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Abstract: The use of cloud services is in high demand due to their high storage and computing capacity. Apache 

spark provides an open deployment framework for data storage and computation using cluster computing. The 

specified spark core scheduler uses FIFO to manage job execution in batches. However, it may not be suitable for 

large-scale clusters due to the unevenness in managing resource allocation between different types of applications. 

Because of this, most of the work executors are still underutilized and resources are wasted in all the pods, leading to 

cost inefficiencies. Using apache spark on kubernetes to run cloud applications will ensure rapid resource 

management for workload execution. Incoming workloads vary widely across applications, so it is critical to manage 

workload allocation to ensure QoS and cost efficiency. This paper proposes a job scheduling mechanism (JSM) for 

apache spark on kubernetes to dynamically schedule job allocation for the efficient execution of various big data 

applications. The JSM process predicts the cluster load and suggests relocation of workloads to efficiently distribute 

the workload to the lower loaded pods in a standard cluster to optimize cost performance. It identifies the upcoming 

workload of a job and determines the best-fit pod and aims to reduce the usage of CPU and memory which result in 

enhancing cost efficiency. The JSM's effective management of job allocation and migration among the underload 

pods preserves the resource and enhances cost efficiency. Experimental settings are configured to evaluate cluster 

resources with benchmark statistics output for application job execution. The outcome results of cost, job 

performance, and scheduling overhead show improved cost efficiency for job execution. The comparison with the 

existing scheduler with varying request load shows an improvisation of 2% in cost efficiency and 3% lower 

scheduling overhead. 

Keywords: Scheduling, Job allocation, Big data, Apache spark, Kubernetes, Clustering. 

 

 

1. Introduction 

The increased usage of cloud computing over 

the Internet demands the utilization of cloud 

resources in terms of the virtual technique model 

provided by virtual machines (VM) instances. The 

flexibility to adapt any kind of application makes it 

an open choice for most organizations to build their 

private cloud platform as per their needs [1]. Since 

these private clouds have limited physical resources, 

most researchers are going on to maximize resource 

utilization and provide guaranteed services to users. 

Big data computing has become important due 

to the widespread analytical needs in all foremost 

business and technical areas of medical science, 

financial management, data processing, streaming, 

and many other research and developments. The 

most common frameworks which are being used for 

data processing in clouds are hadoop and spark [2]. 

Most organizations typically operate clusters of 

private computing frameworks on which one or 

more large data processors are processed. It gains 

popularity due to its enormous capacity of handling 

big data processing and providing the best 

developing support platform and storage. However, 

scheduling these big data workloads into a cloud-

hosted cluster can be challenging because the 

workload can be CPU-intensive and network-

intensive [3]. 
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Network and system heterogeneity, as well as 

significant network delays between computing 

nodes, are important factors that adversely affect 

latency-sensitive applications. In addition, as 

applications that are exposed to diverse workloads 

and exhibit quality of service (QoS) requirements, 

their deployment must also be optimally tuned to 

runtime. The current trend is to use software for 

application development and runtime management 

[4-5]. Containers with operating system-level 

virtualization have the advantage of reduced 

overhead compared to VMs. However, the 

performance of different activities or services can 

vary significantly over time, making it difficult to 

adopt appropriate resource allocations and 

decisions.[6-7]. 

Kubernetes (k8s) is a powerful tool for 

managing the deployment and lifecycle of 

containers, but it does not manage the cloud 

infrastructure running on top of the containers [8-

10]. If there are healthy nodes to work with, it scales 

containers and containers, but it's up to the user to 

provision and manage the infrastructure. It allows 

users to define resource instructions for containers 

based on their specific CPU and memory needs. 

Developers will often try to design based on 

assumptions that can be inaccurate, trial and error, 

and simulations with test traffic that can be 

ineffective because test metrics often differ from 

production usage. 

In addition, operations may vary based on 

equipment requirements to maintain consistent 

performance, and, the diversity of VM instances 

located in the cloud makes it difficult to develop 

cost-effective scheduling schemes [3, 11-12]. 

Scheduling defines a strategy for managing 

existing resources and assigning jobs that can be 

managed effectively. In this paper, we propose an 

efficient job scheduling (JSM) algorithm that 

minimizes the cost of using a cloud-hosted apache 

spark cluster to improve job execution efficiency. As 

k8s grows in popularity, many companies offering 

software-as-a-service (SaaS) and platform-as-a-

service (PaaS) products are using K8 clusters for 

their workflow. We use k8s and apache spark 

clusters to promote cost reduction using JMS 

through our scheduling and migration processes. 

Scheduling job workflows is a good way to 

optimize data center resource utilization [13-15]. 

The principle of VM migration is to dynamically 

distribute VMs periodically according to current 

resource requirements to take advantage of the 

dynamic nature of workloads in the cloud and 

reduce the number of physical servers. However, 

several essential concerns need to be addressed 

before moving: (1) the timing of the shifting, (2) the 

nature of the job to migration, (3) which pods (i.e., 

where the pods are located) must be selected to 

support the operations chosen for the migration. 

This works aims to contribute the following: 

 

• The pod over-load algorithm identifies the 

upcoming workload of a pod when determining 

the choice of an overloaded cluster using a pods 

selection method (PSM). The algorithm 

determines the likelihood of a Pod being too big 

to avoid probable desecrations of present SLA 

instructions and over-loading of the pod. 

• Loss of CPU performance resulted in inefficient 

jobs migration, resulting in additional resource 

loss and pod performance degradation. In this, a 

pod-picking algorithm that relies on CPU and 

memory losses in job relocation is suggested to 

advance pod enhancement and decrease 

inappropriate job relocation. 

• Jobs are migrated using a pod overload 

determination algorithm that analyzes pod states 

and recognizes unloaded pods using job 

allocation method (JAM). All jobs on the pod 

are relocated and the pod is terminated. This 

reduces resource utilization and enhances cost 

efficiency. 

 

The following sections of the paper are 

organized into five sections. Section-2 discusses the 

background and literature study of the relevant 

work. Section-3 presents the proposed JSM 

functions and procedures. Section-4 describes the 

experimental evaluation of the outcomes and 

section-5 presents the conclusion of the paper. 

2. Related works 

Cloud computing is changing IT engineering by 

facilitating the flexible allocation or sharing of 

computing resources comprising of CPU, memory, 

storage, and networks, to create, customize, and 

optimize large-scale network and cloud database 

systems[4, 14]. Since cloud computing serves many 

users around the world, large data centers host 

applications from different clients around the world 

[16]. These platforms use virtualization technology 

to duplicate the underlying physical resources due to 

which workloads for different applications vary 

greatly, workload and resource allocation must be 

controlled to ensure the quality of service [17]. 

In this work, we utilize a framework of apache 

spark with kubernetes to process big data. 

Kubernetes acts as a cluster manager for the nodes 

executing sparks jobs along with the proposed job 
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scheduling method. A brief concept and applicability 

of Apache sparks and Kubernetes in real time are 

discussed below. 

2.1 Apache sparks 

Apache spark is a data processing framework 

[18] that can execute fast processing jobs on very 

big data and can be distributed across multiple 

computers either alone or in combination with other 

distributed computing tools [19]. These two key 

attributes are relevant to the fields of big data and 

machine learning, which require the integration of 

enormous computing resources to process huge data. 

It also takes some of the logistical burdens of 

performing these jobs off developers’ shoulders 

through an easy-to-use API that eliminates most of 

the burden of distributed computing and big data 

processing [20-21]. 

Essentially, an apache spark program consists of 

two key modules: a driver that translates user code 

into multiple jobs that can be shared on worker 

nodes, and an executor that executes jobs that run on 

those nodes [22]. It will need some form of cluster 

manager to coordinate between the two. Spark can 

run autonomously in a cluster utilizing only the 

framework of spark and VM on every instance in 

the cluster. However, it is possible to use a more 

reliable sourcing or cluster-controlling system to 

control the distribution of VM based on job burdens. 

Enterprise applications typically run these on 

hadoop YARN, apache mesos, kubernetes, and 

dockers. 

The framework of Spark is designed explicitly to 

collaborate and run big data analysis for real-time 

applications [16, 18, 21]. It became a solid 

establishment for data learning and took the field of 

big data analytics at high speed. The software helps 

research engineers build and share scalable, high-

performance data analysis pipelines. Ultimately, it 

hides the particulars of distributed processing behind 

an appropriate API. Behind the scenes, spark 

partitions the raw data and distributes partitions 

among computer groups to optimize user 

calculations and use parallelism to reduce data 

traffic. Due to its appropriate API and raw 

implementation speed, Spark has led the world of 

big data immensely since its beginning. Many 

different applications run by multiple users compete 

for the same resources. Users are aware of the 

problems caused by the conflict: companies spend a 

lot of money on cloud appliances or VMs and don't 

get the results they need when they need them. 

Let's take a look at the remaining residuals with 

distributed processing problems. When developers 

submit a distributed processing application, they 

must specify the amount of CPU required for the 

application and other required parameters. But the 

hardware requirements (CPU, network, memory, 

etc.) may change after the job is finished. It was 

noted that most workplaces require reservations, 

while a few do not. Thus, most distributed systems 

that perform these jobs are said to consume twice as 

many resources as they need. 

Almost every business and every researcher 

needs big data analytics and competes with others 

on their clusters for resources. The emergence of 

real-time analytics – serving relevant content to 

website visitors, retail offers based on recent 

purchases, etc. performing such jobs makes source 

contention an even more pressing issue. A QoS 

certification effort will allow programmers to 

prioritize jobs and assure that nodes performing 

those jobs will prioritize the resources needed to 

complete them within a given time frame. In such a 

system, Spark jobs have real-time requirements, and 

QoS ensures that these jobs are sufficiently 

responsive to big data to improve analytics. 

Hagar et al. [7] proposed a deep learning model 

using Apache Spark for network intrusion detection 

to achieve high performance. In comparison, Apache 

Spark represents an improvisation of accurate 

prediction. But its management is based on the 

incoming requests, which shows an increase in 

resource consumption with increasing requests and 

also a high wait period. Gousios [23] suggests using 

Apache Spark for big data analysis. It describes the 

computational capabilities of Apache Spark in 

software engineering, with high-performance 

analytical mechanisms. It shows a high delay in 

scheduling and execution with high requests in the 

queue. Zaharia et al. [2] describe spark scalability to 

support programming models and big data 

applications. It demonstrates effective support for 

workloads, highlights the importance of 

computability in big data programming libraries, 

and encourages the development of more easily 

interoperable libraries. Zaharia et al. [24] introduce 

MapReduce for large data-intensive applications. It 

covers machine learning algorithms for interactive 

data analysis using the Spark framework. It shows 

Spark's improvement in query response time 

handling. 

2.2 Kubernetes 

To have a solution for the problem of executing 

multiple services on millions of servers around the 

world, Google built its internal container 

infrastructure called kubernetes (k8s). As the 
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demand for cloud services grows, k8s supports auto-

scaling to accommodate applications [25]. If 

container CPU usage reaches a definite level, then 

k8s will keep creating new container replicas until 

usage falls underneath the threshold, and when the 

request decreases, k8s will again reduce replicas to 

free up cluster resources to execute other workloads 

which use pod [26]. Kubernetes natively provides a 

pod scaling service, although it will schedule pods 

to run on any node that meets its requirements, it 

will not automatically scale the infrastructure, i.e. 

allocate more or less CPU and memory to a single 

pod [27]. 

Kubernetes users can configure the open-source 

cluster autoscaler feature to automatically resize the 

cluster and add more resources when pods are 

waiting to run [28]. However, there are some 

limitations to using this tool, especially for users 

who wish to take a more hands-off approach to their 

infrastructure, but it can result in a severe resource 

penalty since k8s does not care about instance type 

or size and will schedule pods on any healthy 

available node. Since a pod can only run on a single 

node, it will wait to be scheduled until a node of 

sufficient capacity becomes available. This delay 

can translate into service disruption to customers 

and wasted resources. Pods on these smaller 

instances can be rescheduled on another node, and 

the cluster will remain efficient, running only as 

much as it needs, with all pods scheduled [29-30]. 

This limits the ability to utilize different instance 

types and sizes when using cluster autoscaler and 

autoscaling groups. Instances must have the same 

capacity (CPU and memory) if they are in the same 

node group. Managing multiple node pools is 

complex, and ASGs must be managed independently 

by the user. This is the concept of container-based 

autoscaling, which uses real-time container 

requirements when provisioning infrastructure 

instead of fitting containers to predetermined or 

existing instances. Improper configuration can result 

in idle resources and increased operational costs or 

application performance issues because the cluster 

does not have enough capacity to run. Certain 

features and configurations must be set up or tuned 

correctly to achieve low cost and application 

reliability. Another important consideration is the 

workload type, as different configurations may need 

to be applied to further reduce costs, based on the 

job category and application necessity. 

Its popularity has grown since initial support for 

running spark on kubernetes was added to apache 

spark [22, 31]. The reasons are due to better 

isolation and resource distribution for simultaneous 

Spark applications in Kubernetes and the benefits of 

using a homogeneous and cloud-native setup for the 

entire technology stack of the enterprise. However, 

executing spark on kubernetes presents some 

challenges in a reliable, cost-effective, and secure 

manner. 

Hu et al. [26] proposed improvements to scaling 

Kubernetes resources based on pod replica 

prediction. It suggests enhancements to Kubernetes 

that automatically scale in response to dynamic load 

changes. The scaling of resources completely 

depends on the incoming resource request for a job. 

Its prediction does not estimate the leftover resource 

which makes the loss of the resources and also 

increasing in pod replica creates managing 

overhead, which depletes the cost-effectiveness. 

Liu et al. [28] describe the load-balancing 

component capabilities of kubernetes to support 

modest static capacity balancing guidelines and 

define a scheme to accommodate difficult 

commercial requirements. An added sophisticated 

dynamic load assessment policy is employed, which 

can more compliantly tailor the capacity balancing 

scheme to real commercial necessities. It defines a 

static capacity model which reserves the resource in 

prior which makes unavailability of pods for 

incoming variable jobs need. Even though it 

manages the resource load effectively but it shows 

high scheduling overhead with increasing job 

requests.  

Z. He [5] describes a container technology-based 

cluster management system that manages large-scale 

containers in kubernetes. He provides predictive 

models and request control mechanisms for 

incoming application requests, and creates service 

models to demonstrate cluster manageability and 

query response time improvements in Kubernetes.  

It shows an effective model for managing incoming 

job requests, but in case of high application requests 

it attains a high delay of scheduling, and also 

increasing the container size impacts the cost of the 

resources which reduces the cost efficiency of this 

model at high job requests. 

Huaxin et al. [11] propose a better-quality 

scheduling algorithm concerned with a multi-

occupant model where cluster consumers are 

sculpted as virtual clusters and a load of the cluster 

is regularly supervised in kubernetes. Rossi et al. 

[10] demonstrated the geographically spread and 

flexible placement of kubernetes containers with a 

planning tool that depends on kubernetes and 

prolongs it with adaptive and network-aware 

scheduling competencies. It offers an elastic and 

decentralized control loop that will be effortlessly 

adapted to dissimilar utilization schemes. 

Experimental evaluations demonstrate the benefits 
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of combining stability and deployment strategies 

and the significance of using network-aware 

deployment strategies when deploying kubernetes in 

geographically spread environments. 

Islam et al. [12] propose efficient scheduling 

algorithms that minimize resource consumption on a 

cloud-hosted apache spark cluster. It suggests 

prioritizing work within a given time frame, as well 

as a scheduling algorithm to monitor and adapt to 

cluster changes. It executed spark with apache 

mesos to demonstrate the application's performance. 

As a result, resource utilization reduction of up to 

34% is shown under various workload conditions. 

But here two constraints are observed concerning 

time and resources. If the resource is managed for 

optimizing the cost then scheduling delay is 

increasing with increasing job requests, in vice-

versa if scheduling time is met to avoid the deadline 

violation then high resources are utilized which 

impacts the cost-effectiveness. So, to have a balance 

model for both time and resources an accurate 

prediction mechanism is needed which can able to 

manage the resource and reduce the pod replication 

and time effectively with the increasing demand of 

jobs with a minimum scheduling overhead and high-

cost efficiency. In this paper, we propose an 

effective resource management and scheduling 

mechanism using Kubernetes cluster management to 

determine the improvement in the job scheduling 

mechanism. 

3. Proposed job scheduling mechanism 

Jobs are used to creating one or more pods and 

utilizing resources to meet the growing demands of 

an application. Pod replication utilizes additional 

resources and reduces the cost-effectiveness of the 

system. To improve cost efficiency, we propose a 

job scheduling mechanism (JSM) in the created 

pods. JSM identifies over-loaded or low-loaded 

pods and relocates jobs from over-loaded pods to 

low-loaded pods. 

The execution of JSM considers an IaaS 

configuration model where the service provider 

manages the system with the support of cloud, local, 

and application controllers. In such an IaaS model 

application controller leverages various built-in 

software technologies such as apache spark to 

control incoming user requests, and the cloud 

manager manages cloud facilities at the API level 

and ensures that user requests are directed to the 

desired application. Local administrators are 

responsible for managing the internal resources of 

the node and assigning jobs for the execution of 

requests. Fig. 1 shows the workflow model of JSM  
 

 
Figure. 1 Workflow model of JSM functions 

 

 
Figure. 2 Pod selections 

 

functional modules. 

These pods run different application jobs, which 

can be very dissimilar from each other but run 

simultaneously in the same node container. Based on 

receiving workloads, multiple pods on a node can be 

dynamically created or share the resources of 

containers. Since inbound workloads vary greatly 

and the resource requirements of each activity are 

different, effective resource and time management 

must be planned. To optimize the job workloads it 

can place dynamically in the pods to utilize the 

unused pod resources. Hence, the node pods which 

are idle or have no jobs to execute can be terminated 

to make it cost-effective. 

3.1 Job scheduling methodology 

The goal of JSM is to reduce the use of 

resources and increase cost efficiency. Methods of 

dynamic planning of operations in pods are based on 

two methods. The first method performs the pod's 

sections and the second method performs the jobs 

allocation. 

 

A. Pods selection method (PSM) 

To decide on pod selection, the prediction of 

load on each pod needs to be gathered first. In 

traditional strategies, simply the most key resource  
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Table 1. Notations list 

Notations Description 

L Integral load value at each pod resources 

D Set of different values of the resource of 

a pod 

wr Weight co-efficient of  a pod 

𝑓𝑑𝑟 Pod values for memory and CPU 

fcpu CPU co-efficient 

fmem Memory co-efficient 

Cuse Current usage of CPU 

Cresv Current reserve of CPU 

Ctotal Total CPU capacity 

Muse Current usage of Memory 

Mresv Current Reserve of Memory 

Mtotal Total Memory size 

wcpu weighted coefficient of the CPU 

wmem weighted coefficient of the Memory 

W A vector of the weighted value of Pods 

 

 

elements are utilized for the load prediction, which 

usually focuses on the CPU performance.  

In this regard, the cluster configuration and 

accurate prediction in cloud hosting servers are 

challenging due to their dynamic variability. The 

workflow of the mechanism of pod selection in PSM 

is shown in Fig. 2. Here, the PSM method 

interrelates with a set of pods and computes load 

conditions to identify the most appropriate pods for 

allocating inbound requests by the applications. The 

description of the utilized notations for computation 

is shown in Table 1. 

According to the decentralized scheme, each 

node maintains a vector to store the load factor 

values obtained from pods as load keys. Thus, L is 

used to measure the integral load value at each pod 

resource, and it describes the actual load condition 

in the pod using Eq. (1). 

 

𝐿 =
∑ 𝑤𝑟𝑓𝑑𝑟
𝐷
𝑟=0

𝐷
  (1) 

 

where D is a set of different values of the 

resource of a pod, wr symbolizes the weight co-

efficient of the rth pod and 𝑓𝑑𝑟  symbolizes pod 

values for memory and CPU, which are utilized to 

classify a pod for selection. The value of CPU and 

Memory is the most influential feature in the pod 

selection, so we compute CPU and Memory co-

efficient using Eqs. (2) and (3), 

 

𝑓𝑐𝑝𝑢 = 1 −
𝐶𝑢𝑠𝑒

𝐶𝑡𝑜𝑡𝑎𝑙−𝐶𝑟𝑒𝑠𝑣
  (2) 

 
Figure. 3 Job allocations 

 

𝑓𝑚𝑒𝑚 = 1 −
𝑀𝑢𝑠𝑒

𝑀𝑡𝑜𝑡𝑎𝑙−𝑀𝑟𝑒𝑠𝑣
         (3) 

 

Utilizing the computed fcpu and fmem we 

compute the required weighted coefficient of the 

pod node using Eqs. (4) and (5). 

 

𝑤𝑐𝑝𝑢 =
𝑓𝑐𝑝𝑢

𝑓𝑐𝑝𝑢+𝑓𝑚𝑒𝑚
  (4) 

 

𝑤𝑚𝑒𝑚 =
𝑓𝑚𝑒𝑚

𝑓𝑐𝑝𝑢+𝑓𝑚𝑒𝑚
  (5) 

 

With computing the value of L for each pod, we 

define the weight vector, 𝑊 =
(𝐿𝑝𝑜𝑑1 , 𝐿𝑝𝑜𝑑2 , . . . , 𝐿𝑝𝑜𝑑𝑛) . Now, with the obtained 

value of W, a sequence of pod array from over-

loaded to low-loaded is created. Based on this 

obtained sequence array the incoming job requests 

are prioritized for allocation. The process of job 

allocation we discuss in the next section. 

 

B. Job allocation method (JAM) 

Allocation of job workloads is a major problem 

with the use of critical resources. Therefore, it is 

very important to predict the best herd before the 

work is done. The resources needed to run the 

distributed pod must also be guaranteed. Various 

activities must be performed to ensure that the pods 

identified in the above process do not overload new 

pods hosting these activities and reduce resource 

utilization. After recognizing the pod to which a job 

can be allocated we have to identify the job which 

can best fit the selected pod as shown in Fig. 3. To 

do so we implement the function of the Best-Fit 

method [34] to predict the most appropriate pods 

suitable for allocation. 

Here the resources required for the job need to 

be considered primarily. The job is compared with 

the computed weighted load vector to identify the  
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Table 2. Load with varying resource use 

CPU/Mem 

Use 
fcpu fmem wcpu wmem 

Load 

(L) 

0.5 0.44 0.41 0.49 0.48 0.79 

0.6 0.33 0.29 0.37 0.35 0.89 

0.7 0.22 0.18 0.25 0.21 0.95 

0.8 0.11 0.06 0.12 0.07 0.99 

 

 

pod for utilization based on a defined level of 

minimum weight load (MWL) as β1 and Highest 

weight load (HWL) as β2 to find the pod for 

allocation. The process of JAM tries to select the 

pod which has the least load or is idle currently. In a 

case, if no pod is found for allocation based on the 

threshold configured then a new pod is started for 

the allocation. 

To choose the best pod for the job, we use the 

BestFit algorithm, which organizes the collection of 

jobs based on the increase in processor capacity 

required by the collection of pods.  

Let’s consider a pod having Ctotal =1, 

Cresv=0.10 and Mtotal =1, Mresv=0.15, then its 

fcpu , fmem, and wcpu , wmem will be as given in 

Table 2. 

The computed L values are stored in a WVector, 

and it is utilized as input for evaluating the incoming 

job resource need and its allocation. Let’s assume an 

incoming job demands a load of JOBUtilz = 0.42, 

then we select the best-fit pod within the range of 

minimum weighted load (MWL) as β1=0.2 and 

highest weighted load (HWL) as β2=0.95. Here, 

with iteration based on the number of pods count 

and comparing the JOBUtilz with the value of 

WVector we get three pods having load {0.79, 0.89, 

0.95}, and among these the least loaded pod is 

considered for allocating the incoming job.  

This methodology of allocation is implemented 

by the JAM method to discover a suitable pod for 

the job as described in Algorithm. 1, 

 

Algorithm-1: JAM method 

Input: Selected pod collection with weighted load 

value, WVector. 

1. JOBUtilz = calculate the utilization of 

jobToAllocate. 

2. MWL →β1;HWL →β2; 

3. minUtilz=β2;bestAllocation=-1; 

4. podcnt=sizeOf (WVector);  

 

5. for (p=0; p<podcnt; p++)  

6. { 

7. if (JOBUtilz+ WVector[p]>= 

β1)&&(JOBUtilz+ WVector[p]<= β2))  

8. {  

9. if (WVector[p]<minUtilz) 

10. { 

11.      minUtilz=WVector[p]; 

12.      bestAllocation =Pod[p] ; 

13. } 

14. } 

15. } 

16. if (bestAllocation>0) {  

17. JobToAllocate=bestAllocation; 

18. } 

19. else { 

20. createNewPod(JobToAllocate); 

21. } 

 

Algorithm-1 takes the selected collection from 

the PSM method as a WVector to determine the 

distribution of jobs. Here, for each pod in the 

WVector, iterative estimation is performed compared 

to every performance requirement to identify the 

best allocation. It calculates the sum of JOBUtilz of 

the present job with the pod weight value and then 

compares it with the threshold value. If it is>= β1 

and <= β2, and the present value of the JOBUtilz pod 

is lower than the relative to a minimum utility 

constant (minUtilz) which is configured to 0.2, then 

it is mapped to the best pod. If no pod is found, then 

a new pod will be created to perform the job. 

4. Experiment evaluation 

To evaluate the effectiveness of the proposed 

JSM, we configure the spark application on a 

kubernetes cluster in a self-contained environment 

with identical nodes and implement the JSM method 

to predict low-loaded pods to distribute the 

incoming Spark application requests. For evaluation, 

we set up a comparison program with baseline 

schedulers over benchmark application data [33]. 

Evaluation measures are used to measure costs, 

performance, and cost planning. The VMs are 

configured on the GCP platform with 4 CPU cores, 

16 GB of memory, and 20 GB of storage for a cost 

of $0.24/hour. 

4.1 Benchmark applications data 

We evaluate the enhancement of the proposed 

JSM using benchmark data information provided in 

BigDataBench [33]. We selected three types of 

application outputs for comparison as discussed by 

Islam et al. [12] WordCount, Sort, and PageRank. 

It creates a varying job workload input ranging 

from 1 Gb to 20 Gb for evaluating the execution 

performance. These jobs are extracted from the 

Facebook and Hadoop response traces for these 
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varying jobs. Incoming jobs vary according to high 

and low load for the different intervals of period. 

There are more than 100 job requests when the load 

is high and nearly 50 job requests when the load is 

low. Therefore, during periods of high load, 

maximum pod resources are over-loaded, whereas in 

low-load pods they are underutilized. 

4.2 Baseline schedulers performance 

The problem with most cluster scheduling 

methods for spark jobs is that they don't take 

facilitator-level job assignments into account. These 

methods primarily focus on choosing the resources 

or several nodes required by the respective job when 

it performing a decision for scheduling. However, 

the proposed JSM executes at the level of pod 

selectivity by incorporating resource utilization 

predictions to efficiently schedule for assigning 

jobs. The following scheduler is compared to 

identify the improvement of the proposal. 

 

• FIFO: Apache spark's default FIFO scheduler 

is installed on apache mesos. Here, jobs are 

scheduled based on a first-come first-service. 

Instead of using the scheduler's merge 

preference, it distributes executors in a round-

robin manner. Most existing scheduling 

algorithms use this preferred method of placing 

jobs and choose this scheduler as one of their 

baselines as it is also a common choice for 

users using spark jobs. 

• Morpheus [32]: In this strategy, low-cost 

packaging is utilized for actuator assignment. 

Based on the present load in a cluster it 

employs the strategy to detect the job's resource 

requirements (such as memory or CPU cores). 

Later, the jobs are sorted in ascending order as 

per the limited resource requirements. As a 

result, the cluster's resource is well-

proportioned during the scheduling and allows 

for running maximum jobs. 

• BFD [12]: This proposal is a greedy procedure 

inherited from the best-fit decreasing (BFD) 

heuristic to optimize the cost of apache spark 

clusters deployed using apache mesos as cluster 

scheduler for the applications. 

4.3 Result evaluation 

A. Cost efficiency 

This evaluation shows that the proposed 

scheduling algorithm can be applied to diverse kinds 

of applications while decreasing the cost of 

employing big data clusters. It stores the state of 

several pods used by the node to compute the sum of 

the cost acquired by the scheduler. Here, over period 

T, we summed up the number of pods used for the 

various jobs. The number of pods utilized in a given 

period is directly proportional to the running cost. 

So, the total cost we computed using the given Eq. 

(6). 

 

𝑇𝑜𝑡𝑎𝑙_𝐶𝑜𝑠𝑡 = ∑ 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑃𝑜𝑑𝑠(𝑡)𝑡∈𝑇  (6) 

 

It calculates the cost of each scheduling 

algorithm under heavy and light workloads to 

evaluate cost-effectiveness.  

Tables 3 and 4 shows the sum of cost acquired 

by diverse scheduling procedures during low and 

high job load period respectively. The proposed JSM 

utilizes pod resources efficiently, significantly 

reducing the cost of running jobs compared to other 

schedulers. Assigning work with effective 

scheduling allows JSM to achieve better cost 

efficiencies compared to BFD, Morpheus, and 

FIFO. Besides, Morpheus achieves somewhat 

improved than FIFO to keep costs down due to it 

jobs orders in a queue that balances the cluster 

resources to run additional jobs in the whole 

scheduling technique. 

 
Table 3. Schedulers cost having low-load 

Workload 

Type 
FIFO MORPHEUS BFD JSM 

WordCount 3.1 2.85 2.2 1.58 

Sort 3.4 3.2 2.4 1.61 

PageRank 6.82 6.54 6.12 5.14 

 

 

Table 4. Schedulers cost having high-load 

Workload 

Type 
FIFO MORPHEUS BFD JSM 

WordCount 4.5 4.35 3.76 3.45 

Sort 4.31 4.2 4.15 3.81 

PageRank 7.52 7.32 7.21 6.85 

 

 
Figure. 4 Cost of schedulars at low-load 
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Figure. 5 Cost of schedulars at high-load 

 
Table 5. Job performance having low-load 

Workload 

Type 
FIFO MORPHEUS BFD JSM 

WordCount 98 97 99 96 

Sort 96 95 98 96 

PageRank 498 489 421 401 

 

 
Table 6. Job performance having high-load 

Workload 

Type 
FIFO MORPHEUS BFD JSM 

WordCount 97 99 100 95 

Sort 125 128 124 120 

PageRank 302 303 295 292 

 

 

Fig. 4 shows the proposed JSM exhibits 

significant cost reduction during the low-load 

period. In comparison to the baseline scheduling 

algorithm, JSM reduces the cost of cluster usage for 

WordCount and sort applications by at least 35% 

and 40%, respectively. For PageRank applications, 

JSM reduces resource consumption costs by at least 

15% compared to FIFO. JSM also decreases 

resource utilization costs by 8% related to 

morpheus. The proposed JSM attempts to allocate 

the jobs of the similar assignment in fewer pods, so 

most of the random work happens within the pods, 

improving job performance and thus reducing the 

overall cost of applications. As shown in Fig. 5, 

during high-load the decrease in cost is lesser than 

low-load due to the overused of the cluster. In this 

situation, JSM shows cost efficiency near 6% to 

24% with variation in the value of workloads. 

 

B. Job Performance 

Tables 5 and 6 shows the average job finishing 

time for the scheduling procedures at low and high-

load variation.  

It shows similar or marginally improved by 

FIFO, morpheus, and BFD in comparison to the  
 

 
Figure. 6 Job execution performance at low load 

 

 
Figure. 7 Job execution performance at high load 

 

JSM with WordCount and sort. The enhancement of 

JSM is due to the use of fewer pods to accommodate 

the workloads and utilizing the available resources 

to their maximum efficiency as shown in Figs. 6 and 

7. 

In contrast, network-based applications such as 

PageRank degrade the result of FIFO, morpheus, 

and BFD because of unwarranted communication 

during the job allocation. However, JSM 

outperforms the comparing procedure in both load 

situations with PageRank applications. During high-

load periods, the cluster gets over-loaded, so it is not 

likely to combine a few pods shaving the same 

kind’s job. Hence, the outcome shows a better for 

PageRank applications at low load hours than at 

high load hours. During low-load hours, JSM 

improves runtime by at least 15% with WordCount, 

Sort, and PageRank by 5%. 

 

C. Scheduling overhead 

Here we evaluate the scheduling costs of several 

scheduling procedures in terms of deadline. The 

deadline is defined as proportional to the time it 

takes the scheduler to allocate jobs that are waiting 

in the queue for execution. The obtain values of 

each schedulers are given in Table 7. 
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Table 7. Scheduling overhead comparison 

Schedulers  Deadline Violation (%) 

FIFO 43 

MORPHEUS 35 

BFD 8 

JSM 12 

 

 

 
Figure.8 Scheduling overload for deadline violation 

 

In FIFO mode, the important job having the first 

deadline must have to wait in the scheduling queue, 

if it is requested after a few non-importance jobs. It 

needs to wait till other jobs have been completed 

which are in the queue ahead of it. Morpheus 

independently determines the priority of work, 

where the work that leads is well-adjusted for the 

important job through sharing of resources in the 

cluster. But, in reality, time-constrained importance 

may not provide a balanced distribution of resources 

during deployment. Therefore, other important jobs 

are performed before these jobs. BFD uses a modest 

scheme known as “Earliest Deadline First”, where 

entire jobs are organized as per their deadlines, and 

the job has the first deadline is scheduled first. The 

proposed JSM follows a similar allocation scheme 

to schedule jobs and allocate the best jobs using the 

BestFit method. 

Fig. 8 depicts scheduling overload in the case of 

deadline violation percentages for different 

schedulers. Here the higher the violation, the more 

overload in scheduling. In such cases, FIFO show 

41% and Morpheus shows 35% of jobs had deadline 

violations. Here, BFD shows a minimum deadline 

will of 8%. Compared with BFD, the proposed JSM 

has a 3% higher deadline violation rate. It has a 

marginally more time violation than BFD because it 

occasionally acquires a long period to identify the 

best cost-efficient allocation with this method, 

which arise more time violations compared to BFD. 

This makes JSM slightly higher scheduling 

overhead than BFD. However, this overhead can be 

ignored in comparison to baseline scheduling 

procedures. 

Table 8. Cost efficiency performance comparison 

No. of 

Requests 
 [5] [12] [26]  [28] JSM 

2000 3.89 3.75 5.29 3.79 3.45 

4000 4.66 4.15 5.95 4.5 3.81 

6000 6.88 7.21 7.25 5.88 5.85 

8000 7.85 7.81 9.54 7.59 6.54 

10000 9.81 8.33 11.28 8.9 7.52 

 

 

D. Comparison with schedulers 
In this section, we compare the proposed JSM 

with a few schedulers for evaluating the 

effectiveness of our proposal by measuring the cost 

efficiency and scheduling overhead measure. We 

compare with the scheduler proposed by Z. He [5] 

for managing large-scale job requests in Kubernetes 

using predictive models and request control 

mechanisms, Islam et al. [12] suggest a scheduler 

through job prioritizing and resource management in 

spark with apache mesos, Hu et al. [26] suggest a 

scheduler for auto-scaling of resources to dynamic 

managing load in kubernetes, and Liu et al. [28] 

presents a load-balancing scheduler based defined 

balancing guidelines to accommodate the incoming 

jobs in Kubernetes.  

All these schedulers are well managed and 

schedule the incoming job at low load, but at high 

load, they show variability in the results of cost 

efficiency and scheduling overhead as given in 

Tables 8 and 9. 

Fig. 9 shows the cost efficiency performance of 

the proposed JAM in comparing the schedulers. All 

the methods show an increase in cost with the 

increasing number of requests. It is due to the 

increasing job queue demands more resources which 

inflame the usage and reduces the cost efficiency 

(higher the cost lower the efficiency). The proposal 

given in [26] shows a high-cost value because it 

frequently does pod replication to balance the load 

of the incoming requests, whereas [5, 12, 28] and 

the proposed JSM shows nearby similar cost 

efficiency at lower request numbers, but with 

increasing requests they show an average growth in 

their cost it is because all these schedule methods 

are based on prediction and resource management. 

The proposed JSM shows a lower cost at a higher 

number of costs due to efficiently allocating the job 

within the best-fit pod with the least pod creation. It 

shows an average of 2% better cost efficiency in 

comparison.  

Fig. 10 shows the scheduling overhead among 

the schedulers. Here, [26] shows the least 

scheduling overhead due to its high scale pod 

creation with load variation due to which it attains  
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Figure. 9 Cost efficiency performance 

 

Table 9. Scheduling overload comparison 

No. of 

Requests 
 [5] [12] [26]  [28] JSM 

2000 1 1 1 1 1 

4000 3 2 1 3 2 

6000 12 8 3 10 8 

8000 14 12 6 12 10 

10000 18 15 10 16 12 

 

 

 
Figure. 10 Scheduling overload performance 

 

high cost as a limitation. The other schedulers also 

show similar scheduling overhead in case of low 

request numbers, but at high numbers, an 3-4 % of 

deadline violation is observed. It is due to the 

effective management of resources by employing 

load-balancing and employing the assessment policy 

by [28], whereas [5] employ the predictive models 

and control mechanisms for incoming application 

requests, and the [12] employ efficient scheduling 

algorithms that minimize resource consumption 

which causes the deadline violation in high request. 

The proposed JSM shows a 3% lower scheduling 

overhead in comparison to [5, 12, 28] due to its 

allocation scheme to schedule jobs and allocate the 

best jobs using the BestFit method. As a result, 

resource utilization reduction and average 

scheduling overhead make JSM a cost-efficient 

scheduler for application systems. 

5. Conclusion 

Job scheduling seems to be a challenge for big 

data processing in distributed cloud computing. This 

paper describes a job scheduling method (JSM) for 

apache spark on kubernetes to improve cost 

efficiency. The JSM defines two methods for 

predicting the overload and underload of pods 

running jobs and assigning jobs to underload pods to 

conserve resources on nodes. The PSM is defined 

for selecting pods, and the JSM is to find the best 

running pod for a specific job run.  

It contributes a mechanism to identify the 

upcoming workload of a pod and determine the best 

fit using PSM. It also reduces the usage of CPU and 

memory which result in enhancing cost efficiency, 

and the JSM contributes to the effective 

management of job allocation and migration among 

the underload pods to shut down the pod to preserve 

the resources and enhances cost efficiency. The 

comparison with the existing scheduler with varying 

requests shows an improvisation of 2% of cost 

efficiency and 3% lower scheduling overhead. 

We demonstrated extensive experimental results 

on benchmark application datasets to demonstrate 

the efficiency of the proposed JSM in different types 

of workloads. We also compared the algorithm to 

the existing default scheduler. The results 

recommend that the JSM scheduling method reduces 

the cost of resource usage by up to 35-40% in 

Apache Spark clusters deployed in the cloud. 

Evaluation measures of cost, job performance, and 

scheduling overhead show improved cost efficiency 

for job execution. The proposed work will evaluate 

the performance of heterogeneous work applications 

with different workload types to further improve 

work scheduling and cost efficiency. 
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