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Abstract: One of the main reasons that hinders making software effort estimation remains a most of the unresolved 

problem due to the heterogeneous nature of software data with complex structures. In processing nonlinear data, the 

long short-term memory (LSTM) model is often used for the purpose of solving discriminative and generative 

problems. Taking into account the fact that the LSTM network have low computational efficiency, due to the need to 

set a large number of hyperparameters. However, training deep learning models requires expensive work in terms of 

specifying hyperparameter configurations in the model. The grid search (GS) optimization method is used to find the 

best hyperparameter values for deep learning networks, which have many different hyperparameters that affect how 

well the network architecture works. In this paper, we proposed the grid search method as a quick step toward 

optimizing the parameters of the LSTM model. An empirical study was conducted using five datasets. From our results, 

we have seen that the LSTM-grid search model consistently performs better across datasets in mean absolute error 

(MAE) and root mean squared error (RMSE) compare to existing work on using machine learning approach for 

software effort estimation. The main advantage of training the LSTM show that the grid search finds hyperparameters 

which results in faster convergent, the possibility of generalization, and better coefficient of determination in 

estimating software effort. 

Keywords: Grid search, Long short-term memory, Hyperparameter tuning, Software effort estimation. 

 

 

1. Introduction 

Software effort estimation (SEE) is a method for 

estimating the effort (in person-hours per month) 

required to develop a software project [1]. 

Unfortunately, uncertainty and imprecision are 

inherent in the predictive environment of software 

efforts [2]. 

Over the decades, many SEE techniques have 

been proposed, but the effort has been exceeded in 

software project management [3]. Machine learning 

techniques are highly effective at simulating 

uncertainty to improve decision-making [4]. 

Unfortunately, using machine learning techniques 

without exposing them to the process of parameter 

optimization may not completely solve particular 

problems [5]. Thus, it is necessary to make 

hyperparameter adjustments to get better results in 

machine learning models [6]. Song et al. (2013) 

determined that parameter configuration is one of the 

factors that can influence model accuracy [7]. In 

addition, there is evidence that parameter tuning can 

affect which model is deemed superior to others [8]. 

Several machine learning techniques including 

regression tree (RT) [9], neural network (NN) [7, 6, 

10, 11] support vector regression (SVR) [8, 12, 13] k-

nearest neighbors (kNN) [7, 14] have been frequently 

used for prediction problems in the field of SEE. 

Unfortunately, RT requires space-consuming model 

storage, and data prediction is time-consuming and 

prone to overfitting on small training data sets [15]. 

Meanwhile, NN performs worse on smaller datasets 

than on complete datasets [15] and usually suffers 

from overfitting problems, and its explanatory ability 

is weak [7]. SVR is required for large data sets, long 

training periods, and high computation time. 
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Furthermore, kNN is ineffective in large data and 

relies heavily on parameter settings [16]. 

Although several methods have been proposed to 

predict software effort, there is no consensus on 

which technique makes the best estimate in all these 

situations [17], and still giving disappointing results 

[18]. Therefore, the study of SEE continues to be a 

challenging issue for researchers and project 

managers. 

The problem is the difficulty of hyperparameter 

setting, which impacts the quality of the resulting 

predictive models [7]. They don't have clear defaults 

and can be agreed upon in different applications [16]. 

Meanwhile, hyperparameters setting manually not 

only requires a deep understanding of the model but 

is also impractical, time and cost-inefficient [5]. 

Several other studies have shown that the choice of 

information estimation techniques based on 

parameter tuning has a large effect on the accuracy of 

the SEE method [19]. In the worst-case scenario, 

incorrect parameter settings may result in poor 

performance [20].  

Long short-term memory (LSTM) is proposed as 

a model for deep learning to enhance the relevance of 

training samples. The LSTM method as a predictor 

has the best accuracy results than other traditional 

methods [21]. The LSTM model is commonly 

employed to handle discriminatory and generative 

issues in nonlinear data processing [21], in the field 

of time series, such as [22-24], and the limited use of 

LSTM in the field of regression, such as [21, 25, 26]. 

LSTM networks are efficient and flexible in 

conserving long-term memory [27]. LSTM, on the 

other hand, has hyperparameters capable of being 

tuned to provide the model with good performance 

[28]. On the other hand, due to the increased 

complexity of the LSTM network, there are more 

hyperparameters to optimize during training, 

resulting in a greater computational burden [26]. 

One way to accelerate the training process is to 

use optimization methods. Hyperparameter search is 

an efficient automatic LSTM parameter adjustment 

technique in deep learning [27]. The grid search (GS) 

method was developed to optimize LSTM parameter 

values. Grid search is a comprehensive technique. It 

will attempt every option within the specified 

parameter range and select the best-performing 

parameter values as the model's super parameters [27, 

29] with examines each hyperparameter combination 

using permutation and combination [30]. Other 

strategies have also been proposed earlier, such as 

random search [31], gradient optimization [32], and 

bayesian optimization [33]. Unfortunately, random 

search cannot determine the values that optimize 

network performance [34]. Bayesian optimization is 

useful for solving problems that have a limited 

number of hyperparameters and difficult to 

parallelize [6]. 

Grid search is feasible because the number of 

evaluations is lower and leads to a better-studied 

model through less computational time [24]. This 

method uses a large-scale search in a small dataset to 

sample a representative training dataset. Then, 

followed by the entire dataset is for fine-tuning, 

which helps to balance the cost of time and accuracy 

[27]. In grid search, a model is built for each possible 

parameter combination, resulting in many iterations, 

but will give the best combination [29].  

This study proposes a deep neural network based 

on LSTM-grid search to overcome the uncertainty of 

software effort estimation. The main reason grid 

search is added to the LSTM model (LSTM+GS) is 

to optimize the hyperparameters. Values that can 

control the learning process are called 

hyperparameters. Tuning the hyperparameters makes 

sure that a model can solve a problem in the optimally 

way possible by lowering losses that have already 

been set and giving accurate results. 

The remaining sections of this paper are 

structured as follows. The second section explain of 

related studies. In thrid section the theory of LSTM 

and grid search is discussed. The fourth section 

describes experiments design. The five section 

contains the experimental results and discussion. 

Finally, six section contains the conclusion of this 

paper. 

2. Related studies 

In recent years, many academics have shown 

increasing interest in applying hyperparameter tuning 

techniques to optimize learning algorithms. 

Meanwhile, several works in the SEE field have 

used hyperparameter tuning optimization in online 

and offline learning. Using a grid search technique, 

Song et al. (2013) studied the regulatory impact of 

five machine learning techniques, including kNN, RT, 

RT+bagging, multilayer perceptron (MLP), and 

MLP+bagging. To discover the optimal value without 

assembling an ensemble. kNN, RT, and RT+bagging 

were insensitive to parameters tuning, whereas MLP 

and MLP+bagging were extremely sensitive. 

Bagging gives results closest to the optimal 

hyperparameter configuration [7]. 

Zakrani et al. (2018) optimized SVR using the 

grid search technique. Results suggest that our 

method can enhance the performance of the SVR 

method [13]. They used base learners (MLP, RF, 

adaboost regressor, and linear regression) and stacked 

ensemble learning with two ways to tune 
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hyperparameters: genetic algorithm (GA) and 

particle swarm optimization (PSO). The results of 

experiments show that prediction accuracy is better 

when hyperparameters are set using PSO [6].  

Minku (2019) says that using linear regression on 

a logarithmic scale (LogLR) makes more accurate 

predictions [35]. In the meantime, Minku and Yao 

(2013) analyzed the RT, RT+bagging, and 

MLP+bagging approaches, which have been 

demonstrated to perform well on several data sets [9]. 

It is crucial to tune SVR parameters into the context 

of SEE. In particular, a taboo search has been 

suggested as a method for locating the optimal values 

for the SVR parameters [12]. Elish (2013) carried out 

an experiment in which they presented a 

heterogeneous ensemble that was constructed using 

five different machine learning approaches. These 

techniques included kNN, SVR, MLP, decision tree 

(DT), and radial basis function networks (RBFN)[14].  

Villalobos-Arias and Quesada-López (2021) 

investigated ridge regression (RR), classification and 

regression tree (CART), and support vector 

regression (SVR) utilizing grid and random search in 

conjunction with six bio-inspired algorithms. 

According to the results, the Flash+Log+SVR model 

ranks first in accuracy across the majority of data sets, 

while the Hyperband+Log+RR model ranks first in 

stability across the majority of data sets [36]. 

Specifically, the best overall accuracy comes from a 

stacked ensemble that takes the average of the 

predicted effort values from random forest (RF), 

analogy based estimation (ABE), ordinary least 

squares (OLS), bagging, adaboost, and gradient 

boosting. All of these methods are optimized using 

grid search techniques [37].  

In the field of software engineering, researchers 

have employed a variety of neural network 

techniques to software effort estimation. Kodmelwar 

et al. (2018) proposed modified neural network 

(MNN) based deep learning is formulated using the 

cuckoo search algorithm. The type of neural network 

that has been created is a convolutional network. 

After this stage, the optimization is carried out using 

hybrid particle swarm optimization (HPSO). The 

experimental results demonstrate that the proposed 

work employing MNN is more competent than the 

existing approach [38]. 

Choetkiertikul et al. (2019) suggest the long-deep 

recurrent neural network (LD-RNN) prediction 

model for estimating story points by combining 

LSTM and recurrent highway network, which are 

both strong deep learning architectures. The proposed 

approach consistently outperforms the general 

baseline according to the evaluation results. However, 

this method requires time-consuming during training 

[39]. 

Favero et al. (2020) applying the pre-trained 

BERT method with fine-tuning hyperparameter gives 

promising results with MAE values is 4.25 and 

standard deviations 0.17. This method has reliability, 

generalizability, speed, and low computational cost 

[40]. 

Khan et al. (2021) proposed a deep neural 

networks (DNN) model. This model is based on a 

meta-heuristic approach. They use gray wolf 

optimizer (GWO) and strawberry (SB). The results of 

the experiments show that GWO has a significant 

edge over other methods in estimation accuracy [10]. 

Meanwhile, in an empirical study, Kangwantrakool et 

al. (2020) investigated the effectiveness of using 

sequence models in unstructured SEE by manually 

hyperparameters tuning. The LSTM sequence model 

achieved the lowest MAE at 0.705 (ISEM) and 

14.077 (ISBSG), respectively [41].  

Ozturk (2021) proposes a novel approach to deep 

regression based on a binary search-based method 

implemented in the proposed feed-forward deep 

neural network algorithm (FFDNN). When paired 

with more advanced hyperparameter search methods, 

the deep learning approaches can attain a greater level 

of performance than other methods that rely on more 

traditional methods, like random and grid search 

techniques. In addition, Using binary search-based 

algorithms in FFDNN has also sped up 

hyperparameter optimization [11].  

3. Our approach 

In this section, we have discussed the 

introduction and studies related to the formulation of 

the problem and explained the list of notations used  

 
Table 1. List of notations 

Notations Description 

𝑥𝑡/𝑦𝑡  Input/output 

ℎ𝑡/H Hidden vector 

𝐶𝑡 Cell state 

𝑊𝑖, 𝑊𝑓, 𝑊𝑜 Weight matrix (input, forget, output) 

𝑏𝑖, 𝑏𝑓, 𝑏𝑜 Bias vector (input, forget, output) 

𝑖𝑡 , 𝑓𝑡 , 𝑜𝑡  Input, forgert, output gate 

𝜎, tanh Activation function 

Θ Parameter search space 

Λ Search space 

K Latent dimension 

𝑋𝑛 Input variable dataset 

𝑌𝑛 Target variable dataset 

ℝ Real number 

𝒟 Dataset  

𝐿 Loss function 

𝜃 Model parameter 

𝑌̂ Predict 
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in this work. A list of notations is presented in Table 

1. 

3.1 Problem statement 

In the paper, the problem in SEE has been 

recognized as a regression issue with continuous 

output values. Let 𝒟 = {(𝑋𝑛, 𝑌𝑛)}𝑛=1
𝑁   represent a 

training data set with N observations, where 𝑋𝑛 =
[𝑥1

𝑛, … , 𝑥𝑖
𝑛]𝑇 ∈ ℝ𝑖  for 𝑖 = 1,2, … , 𝑖 , is the n-th 

training example consisting 𝑖 features. The software 

project feature is given by 𝑋𝑖 = (𝑥1, 𝑥2, … , 𝑥𝑖) ∈ ℝ𝑖 

where 𝑑 represents the feature dimension of 𝑋𝑖, some 

examples of input features (𝑥1, 𝑥2, … , 𝑥𝑖) include the 

hardware platform, software development type, 

functional size, user interface, team expertise quality 

requirements, tool use, and so on. In addition, we 

introduce 𝑌𝑛 ∈ ℝ1 where the target variable is effort 

measured in man-months or an equivalent unit 

(continuous target variable).  

Donate 𝐹  as a set of learning machines with 

LSTM and 𝜃  as their model parameters. The 

objective of the training procedure for point effort 

estimation is to determine the optimal function 

𝑓(. ;  𝜃∗) ∈ 𝐹 , where  𝐹: ℝ𝑑 → ℝ1  from input 

features to output effort is defined as: 

 

𝑓(𝑋; 𝜃∗) = 𝑌̂                  (1) 

 

Where a testing software project (𝑋, 𝑌), and 𝑌̂ is 

the predicted effort value based on the input features 

𝑋 and the constructed SEE model, respectively.  

Through the process of minimizing a loss 

function 𝐿(. ) with respect to the 𝜃 parameter of the 

model as: 

 

𝐿(𝒟) = ∑ (‖𝑓(𝑋𝑛; 𝜃∗) − 𝑌𝑛‖∗).𝑁
𝑛=1         (2) 

 

𝐿(𝒟)  is the mean absolute error and ‖ . ‖1  is 

employed, become a common instance of 𝐿 in SEE. 

The training procedure establishes 𝜃∗ as the optimal 

model parameter. It is expected that the result  

 

 
Figure. 1 LSTM architecture [42] 

between 𝑌  and 𝑌̂  has a small deviation, as 𝐿(‖𝑌 −

𝑌̂‖). 

In practice, a vector is always a column vector 

except stated otherwise. A row vector is denoted by 

the transpose of its corresponding column vector, 

𝑿 = [𝑋1, … , 𝑋𝑁]𝑇 ∈ ℝ𝑁×𝑖 . Where T represents the 

row (column) transpose. The matrix of training 

examples comprises all training information 

necessary to construct a SEE method with respect to 

a loss function. 

3.2 Long short-term memory technique 

According to Choetkiertikul et al. (2019), one of 

the popular variants of the improved basic recurrent 

neural network (RNN) is long short-term memory 

(LSTM) which uses loops to store information in the 

network [39], aiming to overcome the vanishing 

gradient and exploding gradient problems 

encountered with traditional RNN [42], overcame the 

issue of long-term dependence that had been 

occurring in RNN, and experiencing overfitting 

problems due to the many parameters that must be 

corrected [43]. 

A unit of LSTM consists of three gates (input, 

output, and forget gates) and a single cell. Forget gate 

specifies how much state memory will be reserved 

from the last time step for the current time step. The 

amount of the current input that is going to be stored 

in the current state memory is decided by the input 

gate. Lastly, the output gate determines how much of 

the current state memory should be issued in the 

current time step. Each gate possesses a weight 

matrix and a bias term, which will be automatically 

learned during the training phase [44]. Three gates 

regulate the flow of information into and out of the 

cell while the cell retains information acquired over 

varied time intervals. The previous layer's values are 

saved and utilized to determine the hidden state [45]. 

The architecture of the LSTM neural network is 

described in Fig. 1 [42], which illustrates the structure 

of memory cells. The t index refers to time or 

sequence. Where 𝑥𝑡 , 𝑦𝑡 , ℎ𝑡 , and 𝐶𝑡  represent input, 

output, hidden vector, and cell state for t, respectively. 

Each of these gates is a neural network whose 

input vector combines the hidden vector from the 

previous cell and the input vector. Let 𝑊𝑖, 𝑊𝑓, 𝑊𝑜 be 

the weight matrix corresponding to the input, forget, 

and output gates, respectively. 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑜  the 

appropriate bias vectors. 𝑊𝑐  and 𝑏𝑐  are weight 

matrices and bias vectors that update cell states.  

Our software effort prediction model applies a 

linear regression layer to the LSTM cell output layer. 

Let us denote the input as 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑇) , 
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hidden state cell as 𝐻 = (ℎ1, ℎ2, … , ℎ𝑇) , output 

sequence as 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑇) , where 𝑡 =
1, 2, … . , 𝑇. LSTM will the computations as follows 

[46]: 

 

ℎ𝑡 = 𝐻(𝑊ℎ𝑦𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ)        (3) 

 

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦                         (4) 

 

The above-described LSTM structure is then 

implemented through the following computations. 

The result of the input gate is 𝑖𝑡 which is obtained as 

follows [42, 46]: 

 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝐶𝑡−1 + 𝑏𝑖)    (5) 

 

To calculate 𝑓𝑡 , forget gate using the following 

equation [46]: 

 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝐶𝑡−1 + 𝑏𝑓)    (6) 

 

The cell status is updated as follows: 

 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ tanh (𝑊𝑥𝑐ℎ𝑡 + 𝑊ℎ𝑐𝐶𝑡−1 + 𝑏𝑐) 

(7) 

 

The output gate uses Eq. (8) to get 𝑜𝑡 and Eq. (9) 

to get the hidden vector (ℎ𝑡). 

 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝐶𝑡 + 𝑏𝑜)    (8) 

 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡)                     (9) 

 

In Eqs. (5), (6) and (8), use 𝜎  as the sigmoid 

function defined in Eq. (10), while tanh as the 

hyperbolic tangent function defined in Eq. (11). 

 

𝜎(𝑥) =
1

1+𝑒𝑥                            (10) 

 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                    (11) 

 

Where 𝜎 and tanh are defined on the set of real 

numbers. For 𝜎  it ranges from 0 and 1, while tanh 

ranges from -1 to 1.  

3.3 Grid search optimization 

Grid search (GS) is the simplest approach, and it 

applies various candidate parameters to the model 

sequentially to find situations with optimal values 

that can be obtained quickly [47]. Grid search is the 

best way to optimize hyperparameters because it is 

easy to run and can be done in parallel. It also works  
 

    
                      (a)                                          (b) 

Figure. 2 Visualization of grid search [50]: (a) grid search 

and (b) grid layout 

 

well in low-dimensional spaces [48]. This strategy is 

feasible because the number of evaluations is lower 

and leads to a better-studied model through less 

computational time [24]. Although grid search is 

simple to implement, the computational cost is very 

expensive due to the large number of 

hyperparameters and the different levels of each [48]. 

Lin et al. (2008), using cross-validation techniques to 

the grid search method can prevent overfitting 

problems [49]. 

Let 𝑌  be the target algorithm with 𝑘  parameters 

to set, and the parameter 𝜃𝑖  be the value in the 

interval [𝑥𝑖, 𝑦𝑖]  in parameter search space Θ =
[𝑥1, 𝑦1] × … × [𝑥𝑘 , 𝑦𝑘] . 𝐻: Θ → R  is transformed 

into a performance measurement function that 

assigns a numeric score to 𝜃. Cross-validation is used 

to calculate the error 𝐻 , and Θ  consists of seven 

parameters: nhiddenlayer, nneuron, nepochs, noptimization, 

batchsize, learningrate, and 𝜆𝑑 (dropout). 

Fig. 2 is a visualization of the grid technique [50], 

The grid search attempts to assess each combination 

of hyperparameters and record precision. After 

evaluating all possible combinations, the model 

offers the most accurate parameter set. An example of 

a grid search with a parameter set of 3×3 is shown in 

Fig. 2-a. 

Fig. 2-b illustrates how the nine experimental 

points will be tested using the grid search technique. 

The grid search for lower dimensional data is chosen 

because the number of iterations required to discover 

the optimal parameter set is smaller [50]. 

Where Λ  is the search space and 𝐾  is the latent 

dimension. Let Λ be the indexed set of configuration 

variables 𝐾 . Grid search needs to get the optimal 

value from the set of values for each variable 

(𝐿1, 𝐿2, … , 𝐿𝑘) , thus the number of trials on grid 

search is 𝑆 = ∏ |𝐿𝑘|𝑘=1  elements. 

4. Experiment design 

Although LSTM with grid search methods are 

often used in other research fields, such as time series 

for forecasting [22-24, 47] and classification for text  
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Figure. 3 Architecture LSTM+GS 

 

Algorithm 1. The pseudocode for LSTM 

input: the dataset 𝒟 = {(𝑋𝑛, 𝑌𝑛)}𝑛=1
𝑁 , 𝑋 ∈ ℝ𝑖 , 

where 𝑋  is variable, 𝑌 is target, and n-th training 

example consisting features 

1. initialization: unsupervised, Y, N_epochs 

2. data preprocessing: normalize [0,1] and 3-

fold cross-validation splitting the dataset into 

training and testing 

3. For each 𝑋 ∈ 𝒟 do 

4. inp←input(X) 

5. 𝑒 ← Sequential (inp) 

6. 𝑔 ← RNN(𝑒) 

7. ℎ ← LSTM(𝑔) 

8. 𝑠 ← attention(ℎ) 

9. 𝑓 ← ReLu(𝑠) 

10. out ← sigmoid(𝑓) 

11. end for 

12. model← Model (inp,out) 

13. model.compile(adam) 

14. model.fit(X,Y,N_epochs) 

15. 𝑌̂ ← model.predict(X) 

16. return the predict 𝑌̂ 

17. end for 

18. Output predicted (𝑌̂) 

 

Algorithm 2. The pseudocode of training grid 

search hyperparameter tuning 

input: the dataset 𝒟 = {(𝑋𝑛, 𝑌𝑛)}𝑛=1
𝑁 , 𝑋 ∈ ℝ𝑖 , 

where 𝑋  is variable, 𝑌 is target, and n-th training 

example consisting features; Algorithm (LSTM); 

Grid Search (GS); Hyperparameter (Θ) 

1. Res ← { }; 

2. for i to N do 

3. 𝜃 ← select hyperparameter (GS, LSTM, 

Θ) 

4. model ← train (LSTM, 𝜃, 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛)  

5. Res ← eval (model, 𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑟𝑎𝑖𝑛) 

6. end for 

7. Θ ← Ad just (Θ, eval(res)) 

8. end for 

9. Output Optimized Parameters 

 

mining [29, 51]. To our knowledge, no researcher has 

combined LSTM with grid search for applications in 

the software effort estimation context. 

4.1 Proposed model  

Our proposed work focuses on software effort 

estimation using deep neural networks based on 

LSTM-grid search (LSTM+GS). The main novelty of 

our approach lies in its robust deep learning 

architecture. In this proposed work, the neural 

network in the LSTM model is fully connected in 

combination with the grid search. The primary 

objective of grid search is to find optimal 

hyperparameters for producing more accurate 

prediction results. Several of the layers in the 

suggested architecture, including input dataset, 

LSTM, convolution layer, max pooling layer, dropout, 

fully connected NN, grid search, and predict, make 

up the proposed architecture. 

LSTM-based predictions are used to eliminate 

vanishing gradient and exploding gradient problems 

that may occur with RNN-based predictions. 

Maximum pooling is a pooling process that looks at 

each patch of each feature map to find the one with 

the greatest value. Dropout, on the other hand, 

preventing models from being overfit. Fully 

connected layer is simply, feed forward neural 

networks forming the last few layers in the network. 

Lastly, we use grid search on the whole process, as 

shown in Fig. 3. 

The above steps of the LSTM model for our 

proposed regression problem are summarized in the 

pseudocode of Algorithm 1. 

Therefore, we will present in more detail the grid 

search modeling in the pseudocode of Algorithm 2. 

for effort prediction. 

4.2 Hyperparameter setting 

The dimension of the LSTM by having four 

hidden layers having (5, 10, 15, 20, 30) neurons. The 

LSTM output data will be collected using max 

pooling in the pooling layer, and nonlinear processing 

will be done with the tanh function. The final step is 

to use a dense layer with an output dimension of 1 to 

get the output results. adam optimizer is often used to 

find the best value for the MAE loss function in 

regression models during the training process. Next, 

learning rate is set to (0.1, 0.01, 0.001, 0.0001), and 

the dropout rate is (0.1, 0.2, 0.4, 0.5, 0.6). 

On the other hand, this method also uses the 

number of epochs (100, 200, 300, 400, and 500) and 

the batch size (64, 128, 200, 256, and 512). This study 

also attempts to add a 128-dimensional dense layer 

after the pooling layer. Comparative analysis was  
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Table 2. Grid search hyperparameter values 

Parameter Search space 

Hidden layers (5, 10, 15, 20, 30) 

Loss (mae, mse, logcosh, 

squared_hinge, hinge,) 

Optimization (Adam, RMSProp, Nadam) 

Activation (linear, relu, tanh, sigmoid) 

Dropout (0.1, 0.2, 0.4, 0.5, 0.6) 

Learning rate (0.1, 0.01, 0.001, 0.0001) 

Epoch (100, 200, 300, 400, 500) 

Batch size (64, 128, 200, 256, 512) 

 

 
Table 3. Hyperparameter of the model comparison 

Model Parameter Search space 

LSTM[52] loss mse 

learning rate 0.0001 

activation relu 

dropout 0.5 

epoch 500 

batch size (128, 256) 

CART[14]; 

CART+ 

bagging[7]; 

CART+ 

adaboost[53] 

criterion (mse, mae) 

splitter (best, random) 

min samples split (10, 100)   

max depth (4, 125, 300) 

min samples leaf (4, 10) 

max leaf nodes (5,100) 

max features (auto, log2, sqrt) 

kNN[14] n_neighbors 3 

weight function uniform 

distance euclidian 

MLP[14] 

MLP+ 

bagging[7] 

MLP+ 

bayesian[54] 

MLP+ 

adaboost[55] 

hidden layer size (16, 50,100) 

epoch (200, 300, 500) 

activation (relu, tanh) 

solve (adam, sigmoid) 

alpha (0.0001, 0.05) 

learning rate (0.005, 0.3) 

batch size (128, 256) 

SVR[14] 

SVR+ 

bayesian[54] 

SVR+ 

adaboost[54] 

kernel (poly, rbf, sigmoid)  

gamma (0.01, 0.9) 

C (1, 100) 

epsilon (0,1) 

RF[56] 

RF+ 

bayesian[54] 

RF+ 

adaboost[54] 

criterion (mse, mae) 

n_estimator (10, 100) 

min samples split (10, 100)   

max depth (4, 125, 300) 

min samples leaf (4, 10) 

max leaf nodes (5,100) 

max features (1, 7) 

criterion (mse, mae) 

splitter (best, random) 

min samples split (10, 100)   

 

 

conducted with the ReLU activation function on the 

fully connected layer. 

In the grid search, each combination of the  
 

 
Figure. 4 Procedure all methods 

 

predefined list of hyperparameter values in the LSTM 

is evaluated to determine the optimal value based on 

the cross-validation score. Grid search, though time-

consuming, will yield the optimal combination. Table 

2 illustrates the hyperparameters utilized by this 

model. 

4.3 Benchmark SEE model 

In this section, the LSTM-grid search 

(LSTM+GS) model that we propose will be 

compared with with six baseline algorithms, with 

default parameter setting or use parameter 

optimization, shown in the Table 3.  

4.4 Dataset preprocessing 

We chose to use five data sets from the PROMISE 

repositories, which are often used in SEE studies and 

are open to the public [57, 58]. The general procedure 

diagram for all methods is described as in Fig. 4. 

In detail, this section will be discussed on how to 

carry out the preparation and preprocessing stages of 

the dataset. First, feature reduction: the use of the 

year feature has been removed because the test 

scenario in this study primarily targets offline 

scenarios, which is thus an irrelevant feature. The 

next, categorical conversion: converts categorical 

features to numeric values for these datasets used 

ordinal encoding. The reason for using this method is 

that ordinal encoding provides a unique number code 

for each category [59]. Finally, normalization: each 

of the input features should be normalized with the 

interval [0,1] for 𝑋𝑖 using the min-max normalization. 

Table 4 presents descriptive statistics on the data sets 

in terms of number of records, attributes, size, effort, 

mean, standard deviation (Std), skewness (Skew), 

and kurtosis (Kurt) of the actual recorded effort value 

in each data set. 

Since machine learning and the LSTM model are 

sensitive to input scaling, the data are normalized 

using feature scaling within the range [0,1]. The data 

is divided into trains and tests while maintaining a 

temporary sequence of observations. The test data are 

utilized to evaluate the accuracy of the proposed 

prediction model, but are not utilized during the  
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Table 4. Dataset description  

Dataset 
Number 

record 

Number 

attributes 
Size unit Effort unit Mean Std Skew Kurt 

China [60] 499 19 Function point Person-hours 331.375 1850.14 2.458 18.95 

Kemerer [61]  15 8 KSLOC Person-months 366.230 561.459 0.408 3.069 

Kitchenham [62] 145 10 Function point Person-hours 1675.802 6052.215 0.357 8.560 

Maxwell [63] 62 27 Function point Person-hours 335.977 2539.394 0.729 8.147 

Nasa93 [64] 93 24 LOC Person-months 41.195 295.891 3.919 30.46 

 

 

training phase. For machine learning models, 

standard practice dictates a ratio of 70 percent 

(training set) and 30 percent (testing set) for random 

splitting of datasets [22]. 

4.5 Performance analysis 

In this experiment, four performance measures 

were used to evaluate and compare the performance 

of various regression models. The regression metrics 

imported from the sklearn package, in Eqs. (12) to 

(15).  

 

𝑀𝐴𝐸 = ∑
|𝑦𝑖−𝑦̂𝑖|

𝑛
𝑛
𝑖=1                           (12) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

𝑛
                        (13) 

 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)2𝑛
𝑖=1

                       (14) 

 

𝑃𝑅𝐸𝐷(𝑥) =
1

𝑁
∑ {

1, 𝑖𝑓 𝑀𝑅𝐸𝑖 ≤ 𝑥
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁
𝑛=1       (15) 

5. Result and discussion 

This SEE study will take offline scenarios. The 

training and testing project is part of the stationary 

training example without orders or changes in the 

offline scenario. Experiments were conducted using 

a computing platform based on Intel Core i9-9900k 5 

GHz, Asus Maximus XI Hero, SSD M.2 Samsung 

1Tb, HDD 4Tb WD Black, PSA Seasonic Focus 

1000Watt, Ram 64Gb Vgen, and OS Ubuntu 22.04 

LTS. The development environment is notepad plus, 

python 3.0 (32-bit), anaconda web programming 

interface, several libraries on Scikit-learn, and 

NumPy.  

5.1 Model performance 

LSTM performance was assessed over 1000 

epochs with early stopping enabled, monitoring 

validation accuracy using 0.001 min_delta and 30 

patience. This method is highly effective at 

preventing overfitting. In Figs. 5 through 9, the  
 

 
Figure. 5 Training loss on china dataset 

 

 
Figure. 6 Training loss on kemerer dataset 

 

 
Figure. 7 Training loss on kitchenham dataset 

 

diagnostic plot of our RNN-based LSTM model 

demonstrates that training and validation losses 

decrease as the number of epochs increases.  The 

China dataset shows the loss and accuracy of the 

model for 160 epochs, Kemerer for 140 epochs, 

Kitchenham for 60 epochs, Maxwell for 150 epochs, 

and Nasa93 for 100 epochs. 

We can see that some data sets on training and 

validation loss decrease drastically with increasing 

iteration time and become stable after reaching values 

above 10-20 epochs. The value of the loss function 

tends to be stable, which indicates that LSTM+GS  
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Figure. 8 Training loss on maxwell dataset 

 

 
Figure. 9 Training loss on nasa93 dataset 

 
Table 5. Performance of the LSTM+GS model 

Dataset MAE RMSE R2 Pred(25) 

China 554.407 1412.777 0.894 0.894 

Kemerer 42.573 68.970 0.829 0.883 

Kitchenham 321.106 418.956 0.976 0.976 

Maxwell 2228.565 3533.907 0.843 0.856 

Nasa93 172.686 283.801 0.923 0.924 

 

 

has entered a state of convergence. Overall, this 

shows that the LSTM+GS training process is very 

stable. The results show that the loss function is close 

to constant, and it can be concluded that the model 

has converged. Our LSTM+GS model takes less time 

to train and find generalizations from the data set. 

5.2 Results of hyperparameter optimization 

Based on our experimental results, the 

hyperparameter model was selected through grid 

search optimization, which after being evaluated 

resulted in better performance. Optimization is run 10 

times to determine the best parameter value with a 

certain search space. For these five data sets, we used 

the same 3-fold cross validation method as reported 

in [65] to divide the data into training and test 

samples. The LSTM+GS model consists of four 

layers. Adam and ReLU optimizer applied in this 

experiment. The nonlinear ReLU performs best as an 

activation function of each hidden layer. We 

investigate ReLU as a hidden layer activation 

function to solve the missing gradient issue brought 

on by Sigmoid [66]. Our model employs Adam 

performed the best and faster convergence [65, 66]. 

 
Figure. 10 Predicted effort on china dataset 

 

 
Figure. 11 Predicted effort on kemerer dataset 

 

 
Figure. 12 Predicted effort on kitchenham dataset 

 

 
Figure. 13 Predicted effort on maxwell dataset 

 

When using the MAE, RMSE, R2, and Pred(25) 

performance evaluation metrics, lower MAE and 

RMSE values, higher R2 and Pred(25) values indicate 

better results. Table 5 shows the MAE, RMSE, R2, 

and Pred(25) values obtained by applying the 

LSTM+GS model to the all dataset. 

In Table 5 the results that have the best predictive  
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Table 6. Performance evaluation of MAE value for all dataset 

Methods 
MAE Values 

China Kemerer Kitchenham Maxwell Nasa93 

LSTM+GS 554.407 42.573 321.106 2228.565 172.686 

LSTM 2313.504 108.127 1420.223 5215.056 539.213 

CART 1032.260 113.200 758.241 8496.230 353.978 

CART+bagging 625.302 103.751 502.794 3219.196 183.393 

CART+adaboost 924.450 100.766 509.517 7313.692 283.515 

kNN 1301.996 113.088 784.264 4536.974 404.235 

MLP 3212.537 134.102 2047.095 8882.655 509.788 

MLP+bagging 3249.591 138.870 2046.867 8918.697 507.688 

MLP+bayesian 1580.818 67.022 598.185 5366.700 460.198 

MLP+adaboost 3249.693 139.132 2044.106 8869.343 508.736 

SVR 2592.019 176.603 1403.841 5425.094 507.548 

SVR+bayesian 2228.305 131.786 1380.342 3054.978 343.846 

SVR+adaboost 2586.333 172.058 1485.784 5778.088 495.916 

RF 626.885 98.953 503.183 3462.259 162.123 

RF+bayesian 578.960 98.953 491.404 3712.819 259.569 

RF+adaboost 887.454 93.516 493.440 5052.004 267.609 

 

 
Table 7. Performance evaluation of RMSE value for all dataset 

Methods 
RMSE values 

China Kemerer Kitchenham Maxwell Nasa93 

LSTM+GS 1412.777 68.970 418.956 3533.907 283.801 

LSTM 4175.544 141.899 3096.038 10279.394 882.479 

CART 2771.457 138.921 1489.455 15187.327 904.200 

CART+bagging 2145.435 115.858 1094.731 5694.656 378.570 

CART+adaboost 1973.087 123.108 775.290 14469.232 587.221 

kNN 2584.747 120.958 1784.355 6203.140 1003.895 

MLP 6578.298 219.793 3519.173 13079.703 1069.583 

MLP+bagging 6604.430 222.710 3519.076 13106.443 1083.958 

MLP+bayesian 3530.631 70.705 1174.686 9808.457 799.903 

MLP+adaboost 6604.422 220.833 3517.262 13069.911 1079.508 

SVR 5997.487 188.363 2895.880 10461.773 1061.127 

SVR+bayesian 5618.617 148.643 2855.422 4775.870 711.095 

SVR+adaboost 5990.275 187.379 2867.960 11009.078 1059.301 

RF 2116.267 113.632 1109.433 6137.315 349.281 

RF+bayesian 1914.092 113.632 1054.704 4838.835 602.169 

RF+adaboost 2014.713 106.894 837.827 9828.878 418.193 

 

 

 

 
Figure. 14 Predicted effort on nasa93 dataset 

 

performance in our model are the kitchenham dataset 

with a higher values of R2 and Pred(25) with a value 

of 0.976 and 0.976, respectively. For nasa93 dataset 

the performance values are 0.923 and 0.924, 

respectively. Whereas, the china dataset the values 

seem slightly better i.e 0.894 and 0.894, respectively. 

Furthermore, maxwell dataset the performance 

values are 0.843 and 0.856. Finally, the kemerer 

dataset the performance values are 0.829 and 0.883, 

respectively. We observe that optimizing the 

hyperparameter by using a grid search can lead to an 

increase in the overall prediction performance of the 

model. 

Figs. 10 to 14 illustrate the distribution of 

prediction efforts obtained from the LSTM+GS vs. 

actual effort around baseline. This scatter was 

produced by the "scatter" function of the matplotlib 

Python library. This function mechanically reorders 

minimum to maximum values by default. As shown 
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in the figure, the majority of actual and predicted 

values across all datasets are above the baseline, 

where actual and predicted values are identical (𝑌̂ =
𝑌). It can be observed that the data points are very 

slightly spread out from the baseline. Therefore the 

correlation is higher, especially in the case of real 

project data sets. 

5.3 Comparison with existing methods 

In this subsection, the results of the proposed 

general RNN-based LSTM+GS model are compared 

with the fifteen methods in the SEE context that have 

been described in subsection 4.3. Tables 6 and 7 

describe the performance values of the model using 

MAE and RMSE, where the best values are stated in 

bold. On the other hand, poor values are in italics. 

Table 6 shows the results of a comparison of the 

LSTM+GS model with other techniques on five 

different datasets using the MAE performance 

measure. As can be seen, the proposed LSTM+GS 

model performs better than the other fifteen 

techniques across all datasets in terms of MAE, with 

a china dataset of 554.407, kemerer of 42.573, 

kitchenham of 321.106, maxwell of 2228.565, and 

nasa93 of 172.686. Meanwhile, the MLP+adaboost 

method has the worst MAE performance on the china 

dataset of 3249.693. Meanwhile, the SVR method 

has the worst performance on the kemerer dataset of 

176.603. MLP has the worst performance on the 

kitchenham dataset of 2047.095, and MLP+bagging 

on the maxwell dataset of 8918.697. Finally, the 

baseline LSTM performed worst on the nasa93 

dataset of 539.213. 

Table 7 shows the results of the comparison of the 

LSTM+GS model with other techniques on five 

different datasets using the RMSE performance 

measure. As can be seen, the proposed LSTM+GS 

model performs better than the other fifteen 

techniques across all datasets in terms of RMSE, with 

the china of 1412.777, kemerer of 68.970, 

kitchenham of 418.956, maxwell of 3533.907, and 

nasa93 of 283.801. Meanwhile, the MLP+bagging 

method has the worst RMSE performance on the 

China dataset of 6604.430, Kemerer of 222.710, and 

Nasa93 of 1083.958. Meanwhile, MLP has the worst 

performance on the Kitchenham dataset of 3519.173. 

Finally, CART on the maxwell 15187.327 dataset. 

It can be observed that the LSTM+GS model has 

the lowest MAE and RMSE values in the all dataset 

used with the best accuracy. This shows that the use 

of the hyperparameter tuning method used in this 

study is a grid search, and we observe that optimizing 

the hyperparameter to minimize the predefined loss 

leads to an increase in the overall model accuracy. 

The proposed model outperforms all other considered 

baseline algorithms. Therefore, incorporating grid 

search as a hyperparameter tuning technique 

improves the performance of our model, because the 

accuracy value of LSTM+GS is better than the 

baseline LSTM. On the other hand, baseline LSTM 

require a large number of hyperparameter settings 

and are prone to overfitting small training data sets. 

Although, LSTM has the worst performance on the 

nasa93 dataset, on the other hand LSTM outperforms 

MLP, MLP+bagging, MLP+adaboost, and SVR 

performance on other datasets. 

In our analysis, kNN is one of the simplest 

approaches and works well in our analysis. 

Meanwhile, kNN outperformed the performance of 

MLP, MLP+bagging, MLP+bayesian, 

MLP+adaboost, SVR, SVR+bayesian, and 

SVR+adaboost in almost all datasets. Meanwhile, 

CART is not very sensitive to parameter tuning and 

performs poorly on small data. It can be observed, 

that CART+bagging and CART+adaboost have 

slightly lower MAE and RMSE values than baseline 

CART. Overall, CART+bagging and 

CART+adaboost have performance close to RF. On 

the other hand, MLP is often not one of the best 

approaches like the others in our analysis. It is proven 

that MLP+bagging has the worst performance on the 

china, kemerer, maxwell, and nasa93 datasets. 

Meanwhile, MLP+adaboost has the worst 

performance on the china dataset. RF is a promising 

technique for SEE, and it is sensitive to parameter 

tuning (RF+bayesian and RF+adaboost) with 

performance that may exceed that of the CART 

method. 

The accuracy values (MAE and RMSE) of all 

models for the five datasets are depicted in Figs. 15 

and 16. We observe that the LSTM+GS model is 

more accurate than the other benchmark models for 

all five datasets. Consequently, modifying the 

hyperparameter using a grid search can enhance the 

performance of our model, as the accuracy value is 

higher than the LSTM baseline. 

5.4 Statistical performance evaluation 

In this section, we further carried out a Friedman's 

ANOVA analysis on the regression performance for 

non-parametric tests used to test significance 

between two or more models [67]. The results of the 

ANOVA and post hoc tests for statistical tests can be 

seen in Table 8. 

The ANOVA test for the 15 methods has a 

significant value of 0.000 (p-value<0.05). Meanwhile, 

the F-value is 3.693 and the F-table(15, 319) value is 

1.710. Because the F-value 3.693>F-table 1.710, is  
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Figure. 15 Model comparison on MAE values across datasets 

 

 
Figure. 16 Model comparison on RMSE values across datasets 

 
Table 8. Comparison of predictor machine performance 

using Friedman's ANOVA test 

 df 
Mean 

Square 
F-value Sig. 

Between 

Groups 

15 16604496.01 3.693 .000 

Within  

Groups 

304 4496655.80   

Total 319    

 

the basis for decision making in the F test. Thus, it 

can be stated that the two or more models are 

statistically significant. In this case, two-way 

ANOVA shows a significant difference between the 

variation of factors (models). In conclusion, our 

LSTM+GS model performs better and more robustly 

than other considered baseline algorithms in the SEE 

field by providing significantly improved predictive 

results. 

We further conducted a duncan multiple range 

test (DMRT) aims to determine the clustering of 

performance schemes in each algorithm and whether 

the difference in performance (better/worse) is 

statistically significant or not, which is presented in 

the following Table 9. 

Based on the DMRT test, it is known that the 

results of the comparison of the prediction accuracy 

are divided into two groups. The first group is 

LSTM+GS, CART+adaboost, RF, CART+bagging, 

RF+bayesian, RF+adaboost, CART, kNN, and 

SVR+bayesian. The second group is MLP+bayesian, 

LSTM, SVR, SVR+adaboost, MLP, MLP+bagging,  
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Table 9. Model performance comparison using DMRT 

test 

Methods N 
Subset for alpha = 0.05 

1 2 

LSTM+GS 50 664.7259  

CART+adaboost 50 732.9039  

RF 50 763.8111  

CART+bagging 50 779.0536  

RF+bayesian 50 802.0740  

RF+adaboost 50 818.6823  

CART 50 986.1421  

kNN 50 992.7523  

SVR+bayesian 50 1297.7148  

MLP+bayesian 50 1766.7781 1766.7781 

LSTM 50 1870.2694 1870.2694 

SVR 50 1987.7859 1987.7859 

SVR+adaboost 50 2006.4632 2006.4632 

MLP 50  3118.4453 

MLP+bagging 50  3127.9692 

MLP+adaboost 50  3132.3377 

Sig.  .104 .080 

 

 

and MLP+adaboost. 

The DMRT test results show that the variants are 

LSTM+GS, CART+adaboost, RF, CART+bagging, 

RF+bayesian, RF+adaboost, CART, kNN, and 

SVR+bayesian are clusters that are not significantly 

different. 

5.5 Threat to validity 

The construct validity, we will also discuss the 

three main threats in the method we developed using 

LSTM+GS. The first threat pertains to the data set's 

suitability for training an RNN-based LSTM+GS 

model, which requires large quantities of data to mine 

historical patterns. We used five datasets from the 

software engineering repository, which are small 

datasets.On the other hand, we also train the LSTM 

method to perform well on small datasets. The second 

threat relates to the problem of overfitting the use of 

our LSTM+GS model, and the third threat concerns 

the issue of errors in alternative machine learning 

options in the context of SEE for comparison. We 

have randomized the training examples in each epoch. 

This helps to increase generalizability. Next, the use 

of cross-validation techniques. Then, an early stop is 

implemented, wherein training is terminated when 

the test set yields the lowest error rate. This method 

is highly effective at preventing overfitting. A further 

threat is posed by the selection of alternative machine 

learning techniques in the context of SEE for 

comparison. There may be a need for a more precise 

spectrum of techniques for the effort prediction 

problem. Based on a survey of the relevant literature, 

we have chosen the most effective solution for this 

issue.  

6. Conclusion 

In this studies, we propose a LSTM-grid search-

based deep neural network for software effort 

estimation. We used a robust strategy by redesigning 

the RNN-based LSTM to work well on small data 

sets. LSTM network optimization involves several 

hyperparameters. The application of grid search as an 

optimization approach because it has relatively few 

function evaluations and optimizes much faster. This 

helps enhance deep learning as a variation of NN to 

generate robust models. Furthermore, the designed 

LSTM-grid search model is compared with other 

baseline algorithms under consideration using the 3-

fold cross validation method and through five 

datasets: china, kemerer, kitchenham, maxwell, and 

nasa93. The evaluation criteria used are MAE and 

RMSE. Our study shows that the proposed model 

outperforms all other baseline algorithms. This study 

also shows that parameter tuning can result in 

improved model performance.  

Our proposed method is in the offline scenario, 

the most common setting in the SEE community. 

Therefore, adapting the online scenario will be 

fruitful work in the future. We may find interesting 

findings by investigating the sensitivity to parameter 

tunings, encouraging their practical use. 
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