shea et al 

[3] developed a 2D fully connected architecture for 

classifying seizures from multichannel EEG signals. 

Convolutional features extracted from each channel 

EEG is combined as feature map and classified. 

Author did not consider the spatial correlation 

between multichannel signals and cross reference 

learning. Isaev et al [4] proposed attention model to 

provide weightage to each of multichannel EEG 

signals in detecting the neonatal seizure. The 

weightage is given based on the relevance to 

features extracted from channel to seizure class. 

Based on the weightage, feature fusion is done and 

fused features are used for classification. Spatial 

correlation across channels and temporal correlation 

over a longer time period is not considered in this 

work. Avcu et al [5] developed a modified CNN 

architecture for seizure detection from multichannel 

EEG signals. Additional drop out layers and batch 

normalization after every convolutional layers are 

added in the CNN for increasing the classification 

performance. Features extracted from each channel 

are fused before classification. But the cross 

reference learning between each channel features 

was not considered. Hossain et al [6] used CNN to 

extract features from single channel EEG for seizure 

detection. The EEG signals are processed as 1D 

signal and convolutional features are extracted from 

it for seizure detection. Temporal correlation across 

time window of EEG segments was not considered 

in this work. Covert et al [7] proposed a temporal 

graph CNN to extract features from EEG signals for 

seizure detection. Features extracted are localized 

and shared over both time and space. But the 

temporal correlation is only over a smaller time 

window. Emami et al [8] converted EEG signals to a 

2D image by segmenting the EEG signals over fixed 

time window and creating a matrix from segments. 

The segments are processed by CNN to detect 

seizure. The approach was designed only for single 

channel EEG signals. Achilles et al [9] proposed a 

multimodal deep learning approach combining both 

EEG and video camera feed to detect seizures. 

Convolutional features learnt from each modality is 

feature fused and used for classification. But cross 

reference across features was not considered. Park et 

al [10] used CNN to extract temporal and spatial 

features from multichannel EEG for seizure 

detection. 1D convolutional layer were used to 

extract temporal correlation features from EEG and 

2D convolutional layers were used to learn the 

spatial correlation between multiple channels EEG. 
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But the temporal correlation is only of short duration. 

Nejedly et al [11] developed a deep learning 

classifier for seizure detection from EEG. The CNN 

hyper parameters were optimized using genetic 

algorithm. EEG signals were processed in 1D mode 

without spatial and temporal correlation.Iešmantas 

et al [12] extracted power spectrum features from 

the EEG signal and classified it using CNN to detect 

seizures. The power spectrum features across time 

segments were not correlated. Segundo et al [13] 

extracted wavelet features from EEG signals using 

Fourier and empirical wavelet decomposition. The 

wavelet features were then classified using CNN to 

detect seizure. The approach was designed for single 

channel EEG and it lacked temporal correlation over 

the time window. Similar to above work, Ankut et al 

[14] extracted features from EEG using discrete 

wavelet transform and classified it using 

convolutional neural network. But temporal 

correlation was not considered in this work too. 

Turk et al [15] applied continuous wavelet transform 

on EEG signals to generate 2D scaleogram image. 

The image is then classified by CNN to three 

different classes of seizures. Temporal correlation of 

images was not considered in this work. Liu et al 

[16] extracted deep learning features from single 

channel EEG and classified to two classes of seizure 

or not. Though CNN was modified for improving 

the performance, this work did not consider 

temporal correlation. Tian et al [17] proposed a two 

stage feature extraction method where initial multi 

view features are constructed from EEG signal using 

Fast Fourier transform and wavelet packet 

decomposition. CNN learns the deep features from 

the initial multi view features. Rule based classifier 

is employed to classify the CNN features to seizure. 

Though the features perform better compared to 

principal component analysis, temporal correlation 

even over a short time period is not considered. 

Ansari et al [18] extracted CNN features from multi 

channel EEG and classified the features using 

random forest classifier. But no spatial correlation 

between multiple leads was considered in this work. 

Cao et al [19] used stacked CNN to extract deep 

features from multichannel EEG and classified the 

features to seizure using extreme learning machine. 

Authors applied weighted feature fusion to fuse 

multichannel features. But spatial and temporal 

correlation of features was not considered in this 

work. Daoud et al [20] used empirical mode 

decomposition to extract features from EEG and 

applied CNN for seizure classification. But no 

temporal correlation between the EEG segments was 

considered in this work. Craley et al [21] proposed a 

hybrid probabilistic graphical model CNN for 

detecting seizure from multichannel EEG. Clinically 

relevant features are selected by applying 

probabilistic graphical model. But the method 

lacked cross reference learning between features 

across the channels. Ullah et al [22] proposed a 

ensemble of pyramid 1D CNN for seizure detection. 

Compared to other CNN models, this model requires 

only limited dataset. Though spatial correlation 

across EEG signal is considered, temporal 

correlation is not considered. Acharya et al [23] 

used a 13 layer deep convolutional neural network 

to increase accuracy of seizure detection. Page et al 

[24] improved the performance of max pooling 

CNN using transfer learning to increase the 

accuracy of seizure detection. Yao et al [25] 

extracted features in different time scales 

considering temporal and spatial context using 

recurrent neural network. But the approach was 

designed only for single channel EEG. Wei et al 

[26] proposed two novel improvements to CNN to 

increase the accuracy of seizure detection in terms 

of data sequences and data augmentation. Fukumori 

et al [27] used recurrent neural network to detect 

epileptic spikes in EEG signals. Though the work 

considered temporal correlation using recurrent 

neural network, it is designed only for single 

channel EEG. Lin et al [28] used deep ConvNet to 

detect seizures from EEG. Author increased the 

performance using data augmentation, but without 

temporal and spatial correlation, the accuracy is low.  

Hussein et al [29] used long short term memory 

(LSTM) to learn high level representation features 

from EEG. These features are then classified using a 

fully connected network. Though use of LSTM 

brings temporal context into features, the sequence 

duration is low and the approach is designed only 

for single channel EEG. Geng et al [30] combined 

Stockwell transform (S-transform) and bidirectional 

LSTM to detect seizures from EEG signal. S-

transform is applied on EEG signal and the time 

frequency blocks are grouped. These grouped 

features are classified by Bi-LSTM. But the 

approach lacks temporal and spatial correlation of 

signals. Llias et al [33] proposed a multimodal deep 

neural network for epilepsy detection. Short Fourier 

transform was applied to single channel EEG signals 

and an image is created from three channels output. 

The image is then classified to epilepsy using pre-

trained EfficientNet-B7 model. The approach did 

not consider the temporal correlation in each 

channel and designed to work only for short 

duration EEG signals.  

The summary of the survey is presented in Table 

1. 
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Table 1. Survey summary 

Works  Gap  

Gramacki et al [2] Temporal correlation of signals 

over a longer time window was not 

considered in this work 

O’shea et al [3] Author did not consider the spatial 

correlation between multichannel 

signals and cross reference 

learning 

Isaev et al [4] Spatial correlation across channels 

and temporal correlation over a 

longer time period is not 

considered in this work 

Avcu et al [5] cross reference learning between 

each channel features was not 

considered 

Hossain et al [6] Temporal correlation across time 

window of EEG segments was not 

considered in this work 

Covert et al [7] Temporal correlation is only over 

a smaller time window 

Emami et al [8] The approach was designed only 

for single channel EEG signals 

Achilles et al [9] cross reference across features was 

not considered 

Park et al [10] Temporal correlation is only of 

short duration 

Nejedly et al [11] EEG signals were processed in 1D 

mode without spatial and temporal 

correlation 

Iešmantas et al [12] The power spectrum features 

across time segments were not 

correlated 

Segundo et al [13] It lacked temporal correlation over 

the time window 

Ankut et al [14] Temporal correlation was not 

considered in this work 

Turk et al [15] Temporal correlation of images 

was not considered 

Liu et al [16] Temporal correlation was not 

considered  

Tian et al [17] Temporal correlation even over a 

short time period is not considered 

Ansari et al [18] No spatial correlation between 

multiple leads was considered in 

this work 

Cao et al [19] Spatial and temporal correlation of 

features was not considered in this 

work. 

Daoud et al [20] No temporal correlation between 

the EEG segments was considered 

in this work 

Craley et al [21] Method lacked cross reference 

learning between features across 

the channels. 

Ullah et al [22] Though spatial correlation across 

EEG signal is considered, 

temporal correlation is not 

considered 

Fukumori et al [27] It is designed only for single 

channel EEG 

Lin et al [28] Without temporal and spatial 

correlation, the accuracy is low 

Hussein et al [29] The sequence duration is low and 

the approach is designed only for 

single channel EEG 

Geng et al [30] Approach lacks temporal and 

spatial correlation of signals 

Llias et al [31]  Approach did not consider long 

temporal correlation in each 

channel EEG signals.  

 

 

From the survey, most of the solutions were 

based on single modality of EEG features either in 

1D mode or 2D mode by converting EEG to image. 

Very few works processed multichannel EEG, but 

features extracted from each channel are just fused 

without any cross reference learning based feature 

enrichment. Though spatial correlation is considered, 

temporal correlation over longer time window is 

considered in any of the works. But considering 

temporal correlation over longer time window and 

cross reference based feature enrichment can 

increase the accuracy of detection and reduce false 

positives. The solution proposed in this work is 

based on this observation.         

3. Multi modal cross model attention 

networks  

The architecture of proposed multi modal cross 

model attention networks for epilepsy detection is 

given in Fig. 1. The EEG features are extracted from 

multiple channels and in two modes of 1D and 2D. 

In the 1D mode, the EEG segment is processed by 

1D CNN to extract features. In the 2D mode, the 

segment is converted to 2D spectrogram by applying 

continuous wavelet transform. The features from 

each of the mode from multiple channels are passed 

to feature enrichment instead of usual aggregation 

based feature fusion in existing works. The enriched 

features are passed as input to multivariate LSTM to 

classify seizures considering temporal correlation 

over longer duration. The proposed solution has 

following important stages: feature extraction, 

feature enhancement and classification. Each of the 

stages is detailed in below subsections.  

 

A. Feature extraction  

The features are extracted from multi channel 

EEG in two modes: 1D and 2D.  

The EEG signals are segmented into fixed 

duration samples. In the 1D mode, each segment is 

processed with Tunable Q wavelet 
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transform(TQWT). TQWT is fully discrete wavelet 

transform noted for feature extraction from 

oscillatory data like EEG signals. It is a sequence of 

filter bank. The low pass output from each filter 

bank is passed as input to successive high pass filter 

in the next filter bank. Each filter bank has a low 

pass filter 𝐻0
𝑗
(𝑤) and high pass filter 𝐻1

𝑗
(𝑤). The 

filters are defined as  

 

𝐻0
𝑗(𝑤) = {

∏ 𝐻0 (
𝑤

𝛼𝑚) , |𝑤| ≤ 𝛼𝑗𝜋
𝑗−1
𝑚=0

0, 𝛼𝑗𝜋 < |𝑤| ≤ 𝜋
            (1) 

 

𝐻1
𝑗(𝑤) =  

{
𝐻1 (

𝑤

𝛼𝑗−1)  ×

∏ 𝐻0 (
𝑤

𝛼𝑚) , (1 − 𝛽)𝛼𝑗−1 𝜋 ≤  |𝑤| ≤ 𝛼𝑗−1𝜋
𝑗−2
𝑚=0

 

(2)  

 

Where 

𝐻0(𝑤) = 𝜃(
𝑤+(𝛽−1)𝜋

𝛼+𝛽−1
)                                      (3)   

 

𝐻1(𝑤) = 𝜃(
𝛼𝜋−𝑤

𝛼+𝛽−1
)                                           (4) 

 

𝜃(𝑤)  is the Daubechies filter frequency 

response. 

J is the number of decomposition levels and it is 

set as 3 for this work 

𝛼 is the low pass scaling factor and it is set as 

0.6 for this work 

𝛽 is the high pass scaling factor and it is set as 1 

for this work 

The coefficients are arranged in row major form 

and passed to a 1D CNN. The 1D CNN can extract 

the effective and representative features of 1D time-

series sequence data through performing 1D 

convolution operations using multiple filters. The 

convolutional filters and feature maps of the 1D 

CNN are all one-dimensional, thus it can match the 

one-dimensional characteristic of the TQWT 

processed EEG signal. Bydeepening the number of 

convolutional layers, the CNN can gradually extract 

higher-level features which are robust and 

discriminative for the epileptic seizure recognition 

tasks. The configuration of 1D CNN used in this 

work for feature extraction is given in Table 2. 

The output of the 1D CNN is a 1×1024 vector.  

In the 2D mode, the EEG segment is converted 

to a 2D scaleogram image using wavelet transform. 

which helps analysis of signals with dynamic  
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Figure. 1 Multi modality cross model attention architecture 
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Cross model 

attention

Feature fusion

 
Figure. 2 Cross reference learning 

 
Table 2. 1D CNN configuration 

Layer Parameter 

L1:1D 

convolution 

Input size:(640,2) 

Filter:32 

Stride:1 

Activation: ReLU 

L2:1D 

convolution  

Input size:(640,2) 

Filter:32 

Stride:1 

Activation: ReLU 

L3:1D 

convolution 

Input size:(640,2) 

Filter:32 

Stride:1 

Activation: ReLU 

L4:Average 

pooling 1D 

Input size:(616,2) 

 

L5:1D 

convolution 

Input size:(308,32) 

Filter:32 

Stride:6 

Activation: ReLU 

L6:Flatten Input size: 1,9696 

 

 

frequency spectrum. Wavelet transforms are of two 

categories: continuous and discrete. Continuous 

wavelet transform is given as  

 

𝑋𝑤(𝑎, 𝑏) =
1

|𝑎|1/2 ∫ 𝑥(𝑡)𝜑(
𝑡−𝑏

𝑎

∞

−∞
)𝑑𝑡              (5) 

 

𝜑(𝑡) is the mother wavelet with scale factor of a 

and translation factor of b. The application of 

continuous wavelet transform on a EEG signal 

results in 2D scaleogram which provides the 

detailed information about the state space of the 

system. This scaleogram can be used to understand 

the dynamical behavior of the system and to 

distinguish different types of signals. In this work 

continuous wavelet transform with Gaussian as 

mother wavelet is applied onto the raw EEG signal 

to generate the 2D scaleogram. 

This 2D scaleogram is passed as input to 

Densenet deep learning model to extract features. 

Densenet model is used in this work due to 

capability to learn more intricate features from the 

images. The configuration of the Densenet model 

used for feature extraction is given in Fig. 3. 

Densenet is developed as a solution to the 

reduced accuracy in high level neural networks, due 

to vanishing gradient. In these neural networks, the 

existence of longer path between the input layer 

andthe output layer make the information to vanish 

before reaching its destination. Densenet is an 

adaptation of Resnet by modifying the additive 

method with concatenation of previous layer outputs. 

The goal of Densenet is to increase the depth of 

network at same time without increasing training 

time. This is achieved by use of shorter connections 

between layers. Densenet increases the depth by 

cross connections and this maximizes information 

flow in the network. Even in cross connection, feed 

forward is respected by each layer collecting all  
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Figure. 3 Densenet configuration 

 
 

 
Figure. 4 LSTM Architecture 

 

inputs before passing to next layer.    

The 2D scaleogram is converted to feature 

dimension of size 1×1024 and passed to next stage 

of feature enhancement.  

 

B. Feature enhancement  

The features extracted from 2D scaleogram of 

different EEG leads are the input for feature 

enhancement process. Different from earlier works 

of just fusing the features by aggregating them, this 

work proposes cross reference learning using cross 

modal attention. Feature extracted from 1D & 2D 

mode from each of the EEG channel is a modality. 

Say there are two modalities {𝑚1, 𝑚2}. The cross 

modal attention for modal 𝑚1  takes output of its 

feature encoding layer as query vector and the 

output of 𝑚2  feature encoding layers as key and 

value vectors. It then applies multi head scaled dot 

product attention. It helps each modality to learn 

cross reference information from other modality. 

Finally features from the cross modality attention of 

𝑚1  and 𝑚2  are pooled and passed to prediction 

using softmax classifier. This cross modal attention 

proposed in [31] is enhanced using a novel 

hierarchical cross reference approach for multiple 

modalities as shown in Fig. 2. In this the cross 

modalities feature learnt from two modalities 

{𝑚1, 𝑚2}  is passed to next cross modal attention 

taking output of {𝑚2+𝑖} feature encoding layer for 

learning cross reference information between 

{𝑚1, 𝑚2} and {𝑚2+𝑖}. This process is repeated till 

all 𝑁 modalities are covered.  

 

C. Seizure classification  

In most of existing approaches, the features are 

classified to beats without considering the temporal 

correlation between features over a time interval. 

This work solves this problem by using a 

multivariate LSTM for classification considering 

temporal variation over a time period.  

The architecture of the multivariate LSTM used 

to predict the emotion classes from the series of 

feature vectors is shown in Fig. 4. 

As shown in Figure, each LSTM node takes the 

current input vector 𝑥 and the previous hidden state 

as input. With this input, it calculates the cell 

activation as weighted sum of inputs(Wcxt) along 

with the bias(bc). The cell activation got as result is 

then processed with a hyperbolic tangent activation 

function(∅t) as below 

 

𝑐𝑡 =  ∅𝑡(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)                (6) 

 

In the above equation, ht−1 is the cell activation 

result of previous LSTM node in the sequence. The 

values Wc and Uc are the weights for input and the 

hidden state vector. The level of activation to be 

retained or forgot is done by controlling the gates.  

The hidden state information is calculated at the 

final state. The gates control how much of activation 

must be retained and how much must be forgot. 

Input gate control how must activation to retain and 

forget gate decided how much cell activation must 

be forgot. The final gate is incorporated to calculate 

the hidden state. The final gate takes two 

information, forgot vector (ft) and input vector ((it) 

as input to provide the output vector (ot).  

 

𝑓𝑡 =  ∅𝑠(𝑊𝑓𝑥𝑡 +  𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)                (7) 

 

𝑖𝑡 =  ∅𝑠(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)               (8) 

   

𝑜𝑡 =  ∅𝑠(𝑊𝑜𝑥𝑡 +  𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)             (9) 
Table 3. Equations notations 
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Variable  Description 

𝐻0
𝑗
(𝑤) Low pass filter  

𝐻1
𝑗
(𝑤) High pass filter 

𝛼 Low pass scaling factor 

𝛽 High pass scaling factor 

𝑋𝑤(𝑎, 𝑏) Continuous wavelet filter  

with scale factor a and 

translation factor b 

𝑐𝑡 Cell activation 

∅𝑡 Hyperbolic tangent 

activation function 

𝑊𝑐 Input weights for neurons  

𝑈𝑐 Hidden state vector 

𝐿 Loss function  

 

 

ft  is the forgot gate vector. it  is the input gate 

vector.ot is the output gate vector. 

It takes the 𝑍 = (𝑍1, 𝑍2, … 𝑍𝑇) , where T sea 

extent observation are used to predict the rainfall at 

time T+1 and each Zi is the input embedding of the 

transformed original sequence 𝑋 = (𝑋1, 𝑋2, … 𝑋𝑇) . 

The final LSTM layer output is passed to a Softmax 

classifier in regression setting . The output of the 

softmax classifier is one of two classes: disease or 

normal. The loss function for training the softmax 

regression classifier is given as 

 

𝐿 = −[∑ ∑ 1{𝑦(𝑖) = 𝑘} 𝑙𝑜𝑔 𝑃(𝑦(𝑖) =1
𝑘=0

𝑚
𝑖=1

𝑘|𝑧(𝑖); 𝜃)] (10) 

 

Where  

 

𝑃(𝑦(𝑖) = 𝑘|𝑧(𝑖); 𝜃) =
𝑒𝑥𝑝(𝜃(𝑘)𝑧(𝑖))

∑ 𝑒𝑥𝑝 (𝐾
𝑗=1 𝜃(𝑘)𝑧(𝑗))

           (11) 

 

Where 𝜃(1),𝜃(2),…𝜃(𝑘) are the parameters of the 

model and 𝑒𝑥𝑝(𝜃(𝑘)𝑧(𝑖))  is the normalization of 

parameter with the input feature values. 

The notations used in the equations are 

summarized in Table 3. 

4. Results 

The performance of the proposed solution is 

tested against University of Bonn EEG dataset[32]. 

The dataset has 4097 EEG signals sampled at 

173.61 GHZ with EEG signals labelled into classes 

of healthy, interictal, ictal, epileptic. An additional 

experimental dataset was created by reducing the 

labels to two classes of healthy and epileptic. By this 

way, performance is conducted for epilepsy  
 

Table 4. Performance comparison 

Metrics Propos

ed 

ResnetXt

-50 

VGG1

6 

Effici

entNe

tB7 

Accuracy 98.84 93.50 97.25 97.50 

Precision 98.97 93.98 97.55 98.55 

Recall 94.70 93.50 97 96.50 

F1-score 95.11 93.49 97.23 90.56 

 

 
Table 5. Comparison of cross reference learning 

Channels With cross 

model attention 

Without cross 

modal attention 

(fusion) 

5 97.12 93.92 

10 97.27 94.11 

15 97.89 94.56 

20 98.11 95.78 

23 98.34 96.11 

Average  97.74 94.89 

 

 

detection and specific epilepsy categorization was 

conducted separately. The dataset is pre-processed 

by applying bandpass filter in range of 0.53Hz to 

40Hz to remove noises.  This dataset is used as it is 

open and suits the need for long term analysis and 

multichannel analysis. 

The performance of the proposed solution is 

compared against three multimodal deep neural 

networks proposed by Llias et al [33]. Three 

networks of ResnetXt-50,VGG16 and 

EfficientNetB7 proposed in Llias et al [33] were 

used for comparison.  

The performance of seizure detection is 

measured in terms of accuracy, precision, recall and 

F1-score.  

The results of seizure detection are given in 

Table 4. 

The accuracy in proposed solution is atleast 1% 

higher compared to three deep learning networks 

proposed by Llias et al [33]. Cross reference 

learning to enrich features and temporal correlation 

with multivariate LSTM has increased the accuracy 

in proposed solution. Though multimodality is 

considered in LLias et al, use of short term Fourier 

transform on each EEG channel and constructing 

image only from Fourier coefficients reduced the 

temporal correlation. Also cross correlation between 

features were not considered and the Fourier 

coefficients of each channel were fused into image. 

But the proposed solution performed better due to 

cross model attention between multi-channel EEG to  
 



Received:  March 16, 2023.     Revised: June 9, 2023.                                                                                                        76 

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023           DOI: 10.22266/ijies2023.1031.07 

 

Table 6. Comparison of temporal correaltion 

Channels With LSTM 

temporal 

correlation 

Without LSTM 

5 97.42 94.92 

10 97.87 95.11 

15 98.10 95.56 

20 98.15 95.81 

23 98.34 95.92 

Average  97.97 95.46 

 

 

 
Figure. 5 Accuracy vs sequence length 

 
Figure. 6 ROC plot 

 

 
Figure. 7 Accuracy vs epochs 

 

 
Table 7. Comparison against different seizure types 

Seizure types Proposed ResnetXt-50 VGG16 EfficientNetB7 

interictalseizure 98.44 95.10 94.32 95.12 

ictalseizure 98.32 94.89 94.10 95.45 

epileptic seizure 98.75 95.30 94.52 95.10 

 

 

enrich the features.  

The results of accuracy of proposed solution due 

to cross reference learning when compared to 

aggregation based feature fusion are given in Table 

5. 

The accuracy increases with processing of 

features from more channels but use of cross 

reference learning in proposed solution has 

increased the average accuracy by 2.85%.  

The result of using temporal correlation over a 

period of time is given in Table 6. 

Use of temporal correlation has increased the 

accuracy by atleast 2.51% compared to without 

temporal correlation.  

The sequence length for LSTM is varied in the 

proposed solution and the result is given in Fig. 5. 

The ROC plot of proposed solution is 

comparison to existing works is given in Fig. 6. 

The ROC is higher in proposed solution 

compared to existing works. This shows the better 

sensitivity in proposed solution compared to existing 

works.  

The accuracy plot of proposed solution over 

various epochs is given in Fig. 7. 

The proposed solution achieve peak accuracy of 

98% at 150 epochs.  

The accuracy of the proposed solution for three 

different seizure types is measured and result is 

given in Table 7. 

The accuracy in proposed solution is 

consistently higher compared to all three networks 

across three epileptic classes. Cross correlation 

between each channel EEG in proposed solution has 

increased the accuracy both for epileptic detection 

and epileptic categorization.   

97.4

97.6

97.8

98

98.2

98.4

98.6

5 10 15 20

A
cc

u
ra

cy

Sequence length
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Discussion  

Ilias et al [33] multimodality deep learning 

network is the most recent solution on Epileptic 

seizure detection. In this solution, short time Fourier 

transform coefficients were extracted from three 

channels EEG and they are fused to createa image. 

The image is then classified to seizure using deep 

learning networks. CNN was invoked only for 

extracting more intricate features from fused image. 

Solution considered only spatial correlation between 

the multichannel EEG signals and temporal 

correlation over longer period was considered 

during Fourier coefficient extraction. But the 

proposed solution extracted CNN features in the 

initial stage itself by processing the EEG one 

dimensional signal and enriching it successive 

stages. By this way more intricate features were 

extracted from the EEG signals and this has 

increased the accuracy in proposed solution. The 

proposed solution was not compared against uni 

modality approaches and other traditional machine 

learning techniques discussed in literature as they 

were found to underperform compared to 

multimodality approaches. A thorough discussion on 

this was presented in the works of Ilias et al [33].  

5. Conclusion 

A cross reference learning based approach for 

seizure detection from multi channel EEG is 

proposed in this work. Two modalities of deep 

learning features extracted from EEG are used in a 

cross model learning framework to generate 

enhanced features. The enhanced features are 

classified to seizure class using multivariate LSTM. 

The proposed solution was able to achieve a peak 

accuracy 98% which is atleast 1% higher compared 

to most recent existing work.  
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