
Received:  April 20, 2023.     Revised: May 10, 2023.                                                                                                      181 

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023           DOI: 10.22266/ijies2023.0831.15 

 

 
An Efficient Hybrid Approach for Optimal Integration of Capacitors in Radial 

Distribution Networks with Realistic Load Models Using Giant Trevally 

Optimizer and Voltage Stability Index   

 

K Bhavana1*          V Rajeswari2          Rajan V3          Velmurugan VR4          P Muthukumar1 

 
1Prasad V. Potluri Siddhartha Institute of Technology, Vijayawada, Andhra Pradesh 520007, India 

2Amet University, Kanathur, Tamil Nadu 603112, India 
3MVJ college of engineering White field Bangalore 560067,Karnataka,India 

4P.A.C. Ramasamy Raja Polytechnic College, Rajapalayam, Tamil Nadu 626108, India 

* Corresponding author’s Email: bhavana.kadiyala1@gmail.com 

 

 
Abstract: Radiality and high R/X ratio branches cause EDNs to have low voltage profiles and insufficient security 

margins. This paper describes the application of a new meta-heuristic called the giant trevally optimizer (GTO) to 

find the best positions and sizes for capacitor banks (CBs) in low-voltage electrical distribution networks (EDNs) 

while taking into account various consumer types, including residential, commercial, industrial, and electric vehicles. 

By simultaneously lowering distribution losses, boosting the voltage profile, and improving the voltage stability 

margin, the major goal is thought to be to minimise the operational cost of annual energy loss. Different case studies 

on IEEE 33-bus and 69-bus EDNs are carried out in order to assess the computational effectiveness of the proposed 

GTO and are compared to the literature. Additionally, 50 independent runs are used to statistically quantify the 

convergence features of GTO and compare them to those of other meta-heuristics, particle swarm optimization 

(PSO), teaching-learning-based optimization (TLBO), cuckoo search algorithm (CSA), and flower pollination 

algorithm (FPA). Both comparative analyses demonstrated how GTO is more effective at finding global optima 

when tackling non-linear, non-convex optimisation problems with several types of variables and constraints. These 

technological and economic advantages demonstrate the methodology's capacity for real-time adaptation while 

taking emerging load trends and their loading patterns in low-voltage EDNs into account.     

Keywords: Capacitor banks, Reactive power compensation, Electrical distribution networks, Loss reduction, 

Voltage stability index, Giant trevally optimizer, Multi-objective optimization. 

 

 

1. Introduction 

Electrical distribution networks (EDNs) connect 

residential, commercial, industrial, and other 

consumers. Radiality and high R/X ratio branches 

reduce EDN voltage profiles and security margins 

[1]. However, global warming and transportation-

related pollutants have increased EV adoption 

worldwide. Industrialization has increased demand 

for electrical grid energy. These scenarios worsen 

low-voltage EDN operations. To alleviate the strain 

on conventional power plants and address the 

depletion of fossil-fuel-based energy supplies, 

renewable energy (RE) and other active and reactive 

power compensating measures are essential [2]. 

Capacitor banks (CBs) and other custom power 

devices (CPDs) can reduce distribution losses and 

save energy when running and regulating EDNs for 

reactive power compensation [3]. With CB 

integration, EDNs can increase voltage profile 

management, stability margins, power factor, and 

utility financial benefits [4].  

Thus, EDNs' optimum CB allocation problem 

(OACBP) becomes a continuous optimisation 

problem. Numerous studies have addressed this 

issue, possibly using meta-heuristic methods while 

considering the drawbacks of analytical methods [5]. 

In [6], grey wolf optimisation (GWO) determines 
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the ideal location and size for several CBs to avoid 

active power losses. The whale optimisation 

algorithm (WOA) solves the multi-objective 

OACBP by focusing on loss, voltage profile, and net 

savings [7]. In [8], particle swarm optimisation 

(PSO), harmony search algorithm (HAS), bat 

algorithm (BA), cuckoo search algorithm (CSA), 

and grey-wolf optimizer (GWO) are compared for 

loss reduction and net savings enhancement. After 

using loss sensitivity factors (LSFs) to identify 

likely CB integration locations, these methods are 

used to determine the best locations and sizes. The 

global optimum makes GWO better than other 

algorithms. In [9], time-varying acceleration 

coefficients (TVAC) are embedded in PSO to 

increase exploration and exploitation while solving 

the OACBP for loss reduction and net-savings 

maximisation. EDN's techno-economic benefits 

were analysed using LSFs and voltage-dependent 

load models. A genetic algorithm (GA) analyses the 

techno-economic effects of OACBP under varying 

seasonal loading conditions [10]. The diffusion and 

updating techniques-based algorithm (DUTA) 

reduces loss in the OACBP [11]. The power loss 

index (PLI) and chicken swarm optimisation (CSO) 

are used to allocate CBs to reduce loss and total 

operating costs [12]. Modified loss sensitivity 

factors (MLSFs) and multiverse optimizers (MVOs) 

are hybridised for CB integration to reduce loss. 

[13] The slime mould optimisation algorithm 

(SMOA) minimises CB integration, operation, and 

distribution losses in the OACBP [14]. In [15], LSFs 

reduce CB search space, and the polar bear 

optimisation (PBO) method is used to determine 

ideal CB locations and sizes to reduce the cost of 

loss and CBs. In [16], multi-objective GAs and 

LSFs optimise the voltage stability index (VSI), 

distribution losses, and yearly operating cost while 

setting CB sites and sizes. CSA [17, 18, 25–26] 

compares GA, PSO, BA, the whale optimisation 

algorithm (WOA), and the sperm-whale algorithm 

(SWA) [19]. The sine-cosine optimisation method 

(SCA) optimises EDN CB allocation and scheduling 

for energy loss reduction, reliability enhancement, 

and daily energy savings [20]. In [21], the 

grasshopper optimisation algorithm (GOA) solves 

the OACBP with changeable EDN loading 

circumstances. Rough set theory and LSFs optimise 

loss reduction and yearly energy loss costs to reduce 

uncertainty and speed up GOA computation. In [22], 

GWO, the dragonfly algorithm (DFA), and moth-

flame optimisation (MFO) solve the OACB issue 

and compare their computational efficiency. In [23], 

the epsilon multi-objective genetic algorithm (e-

MOGA) solves fixed and switching CBs in EDNs to 

minimise installation and network operational 

expenses. The mine blast algorithm (MBA), 

improved flower pollination algorithm (IFPA), crow 

search algorithm (CSA), and shark smell 

optimisation (SSO) are current meta-heuristic 

methods for the OACB issue [24]. 

The above literature shows that OACBP in EDN 

can achieve multiple purposes. Meta-heuristics solve 

this multi-objective, challenging optimisation 

problem. Many meta-heuristics still fall into local 

traps due to insufficient exploration and exploitation 

features and a poor switching mechanism. Meta-

heuristics may converge poorly when network size 

expands the search space. In the first stage, most 

studies select CB candidates using LSFs, VSIs, 

PLSs, and MPLSs. Meta-heuristics discover the best 

sites from these sensitivity indices utilising a 

narrower search area and different CB sizes. Due to 

approximation loss, these static loading sensitivity 

indices may not work under varied loading 

conditions. 

In light of this, this study offers a recently 

developed giant trevally optimizer (GTO) [30] for 

tackling the OACB issue while taking into account 

realistic load models, which are not specifically 

addressed in the literature. The goal of the target 

function is to reduce the running costs, active power 

loss, voltage profile, and VSI of CBs.  

The paper continues as follows: Section 2 

presents a realistic load model and problem 

formulation with equal and unequal constraints. 

Section 3 discusses GTO mathematical models and 

the OACB problem. Section 4 presents GTO 

simulation findings for solving the OACB problem 

in typical IEEE 33-bus and 69-bus test systems with 

constant power demands. Section 5 describes 

integrated realistic load model GTO results. GTO's 

computational properties are statistically compared 

to PSO, TLBO, CSA, and FPA. Section 6 concludes 

this paper's research.          

2. Modelling of relevant concepts  

This section introduces the proposed realistic 

load mode by combining residential, industrial, 

commercial and electric vehicle loads.   

2.1 Proposed realistic load model 

EDNs serve residential, commercial, industrial, 

and EV loads in real time. All loads have sensitive 

voltage profiles. Since Volt/VAr control using CBs 

can improve network voltage profiles, a common 

and accurate load model must take voltage 

magnitudes into account. Mathematically, 
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𝑃̅𝑑(𝑝) = 𝑃𝑑(𝑝) ∑ {𝜌𝑛𝑙𝑡 (
|𝑉(𝑝)|

|𝑉(𝑠)|
)

𝛼𝑛𝑙𝑡

}𝑛𝑙𝑡
𝑘=1   (1) 

 

𝑄̅𝑑(𝑝) = 𝑄𝑑(𝑝) ∑ {𝜌𝑛𝑙𝑡 (
|𝑉(𝑝)|

|𝑉(𝑠)|
)

𝛽𝑛𝑙𝑡

}𝑛𝑙𝑡
𝑘=1   (2) 

2.2 Problem formulation 

This section explains the multi-objective 

optimization problem.  

2.2.1. Active power distribution losses 

The power losses are mainly due to resistance of 

the branches, which is dependent on power flows 

through it. Mathematically,   

 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐼(𝑘)
2𝑛𝑏𝑟

𝑘=1 𝑟(𝑘) = ∑ (
𝑃(𝑘)

2 +𝑄(𝑘)
2

|𝑉(𝑞)|
2 )𝑛𝑏𝑟

𝑘=1 𝑟(𝑘) (3)    

2.2.2. Average voltage deviation index 

Each form of network load requires a proper 

voltage profile. Since network length decreases 

voltage, AVDI can show how network voltage 

profile compares to sub-station bus voltage. 

Mathematically,  

 

𝐴𝑉𝐷𝐼 =
1

𝑛𝑏𝑢𝑠
√∑ (|𝑉(𝑠)| − |𝑉(𝑝)|)

2𝑛𝑏𝑢𝑠
𝑘=1   (4) 

 

The higher value of 𝐴𝑉𝐷𝐼 indicates poor voltage 

and unequal voltage profile in the network, and 

vice-versa.    

2.2.3. Voltage stability index 

Radial EDNs need 𝑉𝑆𝐼(𝑞) ≥ 0. The lowest VSI 

bus collapses or the weakest node will initiate 

voltage collapse. To avoid voltage collapse, it is 

required to maximise all nodes' VSI [16]. Thus, 

maximization of weakest node VSI can ensure 

adequate voltage security margin. Mathematically,   

 

 𝑉𝑆𝐼(𝑞) = |𝑉(𝑝)|
4

− 4(𝑃(𝑘)𝑥(𝑘) − 𝑄(𝑘)𝑟(𝑘)) −

 4(𝑃(𝑘)𝑟(𝑘) + 𝑄(𝑘)𝑥(𝑘))|𝑉(𝑝)|
2
               (5) 

 

𝑉𝑆𝐼 = 𝑚𝑖𝑛( 𝑉𝑆𝐼(𝑞), , ∀𝑞 = 2: 𝑛𝑏𝑢𝑠)   (6) 

2.2.4. Annual energy loss cost savings 

The cost of savings can be determined by 

offsetting the CBs installation and operation cost 

from the loss cost. Mathematically,  

 

𝐶𝑠𝑣𝑔 = 𝑐𝑙𝑜𝑠𝑠 × (𝑃𝑙𝑜𝑠𝑠 − 𝑃̅𝑙𝑜𝑠𝑠) − {𝑐𝑐𝑏,𝑖 × 𝑛𝑐𝑏 ×

(𝑐𝑐𝑏,𝑝 × ∑ 𝑄𝑐𝑏(𝑘)
𝑛𝑐𝑏
𝑘=1 )}      (7) 

2.2.5. Multi-objective function 

The overall multi-objective function is given by: 

 

𝑂𝐹 = 𝑚𝑖𝑛 (𝑃𝑙𝑜𝑠𝑠 + 𝐴𝑉𝐷𝐼 +
1

𝑉𝑆𝐼
+

1

𝐶𝑠𝑣𝑔
)   (8) 

 

While solving the objective function, the 

following equal and unequal restrictions are taken 

into account. Here, Eqs. (9) - (12) provide 

descriptions of the real power balance, the reactive 

power balance, the voltage magnitude constants, and 

the reactive power compensation limit, respectively.   

 

𝑃𝑑(𝑠/𝑠) = ∑ 𝑃̅𝑑(𝑝)
𝑛𝑏𝑢𝑠
𝑝=1 + 𝑃𝑙𝑜𝑠𝑠     (9) 

 

𝑄𝑑(𝑠/𝑠) = ∑ 𝑄̅𝑑(𝑝)
𝑛𝑏𝑢𝑠
𝑝=1 + 𝑄𝑙𝑜𝑠𝑠               (10) 

 

|𝑉(𝑝),𝑚𝑖𝑛| ≤ |𝑉(𝑝)| ≤ |𝑉(𝑝),𝑚𝑎𝑥|               (11) 

 

∑ 𝑄𝑐𝑏(𝑘)
𝑛𝑐𝑏
𝑘=1 ≤ ∑ 𝑄̅𝑑(𝑝)

𝑛𝑏𝑢𝑠
𝑝=1               (12) 

3. Solution methodology  

The problem is aimed to solve using a recent 

meta-heuristic algorithm called giant trevally 

optimizer (GTO). Giant trevallies (Caranx ignobilis) 

are jack family predators. They also knew as the 

huge kingfish. Around Australia, New Zealand and 

Indian and Pacific oceans, they are commonly 

available. The availability of prey attracts roughly 

fifty huge trevallies from neighbouring reefs, where 

immature terns learn to fly. After choosing the 

hunting spot, the gigantic trevally stalks its victim, 

then dives out of the water and assaults the seabird. 

This section explains the concept of GTO 

mathematically and its application to solve OACBP. 

3.1 Giant trevally optimizer 

The GTO was inspired by these innovative 

hunting techniques of searching movement patterns, 

picking the right food source, and springing out of 

water to assault and grab prey. 

3.1.1. Initialization phase 

The initial population in GTO can be randomly 

generated by, 

 

𝑋𝑔 = [𝑋1, 𝑋2, … , 𝑋𝑖, … , 𝑋𝑁](𝑛×𝑑)
𝑇
             (13) 
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𝑋𝑖 = [𝑥𝑖,1, 𝑋𝑖,2, … , 𝑋𝑖,𝑗, … , 𝑋𝑖,𝑑]               (14) 

 

𝑋𝑖,𝑗 = 𝑋𝑗,𝑚𝑖𝑛 + (𝑋𝑗,𝑚𝑎𝑥 − 𝑋𝑗,𝑚𝑖𝑛) × 𝑟1               (15) 

 

where 𝑋𝑔is the solution vector of GTO, 𝑋𝑖is the 

solution of ith candidate, n is the number of  GTO 

candidates, and d is the number of decision variables 

of the problem, 𝑖 = 1,2, . . , 𝑛 & 𝑗 = 1,2, … , 𝑑  , 𝑟1  is 

random number in the range of (0,1), 𝑋𝑗,𝑚𝑖𝑛  and 

𝑋𝑗,𝑚𝑎𝑥 are the minimum and maximum boundaries 

of jth member.   

The objective function 𝑂𝐹  for each candidate 

solution by GTO is determined in the initial stage, 

and the vector for all GTO members 𝐹𝑔 is given by, 

 

𝐹𝑔 = [𝐹1, 𝐹2, … , 𝐹𝑖, … , 𝐹𝑁](𝑛×1)
𝑇

              (16) 

 

where 𝐹𝑖 = 𝑂𝐹(𝑋𝑖) is the ith candidate objective 

function. The minimum objective function value at 

this stage is treated as the pre-iterative global 

optima 𝐹𝑔(0) = 𝑚𝑖𝑛(𝐹𝑖 , ∀𝑖 = 1: 𝑛).   

3.1.2. Extensive search/ exploration phase 

Giant trevallies may travel large distances for 

food. This hunting behaviour can be treated as 

exploration phase and thus, Eqs. (17) – (18) simulate 

their foraging patterns: 

 

𝑋𝑖(𝑘 + 1) = 𝑋𝑖(𝑏𝑒𝑠𝑡) × 𝑟2 + [(𝑋𝑗,𝑚𝑎𝑥 − 𝑋𝑗,𝑚𝑖𝑛) ×

𝑟3 + 𝑋𝑗,𝑚𝑖𝑛] × 𝐿𝑒𝑣𝑦(𝑑)             (17) 

 

𝐿𝑒𝑣𝑦(𝑑) = 0.01 ×
(𝑢×𝜎)

𝑣1 𝛽⁄                (18) 

 

𝜎 = (
Γ(1+𝛽)×𝑠𝑖𝑛(

𝜋𝛽

2
)

Γ(
1+𝛽

2
)×𝛽×2

(
𝛽−1

2
)
)                            (19) 

 

where 𝑋𝑖(𝑘 + 1) is the next iterative position of 

ith candidate, 𝑋𝑖(𝑏𝑒𝑠𝑡) is the best position of ith 

GTO member in the current iteration, 𝑟2 and 𝑟3 are 

random numbers, 𝛽 is the index of the Levy flight 

distribution function, which can vary from 0 to 2 

and is 1.5 in this study. 𝑢 and 𝑣 are random integers 

normally distributed in the range (0, 1).  

3.1.3. Choosing area/ exploration phase 

Giant trevallies choose the location with the 

most food (seabirds) in the designated search zone 

to pursue prey. This can be treated as exploration 

phase and it is given by,  

 

𝑋𝑖(𝑘 + 1) = 𝑋𝑖(𝑏𝑒𝑠𝑡) × 𝐴 × 𝑟4 + 𝑋𝑖(𝑚𝑒𝑎𝑛) −
𝑋𝑖(𝑘) × 𝑟5                                       (20) 

 

𝑋𝑖(𝑚𝑒𝑎𝑛) =
1

𝑛
∑ 𝑋𝑖(𝑘)𝑛

𝑖=1               (21) 

 

where 𝐴 is position update control factor in the 

range (0.3, 0.4), 𝑋𝑖(𝑘) is the position of ith GTO 

member at current iteration, 𝑋𝑖(𝑚𝑒𝑎𝑛) represents 

the mean, implies that these giant trevallies have 

exhausted all preceding data.  

3.1.4. Attacking the prey/ exploitation phase 

After choosing the best hunting spot, the GTO's 

exploitation phase begins when the trevally chases 

the bird. Finally, the trevally leaps out of the water 

and catches the bird. Mathematically, 

 

𝑋𝑖(𝑘 + 1) = 𝑉𝑑 + 𝐿𝑠 + 𝐽𝑠              (22) 

 

𝑉𝑑 = 𝑠𝑖𝑛(𝜃1
0) × |𝑋𝑖(𝑏𝑒𝑠𝑡) − 𝑋𝑖(𝑘)|              (23) 

 

𝐿𝑠 = 𝑋𝑖(𝑘) × 𝑠𝑖𝑛(𝜃2
0) × 𝑂𝐹(𝑋𝑖(𝑘))                   (24) 

 

𝐽𝑠 = 𝑟6 × (2 − 𝑘 × (2 𝑘𝑚𝑎𝑥⁄ ))                (25) 

 

𝑠𝑖𝑛(𝜃1
0) = (1.33 1.00029⁄ ) × 𝑠𝑖𝑛(𝜃2

0)              (26) 

 

where 𝑉𝑑, 𝐿𝑠 and 𝐽𝑠 are visual distortion, launch 

speed, and jumping slope function, respectively; 𝜃1
0 

and 𝜃2
0  are the incidence and refraction angles 

respectively, which are related 𝑘𝑚𝑎𝑥  is the 

maximum iteration number, 𝑟6  refers to gaint 

trevally motion sensation during exploitation. 

3.2 Hybrid approach of GTO and VSI for solving 

OACB problem 

The following steps describe the procedure to 

solve OACB problem using GTO and VSI.  

 

St 1: Read test system data (i.e., IEEE 33-bus or 

69-bus) 

St 2: Select type of the load model (i.e., constant 

power or proposed realistic load model). 

St 3: Run the load flow and determined VSI for all 

the buses. Sort the locations based their VSI 

and select top 10 locations (having least VSI 

values) as pre-defined search space for CB 

integration. 

St 4: Define GTO parameters, 𝐴, 𝑛, 𝑑, and 𝑘𝑚𝑎𝑥. 

St 5: Using Eqs. (13) to (15), generate initial 

population for CB locations and sizes. 
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St 6: Calculate target function value defined in Eq. 

(8), for each search agent as defined in Eq. 

(16), 𝐹𝑖 = 𝑂𝐹(𝑋𝑖) and determine 𝐹𝑔(0).   

St 7: For =1: 𝑘𝑚𝑎𝑥, 

a) for =1: 𝑛, Update the search agents using 

Eqs. (17) to (19) and evaluate new 

solutions, end, Go to Step 7.  

b) for =1: 𝑛, Update the search agents using 

Eqs. (20) to (21) and evaluate new 

solutions, end, Go to Step 7. 

c) for =1: 𝑛, Update the search agents using 

Eqs. (22) to (26) and evaluate new 

solutions, end, Go to Step 7. 

St 8: Start evaluation by checking the lower and 

upper limits of search agents and update 

global best for each iteration.   

St 9: end, Print results. 

4. Results for constant power load model 

In this section, the competitiveness of proposed 

GTO is tested on IEEE 33-bus and 69-bus test 

systems considering constant power load models 

and compared with literature works in Tables 1 and 

2, respectively. In each test system, three CBs are 

considered to optimally integrate in the network. 

The minimum and maximum bus voltage limits are 

considered as 0.9 and 1.1 p.u. The test system data, 

practically available CB sizes and their cost details 

are taken from [13]. Also, the cost of 𝑃𝑙𝑜𝑠𝑠 is taken 

as 168 $/(kW-year) [13]. The simulations are 

performed in a PC of 64-bit, Intel i3, 2.4 GHz and 8 

GB RAM in MATLAB environment.   

4.1 IEEE 33-bus EDN 

The test system has real and reactive power 

loads of 3715 kW and 2300 kVAr, respectively. Its 

operating voltage is 12.66 kV. The base case 

network has total loss of 202.6771 kW and 135.1409 

kVAr, respectively. The network has poor voltage 

profile with lowest voltage magnitude at bus-18 as 

0.9131 p.u. The overall AVDI and VSI values are 

0.0104 and 0.6582, respectively. In addition, the 

cost of operation is estimated as 34050 $/year. 

By solving the proposed multi-objective 

function, the optimal locations and sizes of three 

CBs are determined using GTO. 

The optimized locations are buses 14, 24 and 30 

and corresponding optimal sizes are 300, 600 and 

1050 kVAr, respectively. These CBs in the network 

resulted for improvement in performance is as 

follows:  

The total real and reactive power losses are 

reduced to 132.4256 kW and 88.5522 kVAr, 

respectively. The network voltage profile is 

improved with lowest voltage magnitude at bus-18 

as 0.9368 p.u. The AVDI and VSI values are raised 

to 0.0072 and 0.7345, respectively. In addition, the 

total operating cost is reduced to 12345 $/year from 

34050 $/year. In other words, the loss and cost are 

reduced by 34.6618 % and 34.6608 %, respectively. 

4.2 IEEE 69-bus EDN 

The test system has real and reactive power 

loads of 3801.39 kW and 2693.6 kVAr, respectively. 

Its operating voltage is 12.66 kV. The base case 

network has total loss of 225 kW and 102.1652 

kVAr, respectively. The network has poor voltage 

profile with lowest voltage magnitude at bus-65 as 

0.9093 p.u. The overall AVDI and VSI values are 

0.0046 and 0.6835, respectively.  

The GTO results are as follows: The optimized 

locations are buses 52, 61, and 21 and corresponding 

optimal sizes are 300, 1200, and 300 kVAr, 

respectively. These CBs in the network resulted for 

improvement in performance is as follows:  

The total real and reactive power losses are 

reduced to 145.9872 kW and 67.9926 kVAr, 

respectively. The network voltage profile is 

improved with lowest voltage magnitude at bus-65 

as 0.9307 p.u. The AVDI and VSI values are raised 

to 0.0035 and 0.7152, respectively. In addition, the 

total operating cost is reduced to 24940 $/year from 

37800 $/year. In other words, the loss and cost are 

reduced by 35.12 % and 34.02 %, respectively. 

The results of GTO and literature are given in 

Tables 1 and 2 for IEEE 33-bus and 69-bus, 

respectively. In both the systems, it can be seen that 

the GTO results are better than MVO [13], GWO, 

DFO, MFO, and PSO [22], and very competitive 

with IFPA [27], with least objective functions and 

high loss reduction and cost savings.      

5. Results for proposed realistic load model  

In this scenario, the realistic load model is 

considered that the load at each bus is composed of 

30% residential, 30% industrial, 20% commercial 

and 20% electric vehicles. According to the 

modelling explained in section 2.1, the exponents 

for real and reactive power loads are taken from [31]. 

Also, in this section, the OACBP is solved for only 

loss reduction. Simulations are also performed using 

GTO and PSO, TLBO, CSA and FPA. The 

performance of these algorithms is quantified using 

50 independent runs in terms best, worst, median, 

average and standard deviation (std). In addition, the 

total average computational time is also considered 

for comparison.    
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5.1 IEEE 33-bus EDN 

By the proposed realistic load model, the real 

and reactive power loads of test system are 

determined as 3515.872 kW and 1874.746 kVAr, 

respectively. The base case network has total loss of 

154.411 kW and 102.533 kVAr, respectively. The 

network has lowest voltage magnitude at bus-18 as 

0.9246 p.u. The overall AVDI and VSI values are 

0.0089 and 0.7309, respectively. In addition, the 

cost of operation is estimated as 25941 $/year. 

As given in Table 3, the optimized locations are 

buses 12, 24 and 30 and corresponding optimal sizes 

are 450, 450 and 900 kVAr, respectively. These CBs 

in the network resulted for improvement in 

performance is as follows:  

The total real power losses are reduced to 

118.031 kW from 154.4114 kW, The total operating 

cost is reduced to 20221.61 $/year from 25941.12 

$/year. In other words, the loss and cost are reduced 

by 23.561 % and 22.561 %, respectively. Also, the 

statistical parameters i.e., best (118.031), worst 

(120.409), mean (118.186), median (118.031), STD 

(0.519) are less than PSO, TLBO, CSA, and FPA. 

The computational time (13.125) is also less than 

other compared algorithms. These figures are 

highlighting the superiority of GTO than other 

algorithms.  

5.2 IEEE 69-bus EDN 

As given in Table 4, the real and reactive power 

loads of test system by the proposed realistic load 

model are determined as 3640.917 kW and 872.469 

kVAr, respectively. The base case network has total 

loss of 160.123 kW and 112.545 kVAr, respectively. 

The network has lowest voltage magnitude at bus-65 

as 0.9363 p.u. The overall AVDI and VSI values are 

0.0032 and 0.7687, respectively. In addition, The 

cost of operation is estimated as 26900.66 $/year. 

 

 

Table 1. Results of GTO in IEEE 33-bus and comparison with literature 

Parameter Base  MVO [13] 
GWO, DFO,  

MFO [22] 
IFPA [27] GTO 

CB buses – 12, 24, 30 8, 13, 30 14, 24, 30 14, 24, 30 

CB sizes (kW) – 450, 600, 900 450, 300, 900 300, 600, 1050  300, 600, 1050  

CB cost ($/year)  – 410.55 383.55 454.2 454.2 

𝑃𝑙𝑜𝑠𝑠 (kW) 202.6771 132.6808 134.0725 132.4256 132.4256 

𝑃𝑙𝑜𝑠𝑠 cost ($/year) 34050 22290 22524 22248 22248 

𝐴𝑉𝐷𝐼 0.0104 – – 0.0072 0.0072 

𝑉𝑆𝐼 0.6582 – – 0.7345 0.7345 

𝐶𝑡𝑜𝑡𝑎𝑙 ($/year)  34050 22701 22908 22248 22248 

𝑄𝑙𝑜𝑠𝑠 (kVAr) 135.1409 – - 88.5522 88.5522 

|𝑉(𝑝),𝑚𝑖𝑛| (p.u)/ 𝑝 0.9131/ 18 0.9355/ – 0.9400/ 18 0.9368/ 18 0.9368/ 18 

𝑃𝑙𝑜𝑠𝑠 reduction (%) – 34.54 33.84 34.6618 34.6618 

𝐶𝑠𝑣𝑔 reduction (%) – 33.33 32.72 34.6608 34.6608 

 

 

Table 2. Results of GTO in IEEE 69-bus and comparison with literature 

Parameter Base  MVO [13] 
GWO, DFO,  

MFO [22] 
IFPA [27] GTO 

CB buses – 12, 61 17, 61 52, 61, 21 52, 61, 21 

CB sizes (kW) – 600, 1200 300, 1350 300, 1200, 300 300, 1200, 300 

CB cost ($/year)  – 336 384.45 414 414 

𝑃𝑙𝑜𝑠𝑠 (kW) 225 146.6294 146.0194 145.9872 145.9872 

𝑃𝑙𝑜𝑠𝑠 cost ($/year) 37800 24634 24531 24526 24526 

𝐴𝑉𝐷𝐼 0.0046 – – – 0.0035 

𝑉𝑆𝐼 0.6835 – – 0.7152 0.7152 

𝐶𝑡𝑜𝑡𝑎𝑙 ($/year)  37800 24970 24915 24940 24940 

𝑄𝑙𝑜𝑠𝑠 (kVAr) 102.1652 – – 67.9926 67.9926 

|𝑉(𝑝),𝑚𝑖𝑛| (p.u)/ 𝑝 0.9093/ 65 0.9308 0.9329/ – 0.9307/ 65 0.9307/ 65 

𝑃𝑙𝑜𝑠𝑠 reduction (%) – 34.83 35.07 35.12 35.12 

𝐶𝑠𝑣𝑔 reduction (%) – 33.94 34.03 34.02 34.02 
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Table 3. Results of GTO in IEEE 33-bus with proposed realistic load model 

Parameter Base  PSO TLBO CSA FPA GTO 

CB buses – 15, 6, 30 30, 25, 8 3, 30, 15 8, 30, 25 12, 30, 24 

CB sizes (kW) – 150, 750, 750 900, 150, 600 900, 1050, 150 600, 900, 150 450, 900, 450 

CB cost ($/year)  – 489 371.7 479.1 371.7 392.4 

𝑃𝑙𝑜𝑠𝑠 (kW) 154.4114 119.691 119.246 119.704 119.246 118.031 

𝑃𝑙𝑜𝑠𝑠 cost ($/year) 25941.12 20108.09 20033.33 20110.27 20033.33 19829.21 

𝐶𝑡𝑜𝑡𝑎𝑙 ($/year)  25941.12 20597.09 20405.03 20589.37 20405.03 20221.61 

𝑃𝑙𝑜𝑠𝑠 reduction (%) – 22.486 22.773 22.477 22.774 23.561 

𝐶𝑠𝑣𝑔 reduction (%) – 20.601 21.341 20.63 21.341 22.561 

Best – 119.691 119.246 119.704 119.246 118.031 

Worst – 123.45 125.631 136.503 134.521 120.409 

Mean – 119.878 120.426 120.066 120.574 118.186 

Median  – 119.691 120.445 119.704 119.246 118.031 

Std. – 0.727 1.286 2.374 2.446 0.519 

Avg. Time (sec) – 14.101 14.002 13.673 13.456 13.125 

 

 
Table 4. Results of GTO in IEEE 69-bus with proposed realistic load model 

Parameter Base  PSO TLBO CSA FPA GTO 

CB buses – 61, 2 61, 13 13, 61, 21 61, 2, 68 21, 12, 61 

CB sizes (kW) – 1350, 1200 1200, 450 150, 1200, 150 1200, 900, 450 150, 450, 1200 

CB cost ($/year)  – 483.45 317.85 279 368.7 279 

𝑃𝑙𝑜𝑠𝑠 (kW) 160.123 129.955 126.312 126.094 126.976 125.384 

𝑃𝑙𝑜𝑠𝑠 cost ($/year) 26900.664 21832.44 21220.42 21183.79 21331.97 21064.51 

𝐶𝑡𝑜𝑡𝑎𝑙 ($/year)  26900.664 22315.89 21538.27 21462.79 21700.67 21343.51 

𝑃𝑙𝑜𝑠𝑠 reduction (%) – 18.84052 21.11564 21.25179 20.70096 21.6952 

𝐶𝑠𝑣𝑔 reduction (%) – 11.51626 14.59959 14.89885 13.95565 15.3718 

Best – 129.955 126.312 126.094 126.976 125.384 

Worst – 149.563 141.853 132.228 137.185 138.431 

Mean – 130.407 126.789 126.417 127.434 125.957 

Median  – 129.995 126.312 126.094 126.976 125.657 

Std. – 2.793 2.306 1.995 1.977 1.177 

Avg. Time (sec) – 14.976 14.786 14.784 14.673 14.345 

 

 

 

 
Figure. 1 Convergence characteristics in IEEE 33-bus 

with realistic load model 

 
Figure. 2 Convergence characteristics in IEEE 69-bus 

with realistic load model 
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The optimized locations are buses 12, 21 and 61 

and corresponding optimal sizes are 450, 150 and 

1200 kVAr, respectively. These CBs in the network 

resulted for improvement in performance is as 

follows:  

The total real power losses are reduced to 

125.384 kW from 160.123 kW. The total operating 

cost is reduced to 21343.51 $/year from 26900.664 

$/year. In other words, the loss and cost are reduced 

by 21.6952 % and 15.3718 %, respectively. Also, 

the statistical parameters i.e., best (125.384), worst 

(138.431), mean (125.957), median (125.657), STD 

(1.177) are less than PSO, TLBO, CSA, and FPA. 

The computational time (14.345) is also less than 

other compared algorithms. These figures are 

highlighting the superiority of GTO than other 

algorithms. The convergence of GTO and other 

compared algorithms for their best results are given 

in Figs. 1 and 2 for IEEE 33-bus and 69-bus, 

respectively. 

However, many recent metaheuristics, namely 

the fixed step average and subtraction-based 

optimizer (FS-ASBO) [32], puzzle optimisation 

algorithm (POA) [33], three influential members-

based optimizer (TIMBO) [34], guided pelican 

algorithm (GPOA) [35], stochastic komodo 

algorithm (SKA) [36], extended stochastic coati 

optimizer (ESCO) [37], attack-leave optimizer 

(ALO) [38], quad tournament optimizer (QTO) [39], 

and multiple interaction optimizer (MIO) [40] are 

emerging for solving multi-type optimisation 

problems. In this connection, it is still essential to 

analyse the effectiveness of the proposed GTO with 

such new algorithms. This can be treated as the 

future scope of this research.   

6. Conclusion  

The OACB problem is solved by hybridising 

VSI using the effective meta-heuristic GTO 

technique introduced in this work. By doing 

simulations for continuous power and realistic load 

modelling (i.e., made up of residential, industrial, 

commercial, and electric cars), the efficacy of GTO 

is evaluated. On IEEE 33-bus and 69-bus test 

systems, simulations are run to achieve many goals, 

such as loss reduction, voltage profile improvement, 

VSI maximisation, and overall operational cost 

reduction. VSIs are used to predetermine the 

positions of CBs, and GTO is then used to infer the 

best locations and sizes from those sites. Based on 

statistical analysis, 50 independent runs are used to 

evaluate the computational effectiveness of GTO 

with PSO, TLBO, CSA, and FPA. The mean, 

median, standard deviation, and best and worst 

values outperform other methods. Additionally, the 

suggested strategy incorporates a search space 

reduction technique that aids in reducing 

computation time. Additionally, the efficient CB 

placement in the IEEE 33-bus reduces energy loss 

costs by 34.6618 % and 34.6608 % for constant 

power loads and realistic load models, respectively. 

On the other side, it is noted as 35.12 % and 

34.02 %, reduction in the 69-bus, respectively. 

Notations 

𝑃𝑑(𝑝) Nominal active power load at bus-p 

𝑄𝑑(𝑝) Nominal reactive power load at bus-p  

𝑃̅𝑑(𝑝) Proposed realistic active power load  

𝑄̅𝑑(𝑝) Proposed realistic reactive power load  

𝜌𝑛𝑙𝑡 Proportional factor for a load type  

𝛼𝑛𝑙𝑡  Active power exponent 

𝛽𝑛𝑙𝑡 Reactive power exponent 

|𝑉(𝑝)| Voltage magnitude of bus-p 

|𝑉(𝑠)| Voltage magnitude of bus-s (substation) 

𝑛𝑙𝑡 Number of type of loads 

𝑛𝑏𝑟 Number of branches 

𝑟(𝑘) Resistance of branch-k, 

𝑥(𝑘) Reactance of branch-k 

𝐼(𝑘) Current flow through the branch-k, 

𝑃(𝑘) Net-effective active load at bus-k 

𝑄(𝑘) Net-effective reactive load at bus-k 

𝑛𝑏𝑢𝑠 Number of buses 

𝑉𝑆𝐼 Overall voltage stability index  

𝑉𝑆𝐼(𝑞) VSI of bus-q 
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