
Received: March 11, 2023. Revised: May 10, 2023. 164

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

An Improving Long Short Term Memory-Grid Search Based Deep Learning

Neural Network for Software Effort Estimation

Robert Marco1* Sharifah Sakinah Syed Ahmad2 Sabrina Ahmad2

1Department of Informatics, Universitas Amikom Yogyakarta, Yogyakarta, Indonesia

2Faculty of Information & Communication Technology, Universiti Teknikal Malaysia Melaka, Malaysia

*Corresponding author’s Email: robertmarco@amikom.ac.id

Abstract: One of the main reasons that hinders making software effort estimation remains a most of the unresolved

problem due to the heterogeneous nature of software data with complex structures. In processing nonlinear data, the

long short-term memory (LSTM) model is often used for the purpose of solving discriminative and generative

problems. Taking into account the fact that the LSTM network have low computational efficiency, due to the need to

set a large number of hyperparameters. However, training deep learning models requires expensive work in terms of

specifying hyperparameter configurations in the model. The grid search (GS) optimization method is used to find the

best hyperparameter values for deep learning networks, which have many different hyperparameters that affect how

well the network architecture works. In this paper, we proposed the grid search method as a quick step toward

optimizing the parameters of the LSTM model. An empirical study was conducted using five datasets. From our results,

we have seen that the LSTM-grid search model consistently performs better across datasets in mean absolute error

(MAE) and root mean squared error (RMSE) compare to existing work on using machine learning approach for

software effort estimation. The main advantage of training the LSTM show that the grid search finds hyperparameters

which results in faster convergent, the possibility of generalization, and better coefficient of determination in

estimating software effort.

Keywords: Grid search, Long short-term memory, Hyperparameter tuning, Software effort estimation.

1. Introduction

Software effort estimation (SEE) is a method for

estimating the effort (in person-hours per month)

required to develop a software project [1].

Unfortunately, uncertainty and imprecision are

inherent in the predictive environment of software

efforts [2].

Over the decades, many SEE techniques have

been proposed, but the effort has been exceeded in

software project management [3]. Machine learning

techniques are highly effective at simulating

uncertainty to improve decision-making [4].

Unfortunately, using machine learning techniques

without exposing them to the process of parameter

optimization may not completely solve particular

problems [5]. Thus, it is necessary to make

hyperparameter adjustments to get better results in

machine learning models [6]. Song et al. (2013)

determined that parameter configuration is one of the

factors that can influence model accuracy [7]. In

addition, there is evidence that parameter tuning can

affect which model is deemed superior to others [8].

Several machine learning techniques including

regression tree (RT) [9], neural network (NN) [7, 6,

10, 11] support vector regression (SVR) [8, 12, 13] k-

nearest neighbors (kNN) [7, 14] have been frequently

used for prediction problems in the field of SEE.

Unfortunately, RT requires space-consuming model

storage, and data prediction is time-consuming and

prone to overfitting on small training data sets [15].

Meanwhile, NN performs worse on smaller datasets

than on complete datasets [15] and usually suffers

from overfitting problems, and its explanatory ability

is weak [7]. SVR is required for large data sets, long

training periods, and high computation time.

Received: March 11, 2023. Revised: May 10, 2023. 165

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

Furthermore, kNN is ineffective in large data and

relies heavily on parameter settings [16].

Although several methods have been proposed to

predict software effort, there is no consensus on

which technique makes the best estimate in all these

situations [17], and still giving disappointing results

[18]. Therefore, the study of SEE continues to be a

challenging issue for researchers and project

managers.

The problem is the difficulty of hyperparameter

setting, which impacts the quality of the resulting

predictive models [7]. They don't have clear defaults

and can be agreed upon in different applications [16].

Meanwhile, hyperparameters setting manually not

only requires a deep understanding of the model but

is also impractical, time and cost-inefficient [5].

Several other studies have shown that the choice of

information estimation techniques based on

parameter tuning has a large effect on the accuracy of

the SEE method [19]. In the worst-case scenario,

incorrect parameter settings may result in poor

performance [20].

Long short-term memory (LSTM) is proposed as

a model for deep learning to enhance the relevance of

training samples. The LSTM method as a predictor

has the best accuracy results than other traditional

methods [21]. The LSTM model is commonly

employed to handle discriminatory and generative

issues in nonlinear data processing [21], in the field

of time series, such as [22-24], and the limited use of

LSTM in the field of regression, such as [21, 25, 26].

LSTM networks are efficient and flexible in

conserving long-term memory [27]. LSTM, on the

other hand, has hyperparameters capable of being

tuned to provide the model with good performance

[28]. On the other hand, due to the increased

complexity of the LSTM network, there are more

hyperparameters to optimize during training,

resulting in a greater computational burden [26].

One way to accelerate the training process is to

use optimization methods. Hyperparameter search is

an efficient automatic LSTM parameter adjustment

technique in deep learning [27]. The grid search (GS)

method was developed to optimize LSTM parameter

values. Grid search is a comprehensive technique. It

will attempt every option within the specified

parameter range and select the best-performing

parameter values as the model's super parameters [27,

29] with examines each hyperparameter combination

using permutation and combination [30]. Other

strategies have also been proposed earlier, such as

random search [31], gradient optimization [32], and

bayesian optimization [33]. Unfortunately, random

search cannot determine the values that optimize

network performance [34]. Bayesian optimization is

useful for solving problems that have a limited

number of hyperparameters and difficult to

parallelize [6].

Grid search is feasible because the number of

evaluations is lower and leads to a better-studied

model through less computational time [24]. This

method uses a large-scale search in a small dataset to

sample a representative training dataset. Then,

followed by the entire dataset is for fine-tuning,

which helps to balance the cost of time and accuracy

[27]. In grid search, a model is built for each possible

parameter combination, resulting in many iterations,

but will give the best combination [29].

This study proposes a deep neural network based

on LSTM-grid search to overcome the uncertainty of

software effort estimation. The main reason grid

search is added to the LSTM model (LSTM+GS) is

to optimize the hyperparameters. Values that can

control the learning process are called

hyperparameters. Tuning the hyperparameters makes

sure that a model can solve a problem in the optimally

way possible by lowering losses that have already

been set and giving accurate results.

The remaining sections of this paper are

structured as follows. The second section explain of

related studies. In thrid section the theory of LSTM

and grid search is discussed. The fourth section

describes experiments design. The five section

contains the experimental results and discussion.

Finally, six section contains the conclusion of this

paper.

2. Related studies

In recent years, many academics have shown

increasing interest in applying hyperparameter tuning

techniques to optimize learning algorithms.

Meanwhile, several works in the SEE field have

used hyperparameter tuning optimization in online

and offline learning. Using a grid search technique,

Song et al. (2013) studied the regulatory impact of

five machine learning techniques, including kNN, RT,

RT+bagging, multilayer perceptron (MLP), and

MLP+bagging. To discover the optimal value without

assembling an ensemble. kNN, RT, and RT+bagging

were insensitive to parameters tuning, whereas MLP

and MLP+bagging were extremely sensitive.

Bagging gives results closest to the optimal

hyperparameter configuration [7].

Zakrani et al. (2018) optimized SVR using the

grid search technique. Results suggest that our

method can enhance the performance of the SVR

method [13]. They used base learners (MLP, RF,

adaboost regressor, and linear regression) and stacked

ensemble learning with two ways to tune

Received: March 11, 2023. Revised: May 10, 2023. 166

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

hyperparameters: genetic algorithm (GA) and

particle swarm optimization (PSO). The results of

experiments show that prediction accuracy is better

when hyperparameters are set using PSO [6].

Minku (2019) says that using linear regression on

a logarithmic scale (LogLR) makes more accurate

predictions [35]. In the meantime, Minku and Yao

(2013) analyzed the RT, RT+bagging, and

MLP+bagging approaches, which have been

demonstrated to perform well on several data sets [9].

It is crucial to tune SVR parameters into the context

of SEE. In particular, a taboo search has been

suggested as a method for locating the optimal values

for the SVR parameters [12]. Elish (2013) carried out

an experiment in which they presented a

heterogeneous ensemble that was constructed using

five different machine learning approaches. These

techniques included kNN, SVR, MLP, decision tree

(DT), and radial basis function networks (RBFN)[14].

Villalobos-Arias and Quesada-López (2021)

investigated ridge regression (RR), classification and

regression tree (CART), and support vector

regression (SVR) utilizing grid and random search in

conjunction with six bio-inspired algorithms.

According to the results, the Flash+Log+SVR model

ranks first in accuracy across the majority of data sets,

while the Hyperband+Log+RR model ranks first in

stability across the majority of data sets [36].

Specifically, the best overall accuracy comes from a

stacked ensemble that takes the average of the

predicted effort values from random forest (RF),

analogy based estimation (ABE), ordinary least

squares (OLS), bagging, adaboost, and gradient

boosting. All of these methods are optimized using

grid search techniques [37].

In the field of software engineering, researchers

have employed a variety of neural network

techniques to software effort estimation. Kodmelwar

et al. (2018) proposed modified neural network

(MNN) based deep learning is formulated using the

cuckoo search algorithm. The type of neural network

that has been created is a convolutional network.

After this stage, the optimization is carried out using

hybrid particle swarm optimization (HPSO). The

experimental results demonstrate that the proposed

work employing MNN is more competent than the

existing approach [38].

Choetkiertikul et al. (2019) suggest the long-deep

recurrent neural network (LD-RNN) prediction

model for estimating story points by combining

LSTM and recurrent highway network, which are

both strong deep learning architectures. The proposed

approach consistently outperforms the general

baseline according to the evaluation results. However,

this method requires time-consuming during training

[39].

Favero et al. (2020) applying the pre-trained

BERT method with fine-tuning hyperparameter gives

promising results with MAE values is 4.25 and

standard deviations 0.17. This method has reliability,

generalizability, speed, and low computational cost

[40].

Khan et al. (2021) proposed a deep neural

networks (DNN) model. This model is based on a

meta-heuristic approach. They use gray wolf

optimizer (GWO) and strawberry (SB). The results of

the experiments show that GWO has a significant

edge over other methods in estimation accuracy [10].

Meanwhile, in an empirical study, Kangwantrakool et

al. (2020) investigated the effectiveness of using

sequence models in unstructured SEE by manually

hyperparameters tuning. The LSTM sequence model

achieved the lowest MAE at 0.705 (ISEM) and

14.077 (ISBSG), respectively [41].

Ozturk (2021) proposes a novel approach to deep

regression based on a binary search-based method

implemented in the proposed feed-forward deep

neural network algorithm (FFDNN). When paired

with more advanced hyperparameter search methods,

the deep learning approaches can attain a greater level

of performance than other methods that rely on more

traditional methods, like random and grid search

techniques. In addition, Using binary search-based

algorithms in FFDNN has also sped up

hyperparameter optimization [11].

3. Our approach

In this section, we have discussed the

introduction and studies related to the formulation of

the problem and explained the list of notations used

Table 1. List of notations

Notations Description

𝑥𝑡/𝑦𝑡 Input/output

ℎ𝑡/H Hidden vector

𝐶𝑡 Cell state

𝑊𝑖, 𝑊𝑓, 𝑊𝑜 Weight matrix (input, forget, output)

𝑏𝑖, 𝑏𝑓, 𝑏𝑜 Bias vector (input, forget, output)

𝑖𝑡 , 𝑓𝑡 , 𝑜𝑡 Input, forgert, output gate

𝜎, tanh Activation function

Θ Parameter search space

Λ Search space

K Latent dimension

𝑋𝑛 Input variable dataset

𝑌𝑛 Target variable dataset

ℝ Real number

𝒟 Dataset

𝐿 Loss function

𝜃 Model parameter

𝑌̂ Predict

Received: March 11, 2023. Revised: May 10, 2023. 167

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

in this work. A list of notations is presented in Table

1.

3.1 Problem statement

In the paper, the problem in SEE has been

recognized as a regression issue with continuous

output values. Let 𝒟 = {(𝑋𝑛, 𝑌𝑛)}𝑛=1
𝑁 represent a

training data set with N observations, where 𝑋𝑛 =
[𝑥1

𝑛, … , 𝑥𝑖
𝑛]𝑇 ∈ ℝ𝑖 for 𝑖 = 1,2, … , 𝑖 , is the n-th

training example consisting 𝑖 features. The software

project feature is given by 𝑋𝑖 = (𝑥1, 𝑥2, … , 𝑥𝑖) ∈ ℝ𝑖

where 𝑑 represents the feature dimension of 𝑋𝑖, some

examples of input features (𝑥1, 𝑥2, … , 𝑥𝑖) include the

hardware platform, software development type,

functional size, user interface, team expertise quality

requirements, tool use, and so on. In addition, we

introduce 𝑌𝑛 ∈ ℝ1 where the target variable is effort

measured in man-months or an equivalent unit

(continuous target variable).

Donate 𝐹 as a set of learning machines with

LSTM and 𝜃 as their model parameters. The

objective of the training procedure for point effort

estimation is to determine the optimal function

𝑓(. ; 𝜃∗) ∈ 𝐹 , where 𝐹: ℝ𝑑 → ℝ1 from input

features to output effort is defined as:

𝑓(𝑋; 𝜃∗) = 𝑌̂ (1)

Where a testing software project (𝑋, 𝑌), and 𝑌̂ is

the predicted effort value based on the input features

𝑋 and the constructed SEE model, respectively.

Through the process of minimizing a loss

function 𝐿(.) with respect to the 𝜃 parameter of the

model as:

𝐿(𝒟) = ∑ (‖𝑓(𝑋𝑛; 𝜃∗) − 𝑌𝑛‖∗).𝑁
𝑛=1 (2)

𝐿(𝒟) is the mean absolute error and ‖ . ‖1 is

employed, become a common instance of 𝐿 in SEE.

The training procedure establishes 𝜃∗ as the optimal

model parameter. It is expected that the result

Figure. 1 LSTM architecture [42]

between 𝑌 and 𝑌̂ has a small deviation, as 𝐿(‖𝑌 −

𝑌̂‖).

In practice, a vector is always a column vector

except stated otherwise. A row vector is denoted by

the transpose of its corresponding column vector,

𝑿 = [𝑋1, … , 𝑋𝑁]𝑇 ∈ ℝ𝑁×𝑖 . Where T represents the

row (column) transpose. The matrix of training

examples comprises all training information

necessary to construct a SEE method with respect to

a loss function.

3.2 Long short-term memory technique

According to Choetkiertikul et al. (2019), one of

the popular variants of the improved basic recurrent

neural network (RNN) is long short-term memory

(LSTM) which uses loops to store information in the

network [39], aiming to overcome the vanishing

gradient and exploding gradient problems

encountered with traditional RNN [42], overcame the

issue of long-term dependence that had been

occurring in RNN, and experiencing overfitting

problems due to the many parameters that must be

corrected [43].

A unit of LSTM consists of three gates (input,

output, and forget gates) and a single cell. Forget gate

specifies how much state memory will be reserved

from the last time step for the current time step. The

amount of the current input that is going to be stored

in the current state memory is decided by the input

gate. Lastly, the output gate determines how much of

the current state memory should be issued in the

current time step. Each gate possesses a weight

matrix and a bias term, which will be automatically

learned during the training phase [44]. Three gates

regulate the flow of information into and out of the

cell while the cell retains information acquired over

varied time intervals. The previous layer's values are

saved and utilized to determine the hidden state [45].

The architecture of the LSTM neural network is

described in Fig. 1 [42], which illustrates the structure

of memory cells. The t index refers to time or

sequence. Where 𝑥𝑡 , 𝑦𝑡 , ℎ𝑡 , and 𝐶𝑡 represent input,

output, hidden vector, and cell state for t, respectively.

Each of these gates is a neural network whose

input vector combines the hidden vector from the

previous cell and the input vector. Let 𝑊𝑖, 𝑊𝑓, 𝑊𝑜 be

the weight matrix corresponding to the input, forget,

and output gates, respectively. 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑜 the

appropriate bias vectors. 𝑊𝑐 and 𝑏𝑐 are weight

matrices and bias vectors that update cell states.

Our software effort prediction model applies a

linear regression layer to the LSTM cell output layer.

Let us denote the input as 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑇) ,

Received: March 11, 2023. Revised: May 10, 2023. 168

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

hidden state cell as 𝐻 = (ℎ1, ℎ2, … , ℎ𝑇) , output

sequence as 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑇) , where 𝑡 =
1, 2, … . , 𝑇. LSTM will the computations as follows

[46]:

ℎ𝑡 = 𝐻(𝑊ℎ𝑦𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (3)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦 (4)

The above-described LSTM structure is then

implemented through the following computations.

The result of the input gate is 𝑖𝑡 which is obtained as

follows [42, 46]:

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝐶𝑡−1 + 𝑏𝑖) (5)

To calculate 𝑓𝑡 , forget gate using the following

equation [46]:

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝐶𝑡−1 + 𝑏𝑓) (6)

The cell status is updated as follows:

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ tanh (𝑊𝑥𝑐ℎ𝑡 + 𝑊ℎ𝑐𝐶𝑡−1 + 𝑏𝑐)

(7)

The output gate uses Eq. (8) to get 𝑜𝑡 and Eq. (9)

to get the hidden vector (ℎ𝑡).

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝐶𝑡 + 𝑏𝑜) (8)

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) (9)

In Eqs. (5), (6) and (8), use 𝜎 as the sigmoid

function defined in Eq. (10), while tanh as the

hyperbolic tangent function defined in Eq. (11).

𝜎(𝑥) =
1

1+𝑒𝑥 (10)

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 (11)

Where 𝜎 and tanh are defined on the set of real

numbers. For 𝜎 it ranges from 0 and 1, while tanh

ranges from -1 to 1.

3.3 Grid search optimization

Grid search (GS) is the simplest approach, and it

applies various candidate parameters to the model

sequentially to find situations with optimal values

that can be obtained quickly [47]. Grid search is the

best way to optimize hyperparameters because it is

easy to run and can be done in parallel. It also works

 (a) (b)

Figure. 2 Visualization of grid search [50]: (a) grid search

and (b) grid layout

well in low-dimensional spaces [48]. This strategy is

feasible because the number of evaluations is lower

and leads to a better-studied model through less

computational time [24]. Although grid search is

simple to implement, the computational cost is very

expensive due to the large number of

hyperparameters and the different levels of each [48].

Lin et al. (2008), using cross-validation techniques to

the grid search method can prevent overfitting

problems [49].

Let 𝑌 be the target algorithm with 𝑘 parameters

to set, and the parameter 𝜃𝑖 be the value in the

interval [𝑥𝑖, 𝑦𝑖] in parameter search space Θ =
[𝑥1, 𝑦1] × … × [𝑥𝑘 , 𝑦𝑘] . 𝐻: Θ → R is transformed

into a performance measurement function that

assigns a numeric score to 𝜃. Cross-validation is used

to calculate the error 𝐻 , and Θ consists of seven

parameters: nhiddenlayer, nneuron, nepochs, noptimization,

batchsize, learningrate, and 𝜆𝑑 (dropout).

Fig. 2 is a visualization of the grid technique [50],

The grid search attempts to assess each combination

of hyperparameters and record precision. After

evaluating all possible combinations, the model

offers the most accurate parameter set. An example of

a grid search with a parameter set of 3×3 is shown in

Fig. 2-a.

Fig. 2-b illustrates how the nine experimental

points will be tested using the grid search technique.

The grid search for lower dimensional data is chosen

because the number of iterations required to discover

the optimal parameter set is smaller [50].

Where Λ is the search space and 𝐾 is the latent

dimension. Let Λ be the indexed set of configuration

variables 𝐾 . Grid search needs to get the optimal

value from the set of values for each variable

(𝐿1, 𝐿2, … , 𝐿𝑘) , thus the number of trials on grid

search is 𝑆 = ∏ |𝐿𝑘|𝑘=1 elements.

4. Experiment design

Although LSTM with grid search methods are

often used in other research fields, such as time series

for forecasting [22-24, 47] and classification for text

Received: March 11, 2023. Revised: May 10, 2023. 169

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

Figure. 3 Architecture LSTM+GS

Algorithm 1. The pseudocode for LSTM

input: the dataset 𝒟 = {(𝑋𝑛, 𝑌𝑛)}𝑛=1
𝑁 , 𝑋 ∈ ℝ𝑖 ,

where 𝑋 is variable, 𝑌 is target, and n-th training

example consisting features

1. initialization: unsupervised, Y, N_epochs

2. data preprocessing: normalize [0,1] and 3-

fold cross-validation splitting the dataset into

training and testing

3. For each 𝑋 ∈ 𝒟 do

4. inp←input(X)

5. 𝑒 ← Sequential (inp)

6. 𝑔 ← RNN(𝑒)

7. ℎ ← LSTM(𝑔)

8. 𝑠 ← attention(ℎ)

9. 𝑓 ← ReLu(𝑠)

10. out ← sigmoid(𝑓)

11. end for

12. model← Model (inp,out)

13. model.compile(adam)

14. model.fit(X,Y,N_epochs)

15. 𝑌̂ ← model.predict(X)

16. return the predict 𝑌̂

17. end for

18. Output predicted (𝑌̂)

Algorithm 2. The pseudocode of training grid

search hyperparameter tuning

input: the dataset 𝒟 = {(𝑋𝑛, 𝑌𝑛)}𝑛=1
𝑁 , 𝑋 ∈ ℝ𝑖 ,

where 𝑋 is variable, 𝑌 is target, and n-th training

example consisting features; Algorithm (LSTM);

Grid Search (GS); Hyperparameter (Θ)

1. Res ← { };

2. for i to N do

3. 𝜃 ← select hyperparameter (GS, LSTM,

Θ)

4. model ← train (LSTM, 𝜃, 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛)

5. Res ← eval (model, 𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑟𝑎𝑖𝑛)

6. end for

7. Θ ← Ad just (Θ, eval(res))

8. end for

9. Output Optimized Parameters

mining [29, 51]. To our knowledge, no researcher has

combined LSTM with grid search for applications in

the software effort estimation context.

4.1 Proposed model

Our proposed work focuses on software effort

estimation using deep neural networks based on

LSTM-grid search (LSTM+GS). The main novelty of

our approach lies in its robust deep learning

architecture. In this proposed work, the neural

network in the LSTM model is fully connected in

combination with the grid search. The primary

objective of grid search is to find optimal

hyperparameters for producing more accurate

prediction results. Several of the layers in the

suggested architecture, including input dataset,

LSTM, convolution layer, max pooling layer, dropout,

fully connected NN, grid search, and predict, make

up the proposed architecture.

LSTM-based predictions are used to eliminate

vanishing gradient and exploding gradient problems

that may occur with RNN-based predictions.

Maximum pooling is a pooling process that looks at

each patch of each feature map to find the one with

the greatest value. Dropout, on the other hand,

preventing models from being overfit. Fully

connected layer is simply, feed forward neural

networks forming the last few layers in the network.

Lastly, we use grid search on the whole process, as

shown in Fig. 3.

The above steps of the LSTM model for our

proposed regression problem are summarized in the

pseudocode of Algorithm 1.

Therefore, we will present in more detail the grid

search modeling in the pseudocode of Algorithm 2.

for effort prediction.

4.2 Hyperparameter setting

The dimension of the LSTM by having four

hidden layers having (5, 10, 15, 20, 30) neurons. The

LSTM output data will be collected using max

pooling in the pooling layer, and nonlinear processing

will be done with the tanh function. The final step is

to use a dense layer with an output dimension of 1 to

get the output results. adam optimizer is often used to

find the best value for the MAE loss function in

regression models during the training process. Next,

learning rate is set to (0.1, 0.01, 0.001, 0.0001), and

the dropout rate is (0.1, 0.2, 0.4, 0.5, 0.6).

On the other hand, this method also uses the

number of epochs (100, 200, 300, 400, and 500) and

the batch size (64, 128, 200, 256, and 512). This study

also attempts to add a 128-dimensional dense layer

after the pooling layer. Comparative analysis was

Received: March 11, 2023. Revised: May 10, 2023. 170

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

Table 2. Grid search hyperparameter values

Parameter Search space

Hidden layers (5, 10, 15, 20, 30)

Loss (mae, mse, logcosh,

squared_hinge, hinge,)

Optimization (Adam, RMSProp, Nadam)

Activation (linear, relu, tanh, sigmoid)

Dropout (0.1, 0.2, 0.4, 0.5, 0.6)

Learning rate (0.1, 0.01, 0.001, 0.0001)

Epoch (100, 200, 300, 400, 500)

Batch size (64, 128, 200, 256, 512)

Table 3. Hyperparameter of the model comparison

Model Parameter Search space

LSTM[52] loss mse

learning rate 0.0001

activation relu

dropout 0.5

epoch 500

batch size (128, 256)

CART[14];

CART+

bagging[7];

CART+

adaboost[53]

criterion (mse, mae)

splitter (best, random)

min samples split (10, 100)

max depth (4, 125, 300)

min samples leaf (4, 10)

max leaf nodes (5,100)

max features (auto, log2, sqrt)

kNN[14] n_neighbors 3

weight function uniform

distance euclidian

MLP[14]

MLP+

bagging[7]

MLP+

bayesian[54]

MLP+

adaboost[55]

hidden layer size (16, 50,100)

epoch (200, 300, 500)

activation (relu, tanh)

solve (adam, sigmoid)

alpha (0.0001, 0.05)

learning rate (0.005, 0.3)

batch size (128, 256)

SVR[14]

SVR+

bayesian[54]

SVR+

adaboost[54]

kernel (poly, rbf, sigmoid)

gamma (0.01, 0.9)

C (1, 100)

epsilon (0,1)

RF[56]

RF+

bayesian[54]

RF+

adaboost[54]

criterion (mse, mae)

n_estimator (10, 100)

min samples split (10, 100)

max depth (4, 125, 300)

min samples leaf (4, 10)

max leaf nodes (5,100)

max features (1, 7)

criterion (mse, mae)

splitter (best, random)

min samples split (10, 100)

conducted with the ReLU activation function on the

fully connected layer.

In the grid search, each combination of the

Figure. 4 Procedure all methods

predefined list of hyperparameter values in the LSTM

is evaluated to determine the optimal value based on

the cross-validation score. Grid search, though time-

consuming, will yield the optimal combination. Table

2 illustrates the hyperparameters utilized by this

model.

4.3 Benchmark SEE model

In this section, the LSTM-grid search

(LSTM+GS) model that we propose will be

compared with with six baseline algorithms, with

default parameter setting or use parameter

optimization, shown in the Table 3.

4.4 Dataset preprocessing

We chose to use five data sets from the PROMISE

repositories, which are often used in SEE studies and

are open to the public [57, 58]. The general procedure

diagram for all methods is described as in Fig. 4.

In detail, this section will be discussed on how to

carry out the preparation and preprocessing stages of

the dataset. First, feature reduction: the use of the

year feature has been removed because the test

scenario in this study primarily targets offline

scenarios, which is thus an irrelevant feature. The

next, categorical conversion: converts categorical

features to numeric values for these datasets used

ordinal encoding. The reason for using this method is

that ordinal encoding provides a unique number code

for each category [59]. Finally, normalization: each

of the input features should be normalized with the

interval [0,1] for 𝑋𝑖 using the min-max normalization.

Table 4 presents descriptive statistics on the data sets

in terms of number of records, attributes, size, effort,

mean, standard deviation (Std), skewness (Skew),

and kurtosis (Kurt) of the actual recorded effort value

in each data set.

Since machine learning and the LSTM model are

sensitive to input scaling, the data are normalized

using feature scaling within the range [0,1]. The data

is divided into trains and tests while maintaining a

temporary sequence of observations. The test data are

utilized to evaluate the accuracy of the proposed

prediction model, but are not utilized during the

Received: March 11, 2023. Revised: May 10, 2023. 171

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

Table 4. Dataset description

Dataset
Number

record

Number

attributes
Size unit Effort unit Mean Std Skew Kurt

China [60] 499 19 Function point Person-hours 331.375 1850.14 2.458 18.95

Kemerer [61] 15 8 KSLOC Person-months 366.230 561.459 0.408 3.069

Kitchenham [62] 145 10 Function point Person-hours 1675.802 6052.215 0.357 8.560

Maxwell [63] 62 27 Function point Person-hours 335.977 2539.394 0.729 8.147

Nasa93 [64] 93 24 LOC Person-months 41.195 295.891 3.919 30.46

training phase. For machine learning models,

standard practice dictates a ratio of 70 percent

(training set) and 30 percent (testing set) for random

splitting of datasets [22].

4.5 Performance analysis

In this experiment, four performance measures

were used to evaluate and compare the performance

of various regression models. The regression metrics

imported from the sklearn package, in Eqs. (12) to

(15).

𝑀𝐴𝐸 = ∑
|𝑦𝑖−𝑦̂𝑖|

𝑛
𝑛
𝑖=1 (12)

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

𝑛
 (13)

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)2𝑛
𝑖=1

 (14)

𝑃𝑅𝐸𝐷(𝑥) =
1

𝑁
∑ {

1, 𝑖𝑓 𝑀𝑅𝐸𝑖 ≤ 𝑥
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁
𝑛=1 (15)

5. Result and discussion

This SEE study will take offline scenarios. The

training and testing project is part of the stationary

training example without orders or changes in the

offline scenario. Experiments were conducted using

a computing platform based on Intel Core i9-9900k 5

GHz, Asus Maximus XI Hero, SSD M.2 Samsung

1Tb, HDD 4Tb WD Black, PSA Seasonic Focus

1000Watt, Ram 64Gb Vgen, and OS Ubuntu 22.04

LTS. The development environment is notepad plus,

python 3.0 (32-bit), anaconda web programming

interface, several libraries on Scikit-learn, and

NumPy.

5.1 Model performance

LSTM performance was assessed over 1000

epochs with early stopping enabled, monitoring

validation accuracy using 0.001 min_delta and 30

patience. This method is highly effective at

preventing overfitting. In Figs. 5 through 9, the

Figure. 5 Training loss on china dataset

Figure. 6 Training loss on kemerer dataset

Figure. 7 Training loss on kitchenham dataset

diagnostic plot of our RNN-based LSTM model

demonstrates that training and validation losses

decrease as the number of epochs increases. The

China dataset shows the loss and accuracy of the

model for 160 epochs, Kemerer for 140 epochs,

Kitchenham for 60 epochs, Maxwell for 150 epochs,

and Nasa93 for 100 epochs.

We can see that some data sets on training and

validation loss decrease drastically with increasing

iteration time and become stable after reaching values

above 10-20 epochs. The value of the loss function

tends to be stable, which indicates that LSTM+GS

Received: March 11, 2023. Revised: May 10, 2023. 172

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

Figure. 8 Training loss on maxwell dataset

Figure. 9 Training loss on nasa93 dataset

Table 5. Performance of the LSTM+GS model

Dataset MAE RMSE R2 Pred(25)

China 554.407 1412.777 0.894 0.894

Kemerer 42.573 68.970 0.829 0.883

Kitchenham 321.106 418.956 0.976 0.976

Maxwell 2228.565 3533.907 0.843 0.856

Nasa93 172.686 283.801 0.923 0.924

has entered a state of convergence. Overall, this

shows that the LSTM+GS training process is very

stable. The results show that the loss function is close

to constant, and it can be concluded that the model

has converged. Our LSTM+GS model takes less time

to train and find generalizations from the data set.

5.2 Results of hyperparameter optimization

Based on our experimental results, the

hyperparameter model was selected through grid

search optimization, which after being evaluated

resulted in better performance. Optimization is run 10

times to determine the best parameter value with a

certain search space. For these five data sets, we used

the same 3-fold cross validation method as reported

in [65] to divide the data into training and test

samples. The LSTM+GS model consists of four

layers. Adam and ReLU optimizer applied in this

experiment. The nonlinear ReLU performs best as an

activation function of each hidden layer. We

investigate ReLU as a hidden layer activation

function to solve the missing gradient issue brought

on by Sigmoid [66]. Our model employs Adam

performed the best and faster convergence [65, 66].

Figure. 10 Predicted effort on china dataset

Figure. 11 Predicted effort on kemerer dataset

Figure. 12 Predicted effort on kitchenham dataset

Figure. 13 Predicted effort on maxwell dataset

When using the MAE, RMSE, R2, and Pred(25)

performance evaluation metrics, lower MAE and

RMSE values, higher R2 and Pred(25) values indicate

better results. Table 5 shows the MAE, RMSE, R2,

and Pred(25) values obtained by applying the

LSTM+GS model to the all dataset.

In Table 5 the results that have the best predictive

Received: March 11, 2023. Revised: May 10, 2023. 173

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

Table 6. Performance evaluation of MAE value for all dataset

Methods
MAE Values

China Kemerer Kitchenham Maxwell Nasa93

LSTM+GS 554.407 42.573 321.106 2228.565 172.686

LSTM 2313.504 108.127 1420.223 5215.056 539.213

CART 1032.260 113.200 758.241 8496.230 353.978

CART+bagging 625.302 103.751 502.794 3219.196 183.393

CART+adaboost 924.450 100.766 509.517 7313.692 283.515

kNN 1301.996 113.088 784.264 4536.974 404.235

MLP 3212.537 134.102 2047.095 8882.655 509.788

MLP+bagging 3249.591 138.870 2046.867 8918.697 507.688

MLP+bayesian 1580.818 67.022 598.185 5366.700 460.198

MLP+adaboost 3249.693 139.132 2044.106 8869.343 508.736

SVR 2592.019 176.603 1403.841 5425.094 507.548

SVR+bayesian 2228.305 131.786 1380.342 3054.978 343.846

SVR+adaboost 2586.333 172.058 1485.784 5778.088 495.916

RF 626.885 98.953 503.183 3462.259 162.123

RF+bayesian 578.960 98.953 491.404 3712.819 259.569

RF+adaboost 887.454 93.516 493.440 5052.004 267.609

Table 7. Performance evaluation of RMSE value for all dataset

Methods
RMSE values

China Kemerer Kitchenham Maxwell Nasa93

LSTM+GS 1412.777 68.970 418.956 3533.907 283.801

LSTM 4175.544 141.899 3096.038 10279.394 882.479

CART 2771.457 138.921 1489.455 15187.327 904.200

CART+bagging 2145.435 115.858 1094.731 5694.656 378.570

CART+adaboost 1973.087 123.108 775.290 14469.232 587.221

kNN 2584.747 120.958 1784.355 6203.140 1003.895

MLP 6578.298 219.793 3519.173 13079.703 1069.583

MLP+bagging 6604.430 222.710 3519.076 13106.443 1083.958

MLP+bayesian 3530.631 70.705 1174.686 9808.457 799.903

MLP+adaboost 6604.422 220.833 3517.262 13069.911 1079.508

SVR 5997.487 188.363 2895.880 10461.773 1061.127

SVR+bayesian 5618.617 148.643 2855.422 4775.870 711.095

SVR+adaboost 5990.275 187.379 2867.960 11009.078 1059.301

RF 2116.267 113.632 1109.433 6137.315 349.281

RF+bayesian 1914.092 113.632 1054.704 4838.835 602.169

RF+adaboost 2014.713 106.894 837.827 9828.878 418.193

Figure. 14 Predicted effort on nasa93 dataset

performance in our model are the kitchenham dataset

with a higher values of R2 and Pred(25) with a value

of 0.976 and 0.976, respectively. For nasa93 dataset

the performance values are 0.923 and 0.924,

respectively. Whereas, the china dataset the values

seem slightly better i.e 0.894 and 0.894, respectively.

Furthermore, maxwell dataset the performance

values are 0.843 and 0.856. Finally, the kemerer

dataset the performance values are 0.829 and 0.883,

respectively. We observe that optimizing the

hyperparameter by using a grid search can lead to an

increase in the overall prediction performance of the

model.

Figs. 10 to 14 illustrate the distribution of

prediction efforts obtained from the LSTM+GS vs.

actual effort around baseline. This scatter was

produced by the "scatter" function of the matplotlib

Python library. This function mechanically reorders

minimum to maximum values by default. As shown

Received: March 11, 2023. Revised: May 10, 2023. 174

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

in the figure, the majority of actual and predicted

values across all datasets are above the baseline,

where actual and predicted values are identical (𝑌̂ =
𝑌). It can be observed that the data points are very

slightly spread out from the baseline. Therefore the

correlation is higher, especially in the case of real

project data sets.

5.3 Comparison with existing methods

In this subsection, the results of the proposed

general RNN-based LSTM+GS model are compared

with the fifteen methods in the SEE context that have

been described in subsection 4.3. Tables 6 and 7

describe the performance values of the model using

MAE and RMSE, where the best values are stated in

bold. On the other hand, poor values are in italics.

Table 6 shows the results of a comparison of the

LSTM+GS model with other techniques on five

different datasets using the MAE performance

measure. As can be seen, the proposed LSTM+GS

model performs better than the other fifteen

techniques across all datasets in terms of MAE, with

a china dataset of 554.407, kemerer of 42.573,

kitchenham of 321.106, maxwell of 2228.565, and

nasa93 of 172.686. Meanwhile, the MLP+adaboost

method has the worst MAE performance on the china

dataset of 3249.693. Meanwhile, the SVR method

has the worst performance on the kemerer dataset of

176.603. MLP has the worst performance on the

kitchenham dataset of 2047.095, and MLP+bagging

on the maxwell dataset of 8918.697. Finally, the

baseline LSTM performed worst on the nasa93

dataset of 539.213.

Table 7 shows the results of the comparison of the

LSTM+GS model with other techniques on five

different datasets using the RMSE performance

measure. As can be seen, the proposed LSTM+GS

model performs better than the other fifteen

techniques across all datasets in terms of RMSE, with

the china of 1412.777, kemerer of 68.970,

kitchenham of 418.956, maxwell of 3533.907, and

nasa93 of 283.801. Meanwhile, the MLP+bagging

method has the worst RMSE performance on the

China dataset of 6604.430, Kemerer of 222.710, and

Nasa93 of 1083.958. Meanwhile, MLP has the worst

performance on the Kitchenham dataset of 3519.173.

Finally, CART on the maxwell 15187.327 dataset.

It can be observed that the LSTM+GS model has

the lowest MAE and RMSE values in the all dataset

used with the best accuracy. This shows that the use

of the hyperparameter tuning method used in this

study is a grid search, and we observe that optimizing

the hyperparameter to minimize the predefined loss

leads to an increase in the overall model accuracy.

The proposed model outperforms all other considered

baseline algorithms. Therefore, incorporating grid

search as a hyperparameter tuning technique

improves the performance of our model, because the

accuracy value of LSTM+GS is better than the

baseline LSTM. On the other hand, baseline LSTM

require a large number of hyperparameter settings

and are prone to overfitting small training data sets.

Although, LSTM has the worst performance on the

nasa93 dataset, on the other hand LSTM outperforms

MLP, MLP+bagging, MLP+adaboost, and SVR

performance on other datasets.

In our analysis, kNN is one of the simplest

approaches and works well in our analysis.

Meanwhile, kNN outperformed the performance of

MLP, MLP+bagging, MLP+bayesian,

MLP+adaboost, SVR, SVR+bayesian, and

SVR+adaboost in almost all datasets. Meanwhile,

CART is not very sensitive to parameter tuning and

performs poorly on small data. It can be observed,

that CART+bagging and CART+adaboost have

slightly lower MAE and RMSE values than baseline

CART. Overall, CART+bagging and

CART+adaboost have performance close to RF. On

the other hand, MLP is often not one of the best

approaches like the others in our analysis. It is proven

that MLP+bagging has the worst performance on the

china, kemerer, maxwell, and nasa93 datasets.

Meanwhile, MLP+adaboost has the worst

performance on the china dataset. RF is a promising

technique for SEE, and it is sensitive to parameter

tuning (RF+bayesian and RF+adaboost) with

performance that may exceed that of the CART

method.

The accuracy values (MAE and RMSE) of all

models for the five datasets are depicted in Figs. 15

and 16. We observe that the LSTM+GS model is

more accurate than the other benchmark models for

all five datasets. Consequently, modifying the

hyperparameter using a grid search can enhance the

performance of our model, as the accuracy value is

higher than the LSTM baseline.

5.4 Statistical performance evaluation

In this section, we further carried out a Friedman's

ANOVA analysis on the regression performance for

non-parametric tests used to test significance

between two or more models [67]. The results of the

ANOVA and post hoc tests for statistical tests can be

seen in Table 8.

The ANOVA test for the 15 methods has a

significant value of 0.000 (p-value<0.05). Meanwhile,

the F-value is 3.693 and the F-table(15, 319) value is

1.710. Because the F-value 3.693>F-table 1.710, is

Received: March 11, 2023. Revised: May 10, 2023. 175

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

Figure. 15 Model comparison on MAE values across datasets

Figure. 16 Model comparison on RMSE values across datasets

Table 8. Comparison of predictor machine performance

using Friedman's ANOVA test

 df
Mean

Square
F-value Sig.

Between

Groups

15 16604496.01 3.693 .000

Within

Groups

304 4496655.80

Total 319

the basis for decision making in the F test. Thus, it

can be stated that the two or more models are

statistically significant. In this case, two-way

ANOVA shows a significant difference between the

variation of factors (models). In conclusion, our

LSTM+GS model performs better and more robustly

than other considered baseline algorithms in the SEE

field by providing significantly improved predictive

results.

We further conducted a duncan multiple range

test (DMRT) aims to determine the clustering of

performance schemes in each algorithm and whether

the difference in performance (better/worse) is

statistically significant or not, which is presented in

the following Table 9.

Based on the DMRT test, it is known that the

results of the comparison of the prediction accuracy

are divided into two groups. The first group is

LSTM+GS, CART+adaboost, RF, CART+bagging,

RF+bayesian, RF+adaboost, CART, kNN, and

SVR+bayesian. The second group is MLP+bayesian,

LSTM, SVR, SVR+adaboost, MLP, MLP+bagging,

Received: March 11, 2023. Revised: May 10, 2023. 176

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

Table 9. Model performance comparison using DMRT

test

Methods N
Subset for alpha = 0.05

1 2

LSTM+GS 50 664.7259

CART+adaboost 50 732.9039

RF 50 763.8111

CART+bagging 50 779.0536

RF+bayesian 50 802.0740

RF+adaboost 50 818.6823

CART 50 986.1421

kNN 50 992.7523

SVR+bayesian 50 1297.7148

MLP+bayesian 50 1766.7781 1766.7781

LSTM 50 1870.2694 1870.2694

SVR 50 1987.7859 1987.7859

SVR+adaboost 50 2006.4632 2006.4632

MLP 50 3118.4453

MLP+bagging 50 3127.9692

MLP+adaboost 50 3132.3377

Sig. .104 .080

and MLP+adaboost.

The DMRT test results show that the variants are

LSTM+GS, CART+adaboost, RF, CART+bagging,

RF+bayesian, RF+adaboost, CART, kNN, and

SVR+bayesian are clusters that are not significantly

different.

5.5 Threat to validity

The construct validity, we will also discuss the

three main threats in the method we developed using

LSTM+GS. The first threat pertains to the data set's

suitability for training an RNN-based LSTM+GS

model, which requires large quantities of data to mine

historical patterns. We used five datasets from the

software engineering repository, which are small

datasets.On the other hand, we also train the LSTM

method to perform well on small datasets. The second

threat relates to the problem of overfitting the use of

our LSTM+GS model, and the third threat concerns

the issue of errors in alternative machine learning

options in the context of SEE for comparison. We

have randomized the training examples in each epoch.

This helps to increase generalizability. Next, the use

of cross-validation techniques. Then, an early stop is

implemented, wherein training is terminated when

the test set yields the lowest error rate. This method

is highly effective at preventing overfitting. A further

threat is posed by the selection of alternative machine

learning techniques in the context of SEE for

comparison. There may be a need for a more precise

spectrum of techniques for the effort prediction

problem. Based on a survey of the relevant literature,

we have chosen the most effective solution for this

issue.

6. Conclusion

In this studies, we propose a LSTM-grid search-

based deep neural network for software effort

estimation. We used a robust strategy by redesigning

the RNN-based LSTM to work well on small data

sets. LSTM network optimization involves several

hyperparameters. The application of grid search as an

optimization approach because it has relatively few

function evaluations and optimizes much faster. This

helps enhance deep learning as a variation of NN to

generate robust models. Furthermore, the designed

LSTM-grid search model is compared with other

baseline algorithms under consideration using the 3-

fold cross validation method and through five

datasets: china, kemerer, kitchenham, maxwell, and

nasa93. The evaluation criteria used are MAE and

RMSE. Our study shows that the proposed model

outperforms all other baseline algorithms. This study

also shows that parameter tuning can result in

improved model performance.

Our proposed method is in the offline scenario,

the most common setting in the SEE community.

Therefore, adapting the online scenario will be

fruitful work in the future. We may find interesting

findings by investigating the sensitivity to parameter

tunings, encouraging their practical use.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Conceptualization, R. Marco; methodology, R.

Marco, S. S. S. Ahmad and S. Ahmad; validation, S.

S. S. Ahmad and S. Ahmad; formal analysis, R.

Marco, S. S. S. Ahmad and S. Ahmad; investigation,

R. Marco, S. S. S. Ahmad and S. Ahmad; resources,

R. Marco, S. S. S. Ahmad and S. Ahmad; data

curation, R. Marco, S. S. S. Ahmad and S. Ahmad;

writing—original draft preparation, R. Marco;

writing—review and editing, S. S. S. Ahmad and S.

Ahmad; visualization, R. Marco; supervision, S. S. S.

Ahmad and S. Ahmad; funding acquisition, R. Marco,

S. S. S. Ahmad and S. Ahmad.

References

[1] L. Song, L. L. Minku, and X. Yao, “A novel

automated approach for software effort

estimation based on data augmentation”, In:

Proc. of International Conf. on European

Software Engineering Conference and

Symposium on the Foundations of Software

Received: March 11, 2023. Revised: May 10, 2023. 177

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

Engineering, San Francisco, USA, pp. 468–479,

2018.

[2] S. Ezghari and A. Zahi, “Uncertainty

management in Software effort estimation using

a consistent fuzzy analogy-based method”,

International Journal of Applied Soft Computing,

Vol. 67, pp. 540–557, 2018.

[3] N. Ramakrishnan, H. A. Girijamma, and K.

Balachandran, “Enhanced Process Model and

Analysis of Risk Integration in Software effort

estimation”, In: Proc. of International Conf. on

Smart Systems and Inventive Technology,

Stanford, California, pp. 419–422, 2019.

[4] R. Alizadehsani, M. Roshanzamir, S. Hussain, A.

Khosravi, A. Koohestani, M. H. Zangooei, M.

Abdar, A. Beykikhoshk, A. Shoeibi, A. Zare, M.

Panahiazar, S. Nahavandi, D. Srinivasan, A. F.

Atiya, and U. R. Acharya, “Handling of

uncertainty in medical data using machine

learning and probability theory techniques: a

review of 30 years (1991–2020)”, International

Journal of Annals of Operations Research, Vol.

128, pp. 1–42, 2021.

[5] M. M. Ozturk, “The impact of parameter

optimization of ensemble learning on defect

prediction”, International Journal of Computer

Science of Moldova, Vol. 27, No. 1, pp. 85–128,

2019.

[6] S. K. Palaniswamy and R. Venkatesan,

“Hyperparameters tuning of ensemble model for

software effort estimation”, International

Journal of Ambient Intelligence and Humanized

Computing, Vol. 12, pp. 6579–6589, 2020.

[7] L. Song, L. L. Minku, and X. Yao, “The impact

of parameter tuning on software effort

estimation using learning machines”, In: Proc.

of International Conf. on Predictive Models in

Software Engineering, Maryland, USA, pp. 9:1-

9:10, 2013.

[8] L. V. Arias, C. Q. López, J. G. Coto, A. Martínez,

and M. Jenkins, “Evaluating hyper-parameter

tuning using random search in support vector

machines for software effort estimation”, In:

Proc. of International Conf. on Predictive

Models and Data Analytics in Software

Engineering, New York, United States, pp. 31–

40 , 2020.

[9] L. L. Minku and X. Yao, “An analysis of multi-

objective evolutionary algorithms for training

ensemble models based on different

performance measures in software effort

estimation”, In: Proc. of International Conf. on

Predictive Models in Software Engineering,

Maryland, USA, pp. 1–10, 2013.

[10] M. S. Khan, F. Jabeen, S. Ghouzali, Z. Rehman,

S. Naz, and W. Abdul, “Metaheuristic

Algorithms in Optimizing Deep Neural Network

Model for Software Effort Estimation”,

International Journal of IEEE Access, Vol. 9, pp.

60309–60327, 2021.

[11] M. M. Öztürk, “A tuned feed-forward deep

neural network algorithm for effort estimation”,

International Journal of Experimental and

Theoretical Artificial Intelligence, Vol. 00, No.

00, pp. 1–25, 2021.

[12] A. Corazza, S. Di Martino, F. Ferrucci, C.

Gravino, F. Sarro, and E. Mendes, “Using tabu

search to configure support vector regression for

effort estimation”, International Journal of

Empirical Software Engineering, Vol. 18, No. 3,

pp. 506–546, 2013.

[13] A. Zakrani, A. Najm, and A. Marzak, “Support

Vector Regression Based on Grid-Search

Method for Agile Software Effort Prediction”,

In: Proc. of International Conf. on Information

Science and Technology, Marrakech, Morocco,

pp. 492–497, 2018.

[14] M. O. Elish, “Assessment of voting ensemble for

estimating software development effort”, In:

Proc. of International Conf. on Computational

Intelligence and Data Mining, Singapore, pp.

316–321 , 2013.

[15] E. Kocaguneli, T. Menzies, J. Hihn, and B. H.

Kang, “Size doesn’t matter? On the value of

software size features for effort estimation”, In:

Proc. of International Conf. On Predictive

Models in Software Engineering, Lund, Sweden,

pp. 89–98, 2012.

[16] L. L. Minku and X. Yao, “Ensembles and

locality: Insight on improving software effort

estimation”, International Journal of

Information and Software Technology, Vol. 55,

No. 8, pp. 1512–1528, 2013.

[17] M. Hosni, A. Idri, A. Abran, and A. Bou, “On

the value of parameter tuning in heterogeneous

ensembles effort estimation”, International

Journal of Soft Computing, Vol. 22, No. 18, pp.

5977-6010, 2017.

[18] J. J. C. Gallego, P. R. Soria, and B. M. Herrera,

“Analogies and Differences between Machine

Learning and Expert Based Software Project

Effort Estimation”, In: Proc. of International

Conf. On Software Engineering, Artificial

Intelligence, Networking and

Parallel/Distributed Computing, Butterworth-

Heinemann, United States, pp. 269–276, 2010.

[19] P. Phannachitta, “On an Optimal Analogy-based

Software Effort Estimation”, International

Journal of Information and Software

Technology, Vol. 125, No. June 2019, pp.

Received: March 11, 2023. Revised: May 10, 2023. 178

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

106330, 2020.

[20] A. Arcuri and G. Fraser, “Parameter tuning or

default values? An empirical investigation in

search-based software engineering”, In: Proc. of

International Conf. On Search Based Software

Engineering, Szeged, Hungary, pp. 33–47, 2011.

[21] F. Tan, “Regression analysis and prediction

using LSTM model and machine learning

methods”, In: Proc. of International Conf. On

Artificial Intelligence and Information Systems,

Chongqing, China, Vol. 1982, 2021.

[22] S. Bouktif, A. Fiaz, A. Ouni, and M. A. Serhani,

“Optimal Deep Learning LSTM Model for

Electric Load Forecasting using Feature

Selection and Genetic Algorithm : Comparison

with Machine Learning Approaches”,

International Journal of Energies MDPI, Vol.

11, No. 1636, pp. 1–20, 2018.

[23] D. Liu, S. Lee, Y. Huang, and C. J. Chiu, “Air

pollution forecasting based on attention-based

LSTM neural network and ensemble learning”,

International Journal of Expert Systems, No.

November, pp. 1–16, 2019.

[24] N. Bakhashwain and A. Sagheer, “Online

Tuning of Hyperparameters in Deep LSTM for

Time Series Applications”, International

Journal of Intelligent Engineering and Systems,

Vol. 14, No. 1, pp. 212–220 , 2021, doi:

10.22266/ijies2021.0228.21.

[25] M. Qin, “Lattice LSTM Model for Function

Point Based Software Cost Measurement”, In:

Proc. of International Conf. On Information

Technology and Artificial Intelligence,

Chongqing, China, Vol. 8, pp. 731–735, 2019..

[26] T. Kim and S. Cho, “Neurocomputing

Optimizing CNN-LSTM neural networks with

PSO for anomalous query access control”,

International Journal of Neurocomputing, Vol.

456, pp. 666–677, 2021.

[27] Y. Dai and J. Huang, “A Sales Prediction

Method Based on LSTM with Hyper-Parameter

Search”, In: Proc. of International Conf. On

Industrial Applications of Big Data and

Artificial Intelligence, Shenzhen, China, Vol.

1756, 2021.

[28] B. Z. Aufa, S. Suyanto, and A. Arifianto,

“Hyperparameter Setting of LSTM-based

Language Model using Grey Wolf Optimizer”,

In: Proc. of International Conf. On Data Science

and Its Applications, Bandung, Indonesia, pp. 1–

5, 2020.

[29] I. Priyadarshini and C. Cotton, “A novel LSTM–

CNN–grid search-based deep neural network for

sentiment analysis”, International Journal of

Supercomputing, Vol. 77, No. 12, pp. 13911–

13932, 2021.

[30] M. Cao, V. O. K. Li, and V. W. S. Chan, “A

CNN-LSTM Model for Traffic Speed

Prediction”, International Journal of IEEE

Xplore, pp. 1–5, 2020.

[31] J. Bergstra and Y. Bengio, “Random search for

hyper-parameter optimization”, International

Journal of Machine Learning Research, Vol. 13,

pp. 281–305, 2012.

[32] O. Chapelle, V. Vapnik, O. Bousquet, and S.

Mukherjee, “Choosing multiple parameters for

support vector machines”, International Journal

of Machine Learning, Vol. 46, pp. 131–159,

2002.

[33] J. Snoek, H. Larochelle, and R. P. Adams,

“Practical Bayesian Optimization of Machine

Learning Algorithms”, In: Proc. of International

Conf. On Neural Information Processing

Systems, New York, United States, pp. 2951–

2959, 2012.

[34] Á. S. Illana, D. P. Guaita, D. C. García, J. D. S.

Herráez, M. Vento, J. L. R. Cerdá, G. Quintás,

and J. Kuligowski, “Model selection for within-

batch effect correction in UPLC-MS

metabolomics using quality control - Support

vector regression”, International Journal of

Analytica Chimica Acta, Vol. 1026, pp. 62–68,

2018.

[35] L. L. Minku, “A novel online supervised

hyperparameter tuning procedure applied to

cross-company software effort estimation”,

International Journal of Empirical Software

Engineering, Vol. 24, pp. 3153–3204, 2019.

[36] L. V. Arias and C. Q. López, “Comparative

study of random search hyper-parameter tuning

for software effort estimation”, In: Proc. of

International Conf. On Predictive Models and

Data Analytics in Software Engineering, New

York, United States, pp. 21–29, 2021.

[37] P. Phannachitta and K. Matsumoto, “Model-

based software effort estimation - A robust

comparison of 14 algorithms widely used in the

data science community”, International Journal

of Innovative Computing, Information and

Control, Vol. 15, No. 2, pp. 569–589, 2019.

[38] M. K. Kodmelwar, S. D. Joshi, and V. Khanna,

“A Deep Learning Modified Neural Network

Used for Efficient Effort Estimation”,

International Journal of Computational and

Theoretical Nanoscience, Vol. 15, No. 11, pp.

3492–3500, 2018.

[39] M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham,

A. Ghose, and T. Menzies, “A Deep Learning

Model for Estimating Story Points”,

International Journal of IEEE Transactions on

Received: March 11, 2023. Revised: May 10, 2023. 179

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

Software Engineering, Vol. 45, No. 7, pp. 637–

656, 2019.

[40] E. M. D. B. Fávero, D. Casanova, and A. R.

Pimentel, “SE3M: A Model for Software Effort

Estimation Using Pre-trained Embedding

Models”, International Journal of Information

and Software Technology, Vol. 147, No. 106886,

2022.

[41] T. Kangwantrakool, K. Viriyayudhakorn, and T.

Theeramunkong, “Software Development Effort

Estimation from Unstructured”, International

Journal of Intelligent Information and

Communication Technology and Its

Applications to Creative Activity Support, No. 4,

pp. 739–747, 2020.

[42] T. E. Idriss, A. Idri, I. Abnane, and Z. Bakkoury,

“Predicting Blood Glucose using an LSTM

Neural Network”, In: Proc. of International

Conf. On Computer Science and Information

Systems, Leipzig, Germany, pp. 35–41, 2019.

[43] D. Karmiani, R. Kazi, A. Nambisan, A. Shah,

and V. Kamble, “Comparison of Predictive

Algorithms : Backpropagation , SVM , LSTM

and Kalman Filter for Stock Market”, In: Proc.

of International Conf. On Amity International

Conference on Artificial Intelligence, Dubai,

United Arab Emirates, pp. 228–234 , 2019.

[44] H. Wang, W. Zhuang, and X. Zhang, “Software

Defect Prediction Based on Gated Hierarchical

LSTMs”, International Journal of IEEE

Transactions on Reliability, Vol. 7, No. 2, pp.

711–727, 2021.

[45] P. S. Kumar, H. S. Behera, K. Anisha Kumari, J.

Nayak, and B. Naik, “Advancement from neural

networks to deep learning in software effort

estimation: Perspective of two decades”,

International Journal of Computer Science

Review, Vol. 38, p. 100288, 2020.

[46] Y. Li and H. Cao, “Prediction for Tourism Flow

based on LSTM Neural Network”, International

Journal of Procedia Computer Science, Vol. 129,

pp. 277–283, 2018.

[47] G. Jung and S. Y. Choi, “Forecasting foreign

exchange volatility using deep learning

autoencoder-LSTM techniques”, International

Journal of Complexity, Vol. 2021, 2021.

[48] D. M. Belete and M. D. Huchaiah, “Grid search

in hyperparameter optimization of machine

learning models for prediction of HIV/AIDS test

results”, International Journal of Computers

and Applications, 2021.

[49] S. Lin, K. Ying, S. Chen, and Z. Lee, “Particle

swarm optimization for parameter determination

and feature selection of support vector

machines”, International Journal of Expert

Systems with Applications, Vol. 35, pp. 1817–

1824, 2008.

[50] G. Behera and N. Nain, “GSO-CRS: grid search

optimization for collaborative recommendation

system”, International Journal of Sadhana -

Academy Proceedings in Engineering Sciences,

Vol. 47, No. 3 , pp. 1–12 , 2022.

[51] E. Balouji, I. Y. H. Gu, M. H. J. Bollen, A.

Bagheri, and M. Nazari, “A LSTM-based deep

learning method with application to voltage dip

classification”, In: Proc. of International Conf.

On Harmonics and Quality of Power, Ljubljana,

Slovenia, Vol. 2018-May, pp. 1–5 , 2018.

[52] F. B. Ahmad and L. M. Ibrahim, “Software

Development Effort Estimation Techniques

Using Long Short Term Memory”, In: Proc. of

International Conf. On Computer Science and

Software Engineering, Duhok, Iraq, No. x , pp.

182–187, 2022.

[53] F. Qi, X. Y. Jing, X. Zhu, X. Xie, B. Xu, and S.

Ying, “Software effort estimation based on open

source projects: Case study of Github”,

International Journal of Information and

Software Technology, Vol. 92, pp. 145–157,

2017.

[54] R. Marco, S. Sharifah, S. Ahmad, and S. Ahmad,

“Bayesian Hyperparameter Optimization and

Ensemble Learning for Machine Learning

Models on Software Effort Estimation”,

International Journal of Advanced Computer

Science and Applications, Vol. 13, No. 3, pp.

419–430, 2022..

[55] S. Shukla, S. Kumar, and P. R. Bal, “Analyzing

effect of ensemble models on multi-layer

perceptron network for software effort

estimation”, In: Proc. of International Conf. On

IEEE World Congress on Services, Milan, Italy,

pp. 386–387, 2019.

[56] A. Zakrani, M. Hain, and A. Namir, “Software

development effort estimation using random

forests: An empirical study and evaluation”,

International Journal of Intelligent Engineering

and Systems, Vol. 11, No. 6, pp. 300–311, 2018,

doi: 10.22266/ijies2018.1231.30.

[57] A. K. Bardsiri, S. M. Hashemi, and M. Razzazi,

“Statistical Analysis of the Most Popular

Software Service Effort Estimation Datasets”,

International Journal of Telecommunication,

Electronic and Computer Engineering, Vol. 7,

No. 1, pp. 87–96 , 2015.

[58] B. Vasilescu, A. Serebrenik, and T. Mens, “A

historical dataset of software engineering

conferences”, In: Proc. of International Conf.

On Mining Software Repositories, San Francisco,

CA, USA, pp. 373–376 , 2013.

Received: March 11, 2023. Revised: May 10, 2023. 180

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.14

[59] S. Viaene, G. Dedene, and R. A. Derrig, “Auto

claim fraud detection using Bayesian learning

neural networks”, International Journal of

Expert Systems with Applications, Vol. 29, No.

3, pp. 653–666, 2005.

[60] A. G. P. Varshini, K. A. Kumari, D. Janani, and

S. Soundariya, “Comparative analysis of

Machine learning and Deep learning algorithms

for Software Effort Estimation”, In: Proc. of

International Conf. On Data Analytics,

Intelligent Systems and Information Security,

Pollachi, India, Vol. 1767, No. 1, 2021.

[61] J. Keung, “Empirical Evaluation of Analogy-X

for Software Cost Estimation” In: Proc. of

International Conf. On Empirical Software

Engineering and Measurement, New York,

United States, pp. 294–296 , 2008.

[62] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard,

P. W. Jones, D. C. Hoaglin, K. E. Emam, and J.

Rosenberg, “Preliminary guidelines for

empirical research in software engineering”,

International Journal of Transactions on

Software Engineering, Vol. 28, No. 8, pp. 721–

734, 2002.

[63] K. Maxwell, “Applied Statistics for Software

Managers”, Prentice-Hall, Englewood Cliffs, NJ,

2002.

[64] B. Kitchenham and S. Linkman, “Estimates,

uncertainty, and risk”, International Journal of

Software, Vol. 14, No. 3, pp. 69–74, 1997.

[65] D. P. Kingma and J. L. Ba, “Adam: A method

for stochastic optimization”, In: Proc. of

International Conf. On Learning

Representations, San Diego, pp. 1–15, 2015.

[66] Y. Yang, K. Zheng, C. Wu, and Y. Yang,

“Improving the classification effectiveness of

intrusion detection by using improved

conditional variational autoencoder and deep

neural network”, International Journal of

Sensors (Switzerland), Vol. 19, No. 11, 2019.

[67] Y. Bai, J. Xie, D. Wang, W. Zhang, and C. Li,

“Computers & Industrial Engineering A

manufacturing quality prediction model based

on AdaBoost-LSTM with rough knowledge”,

International Journal of Computers & Industrial

Engineering, Vol. 155, No. March, p. 107227,

2021.

