
Received: March 14, 2023. Revised: April 13, 2023. 519

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.41

Scheduling of Jobs Allocation for Apache Spark Using Kubernetes for Efficient

Execution of Big Data Application

Jayanthi M1* K. Ram Mohan Rao2

1Department of Computer Science and Informatics, Mahatma Gandhi University, Nalgonda, India

2Department of Information Technology, Vasavi College of Engineering, Hyderabad, India
* Corresponding author’s Email: jayanthimgu343@gmail.com

Abstract: The use of cloud services is in high demand due to their high storage and computing capacity. Apache

spark provides an open deployment framework for data storage and computation using cluster computing. The

specified spark core scheduler uses FIFO to manage job execution in batches. However, it may not be suitable for

large-scale clusters due to the unevenness in managing resource allocation between different types of applications.

Because of this, most of the work executors are still underutilized and resources are wasted in all the pods, leading to

cost inefficiencies. Using apache spark on kubernetes to run cloud applications will ensure rapid resource

management for workload execution. Incoming workloads vary widely across applications, so it is critical to manage

workload allocation to ensure QoS and cost efficiency. This paper proposes a job scheduling mechanism (JSM) for

apache spark on kubernetes to dynamically schedule job allocation for the efficient execution of various big data

applications. The JSM process predicts the cluster load and suggests relocation of workloads to efficiently distribute

the workload to the lower loaded pods in a standard cluster to optimize cost performance. It identifies the upcoming

workload of a job and determines the best-fit pod and aims to reduce the usage of CPU and memory which result in

enhancing cost efficiency. The JSM's effective management of job allocation and migration among the underload

pods preserves the resource and enhances cost efficiency. Experimental settings are configured to evaluate cluster

resources with benchmark statistics output for application job execution. The outcome results of cost, job

performance, and scheduling overhead show improved cost efficiency for job execution. The comparison with the

existing scheduler with varying request load shows an improvisation of 2% in cost efficiency and 3% lower

scheduling overhead.

Keywords: Scheduling, Job allocation, Big data, Apache spark, Kubernetes, Clustering.

1. Introduction

The increased usage of cloud computing over

the Internet demands the utilization of cloud

resources in terms of the virtual technique model

provided by virtual machines (VM) instances. The

flexibility to adapt any kind of application makes it

an open choice for most organizations to build their

private cloud platform as per their needs [1]. Since

these private clouds have limited physical resources,

most researchers are going on to maximize resource

utilization and provide guaranteed services to users.

Big data computing has become important due

to the widespread analytical needs in all foremost

business and technical areas of medical science,

financial management, data processing, streaming,

and many other research and developments. The

most common frameworks which are being used for

data processing in clouds are hadoop and spark [2].

Most organizations typically operate clusters of

private computing frameworks on which one or

more large data processors are processed. It gains

popularity due to its enormous capacity of handling

big data processing and providing the best

developing support platform and storage. However,

scheduling these big data workloads into a cloud-

hosted cluster can be challenging because the

workload can be CPU-intensive and network-

intensive [3].

Received: March 14, 2023. Revised: April 13, 2023. 520

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.41

Network and system heterogeneity, as well as

significant network delays between computing

nodes, are important factors that adversely affect

latency-sensitive applications. In addition, as

applications that are exposed to diverse workloads

and exhibit quality of service (QoS) requirements,

their deployment must also be optimally tuned to

runtime. The current trend is to use software for

application development and runtime management

[4-5]. Containers with operating system-level

virtualization have the advantage of reduced

overhead compared to VMs. However, the

performance of different activities or services can

vary significantly over time, making it difficult to

adopt appropriate resource allocations and

decisions.[6-7].

Kubernetes (k8s) is a powerful tool for

managing the deployment and lifecycle of

containers, but it does not manage the cloud

infrastructure running on top of the containers [8-

10]. If there are healthy nodes to work with, it scales

containers and containers, but it's up to the user to

provision and manage the infrastructure. It allows

users to define resource instructions for containers

based on their specific CPU and memory needs.

Developers will often try to design based on

assumptions that can be inaccurate, trial and error,

and simulations with test traffic that can be

ineffective because test metrics often differ from

production usage.

In addition, operations may vary based on

equipment requirements to maintain consistent

performance, and, the diversity of VM instances

located in the cloud makes it difficult to develop

cost-effective scheduling schemes [3, 11-12].

Scheduling defines a strategy for managing

existing resources and assigning jobs that can be

managed effectively. In this paper, we propose an

efficient job scheduling (JSM) algorithm that

minimizes the cost of using a cloud-hosted apache

spark cluster to improve job execution efficiency. As

k8s grows in popularity, many companies offering

software-as-a-service (SaaS) and platform-as-a-

service (PaaS) products are using K8 clusters for

their workflow. We use k8s and apache spark

clusters to promote cost reduction using JMS

through our scheduling and migration processes.

Scheduling job workflows is a good way to

optimize data center resource utilization [13-15].

The principle of VM migration is to dynamically

distribute VMs periodically according to current

resource requirements to take advantage of the

dynamic nature of workloads in the cloud and

reduce the number of physical servers. However,

several essential concerns need to be addressed

before moving: (1) the timing of the shifting, (2) the

nature of the job to migration, (3) which pods (i.e.,

where the pods are located) must be selected to

support the operations chosen for the migration.

This works aims to contribute the following:

• The pod over-load algorithm identifies the

upcoming workload of a pod when determining

the choice of an overloaded cluster using a pods

selection method (PSM). The algorithm

determines the likelihood of a Pod being too big

to avoid probable desecrations of present SLA

instructions and over-loading of the pod.

• Loss of CPU performance resulted in inefficient

jobs migration, resulting in additional resource

loss and pod performance degradation. In this, a

pod-picking algorithm that relies on CPU and

memory losses in job relocation is suggested to

advance pod enhancement and decrease

inappropriate job relocation.

• Jobs are migrated using a pod overload

determination algorithm that analyzes pod states

and recognizes unloaded pods using job

allocation method (JAM). All jobs on the pod

are relocated and the pod is terminated. This

reduces resource utilization and enhances cost

efficiency.

The following sections of the paper are

organized into five sections. Section-2 discusses the

background and literature study of the relevant

work. Section-3 presents the proposed JSM

functions and procedures. Section-4 describes the

experimental evaluation of the outcomes and

section-5 presents the conclusion of the paper.

2. Related works

Cloud computing is changing IT engineering by

facilitating the flexible allocation or sharing of

computing resources comprising of CPU, memory,

storage, and networks, to create, customize, and

optimize large-scale network and cloud database

systems[4, 14]. Since cloud computing serves many

users around the world, large data centers host

applications from different clients around the world

[16]. These platforms use virtualization technology

to duplicate the underlying physical resources due to

which workloads for different applications vary

greatly, workload and resource allocation must be

controlled to ensure the quality of service [17].

In this work, we utilize a framework of apache

spark with kubernetes to process big data.

Kubernetes acts as a cluster manager for the nodes

executing sparks jobs along with the proposed job

Received: March 14, 2023. Revised: April 13, 2023. 521

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.41

scheduling method. A brief concept and applicability

of Apache sparks and Kubernetes in real time are

discussed below.

2.1 Apache sparks

Apache spark is a data processing framework

[18] that can execute fast processing jobs on very

big data and can be distributed across multiple

computers either alone or in combination with other

distributed computing tools [19]. These two key

attributes are relevant to the fields of big data and

machine learning, which require the integration of

enormous computing resources to process huge data.

It also takes some of the logistical burdens of

performing these jobs off developers’ shoulders

through an easy-to-use API that eliminates most of

the burden of distributed computing and big data

processing [20-21].

Essentially, an apache spark program consists of

two key modules: a driver that translates user code

into multiple jobs that can be shared on worker

nodes, and an executor that executes jobs that run on

those nodes [22]. It will need some form of cluster

manager to coordinate between the two. Spark can

run autonomously in a cluster utilizing only the

framework of spark and VM on every instance in

the cluster. However, it is possible to use a more

reliable sourcing or cluster-controlling system to

control the distribution of VM based on job burdens.

Enterprise applications typically run these on

hadoop YARN, apache mesos, kubernetes, and

dockers.

The framework of Spark is designed explicitly to

collaborate and run big data analysis for real-time

applications [16, 18, 21]. It became a solid

establishment for data learning and took the field of

big data analytics at high speed. The software helps

research engineers build and share scalable, high-

performance data analysis pipelines. Ultimately, it

hides the particulars of distributed processing behind

an appropriate API. Behind the scenes, spark

partitions the raw data and distributes partitions

among computer groups to optimize user

calculations and use parallelism to reduce data

traffic. Due to its appropriate API and raw

implementation speed, Spark has led the world of

big data immensely since its beginning. Many

different applications run by multiple users compete

for the same resources. Users are aware of the

problems caused by the conflict: companies spend a

lot of money on cloud appliances or VMs and don't

get the results they need when they need them.

Let's take a look at the remaining residuals with

distributed processing problems. When developers

submit a distributed processing application, they

must specify the amount of CPU required for the

application and other required parameters. But the

hardware requirements (CPU, network, memory,

etc.) may change after the job is finished. It was

noted that most workplaces require reservations,

while a few do not. Thus, most distributed systems

that perform these jobs are said to consume twice as

many resources as they need.

Almost every business and every researcher

needs big data analytics and competes with others

on their clusters for resources. The emergence of

real-time analytics – serving relevant content to

website visitors, retail offers based on recent

purchases, etc. performing such jobs makes source

contention an even more pressing issue. A QoS

certification effort will allow programmers to

prioritize jobs and assure that nodes performing

those jobs will prioritize the resources needed to

complete them within a given time frame. In such a

system, Spark jobs have real-time requirements, and

QoS ensures that these jobs are sufficiently

responsive to big data to improve analytics.

Hagar et al. [7] proposed a deep learning model

using Apache Spark for network intrusion detection

to achieve high performance. In comparison, Apache

Spark represents an improvisation of accurate

prediction. But its management is based on the

incoming requests, which shows an increase in

resource consumption with increasing requests and

also a high wait period. Gousios [23] suggests using

Apache Spark for big data analysis. It describes the

computational capabilities of Apache Spark in

software engineering, with high-performance

analytical mechanisms. It shows a high delay in

scheduling and execution with high requests in the

queue. Zaharia et al. [2] describe spark scalability to

support programming models and big data

applications. It demonstrates effective support for

workloads, highlights the importance of

computability in big data programming libraries,

and encourages the development of more easily

interoperable libraries. Zaharia et al. [24] introduce

MapReduce for large data-intensive applications. It

covers machine learning algorithms for interactive

data analysis using the Spark framework. It shows

Spark's improvement in query response time

handling.

2.2 Kubernetes

To have a solution for the problem of executing

multiple services on millions of servers around the

world, Google built its internal container

infrastructure called kubernetes (k8s). As the

Received: March 14, 2023. Revised: April 13, 2023. 522

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.41

demand for cloud services grows, k8s supports auto-

scaling to accommodate applications [25]. If

container CPU usage reaches a definite level, then

k8s will keep creating new container replicas until

usage falls underneath the threshold, and when the

request decreases, k8s will again reduce replicas to

free up cluster resources to execute other workloads

which use pod [26]. Kubernetes natively provides a

pod scaling service, although it will schedule pods

to run on any node that meets its requirements, it

will not automatically scale the infrastructure, i.e.

allocate more or less CPU and memory to a single

pod [27].

Kubernetes users can configure the open-source

cluster autoscaler feature to automatically resize the

cluster and add more resources when pods are

waiting to run [28]. However, there are some

limitations to using this tool, especially for users

who wish to take a more hands-off approach to their

infrastructure, but it can result in a severe resource

penalty since k8s does not care about instance type

or size and will schedule pods on any healthy

available node. Since a pod can only run on a single

node, it will wait to be scheduled until a node of

sufficient capacity becomes available. This delay

can translate into service disruption to customers

and wasted resources. Pods on these smaller

instances can be rescheduled on another node, and

the cluster will remain efficient, running only as

much as it needs, with all pods scheduled [29-30].

This limits the ability to utilize different instance

types and sizes when using cluster autoscaler and

autoscaling groups. Instances must have the same

capacity (CPU and memory) if they are in the same

node group. Managing multiple node pools is

complex, and ASGs must be managed independently

by the user. This is the concept of container-based

autoscaling, which uses real-time container

requirements when provisioning infrastructure

instead of fitting containers to predetermined or

existing instances. Improper configuration can result

in idle resources and increased operational costs or

application performance issues because the cluster

does not have enough capacity to run. Certain

features and configurations must be set up or tuned

correctly to achieve low cost and application

reliability. Another important consideration is the

workload type, as different configurations may need

to be applied to further reduce costs, based on the

job category and application necessity.

Its popularity has grown since initial support for

running spark on kubernetes was added to apache

spark [22, 31]. The reasons are due to better

isolation and resource distribution for simultaneous

Spark applications in Kubernetes and the benefits of

using a homogeneous and cloud-native setup for the

entire technology stack of the enterprise. However,

executing spark on kubernetes presents some

challenges in a reliable, cost-effective, and secure

manner.

Hu et al. [26] proposed improvements to scaling

Kubernetes resources based on pod replica

prediction. It suggests enhancements to Kubernetes

that automatically scale in response to dynamic load

changes. The scaling of resources completely

depends on the incoming resource request for a job.

Its prediction does not estimate the leftover resource

which makes the loss of the resources and also

increasing in pod replica creates managing

overhead, which depletes the cost-effectiveness.

Liu et al. [28] describe the load-balancing

component capabilities of kubernetes to support

modest static capacity balancing guidelines and

define a scheme to accommodate difficult

commercial requirements. An added sophisticated

dynamic load assessment policy is employed, which

can more compliantly tailor the capacity balancing

scheme to real commercial necessities. It defines a

static capacity model which reserves the resource in

prior which makes unavailability of pods for

incoming variable jobs need. Even though it

manages the resource load effectively but it shows

high scheduling overhead with increasing job

requests.

Z. He [5] describes a container technology-based

cluster management system that manages large-scale

containers in kubernetes. He provides predictive

models and request control mechanisms for

incoming application requests, and creates service

models to demonstrate cluster manageability and

query response time improvements in Kubernetes.

It shows an effective model for managing incoming

job requests, but in case of high application requests

it attains a high delay of scheduling, and also

increasing the container size impacts the cost of the

resources which reduces the cost efficiency of this

model at high job requests.

Huaxin et al. [11] propose a better-quality

scheduling algorithm concerned with a multi-

occupant model where cluster consumers are

sculpted as virtual clusters and a load of the cluster

is regularly supervised in kubernetes. Rossi et al.

[10] demonstrated the geographically spread and

flexible placement of kubernetes containers with a

planning tool that depends on kubernetes and

prolongs it with adaptive and network-aware

scheduling competencies. It offers an elastic and

decentralized control loop that will be effortlessly

adapted to dissimilar utilization schemes.

Experimental evaluations demonstrate the benefits

Received: March 14, 2023. Revised: April 13, 2023. 523

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.41

of combining stability and deployment strategies

and the significance of using network-aware

deployment strategies when deploying kubernetes in

geographically spread environments.

Islam et al. [12] propose efficient scheduling

algorithms that minimize resource consumption on a

cloud-hosted apache spark cluster. It suggests

prioritizing work within a given time frame, as well

as a scheduling algorithm to monitor and adapt to

cluster changes. It executed spark with apache

mesos to demonstrate the application's performance.

As a result, resource utilization reduction of up to

34% is shown under various workload conditions.

But here two constraints are observed concerning

time and resources. If the resource is managed for

optimizing the cost then scheduling delay is

increasing with increasing job requests, in vice-

versa if scheduling time is met to avoid the deadline

violation then high resources are utilized which

impacts the cost-effectiveness. So, to have a balance

model for both time and resources an accurate

prediction mechanism is needed which can able to

manage the resource and reduce the pod replication

and time effectively with the increasing demand of

jobs with a minimum scheduling overhead and high-

cost efficiency. In this paper, we propose an

effective resource management and scheduling

mechanism using Kubernetes cluster management to

determine the improvement in the job scheduling

mechanism.

3. Proposed job scheduling mechanism

Jobs are used to creating one or more pods and

utilizing resources to meet the growing demands of

an application. Pod replication utilizes additional

resources and reduces the cost-effectiveness of the

system. To improve cost efficiency, we propose a

job scheduling mechanism (JSM) in the created

pods. JSM identifies over-loaded or low-loaded

pods and relocates jobs from over-loaded pods to

low-loaded pods.

The execution of JSM considers an IaaS

configuration model where the service provider

manages the system with the support of cloud, local,

and application controllers. In such an IaaS model

application controller leverages various built-in

software technologies such as apache spark to

control incoming user requests, and the cloud

manager manages cloud facilities at the API level

and ensures that user requests are directed to the

desired application. Local administrators are

responsible for managing the internal resources of

the node and assigning jobs for the execution of

requests. Fig. 1 shows the workflow model of JSM

Figure. 1 Workflow model of JSM functions

Figure. 2 Pod selections

functional modules.

These pods run different application jobs, which

can be very dissimilar from each other but run

simultaneously in the same node container. Based on

receiving workloads, multiple pods on a node can be

dynamically created or share the resources of

containers. Since inbound workloads vary greatly

and the resource requirements of each activity are

different, effective resource and time management

must be planned. To optimize the job workloads it

can place dynamically in the pods to utilize the

unused pod resources. Hence, the node pods which

are idle or have no jobs to execute can be terminated

to make it cost-effective.

3.1 Job scheduling methodology

The goal of JSM is to reduce the use of

resources and increase cost efficiency. Methods of

dynamic planning of operations in pods are based on

two methods. The first method performs the pod's

sections and the second method performs the jobs

allocation.

A. Pods selection method (PSM)

To decide on pod selection, the prediction of

load on each pod needs to be gathered first. In

traditional strategies, simply the most key resource

Received: March 14, 2023. Revised: April 13, 2023. 524

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.41

Table 1. Notations list

Notations Description

L Integral load value at each pod resources

D Set of different values of the resource of

a pod

wr Weight co-efficient of a pod

𝑓𝑑𝑟 Pod values for memory and CPU

fcpu CPU co-efficient

fmem Memory co-efficient

Cuse Current usage of CPU

Cresv Current reserve of CPU

Ctotal Total CPU capacity

Muse Current usage of Memory

Mresv Current Reserve of Memory

Mtotal Total Memory size

wcpu weighted coefficient of the CPU

wmem weighted coefficient of the Memory

W A vector of the weighted value of Pods

elements are utilized for the load prediction, which

usually focuses on the CPU performance.

In this regard, the cluster configuration and

accurate prediction in cloud hosting servers are

challenging due to their dynamic variability. The

workflow of the mechanism of pod selection in PSM

is shown in Fig. 2. Here, the PSM method

interrelates with a set of pods and computes load

conditions to identify the most appropriate pods for

allocating inbound requests by the applications. The

description of the utilized notations for computation

is shown in Table 1.

According to the decentralized scheme, each

node maintains a vector to store the load factor

values obtained from pods as load keys. Thus, L is

used to measure the integral load value at each pod

resource, and it describes the actual load condition

in the pod using Eq. (1).

𝐿 =
∑ 𝑤𝑟𝑓𝑑𝑟
𝐷
𝑟=0

𝐷
 (1)

where D is a set of different values of the

resource of a pod, wr symbolizes the weight co-

efficient of the rth pod and 𝑓𝑑𝑟 symbolizes pod

values for memory and CPU, which are utilized to

classify a pod for selection. The value of CPU and

Memory is the most influential feature in the pod

selection, so we compute CPU and Memory co-

efficient using Eqs. (2) and (3),

𝑓𝑐𝑝𝑢 = 1 −
𝐶𝑢𝑠𝑒

𝐶𝑡𝑜𝑡𝑎𝑙−𝐶𝑟𝑒𝑠𝑣
 (2)

Figure. 3 Job allocations

𝑓𝑚𝑒𝑚 = 1 −
𝑀𝑢𝑠𝑒

𝑀𝑡𝑜𝑡𝑎𝑙−𝑀𝑟𝑒𝑠𝑣
 (3)

Utilizing the computed fcpu and fmem we

compute the required weighted coefficient of the

pod node using Eqs. (4) and (5).

𝑤𝑐𝑝𝑢 =
𝑓𝑐𝑝𝑢

𝑓𝑐𝑝𝑢+𝑓𝑚𝑒𝑚
 (4)

𝑤𝑚𝑒𝑚 =
𝑓𝑚𝑒𝑚

𝑓𝑐𝑝𝑢+𝑓𝑚𝑒𝑚
 (5)

With computing the value of L for each pod, we

define the weight vector, 𝑊 =
(𝐿𝑝𝑜𝑑1 , 𝐿𝑝𝑜𝑑2 , . . . , 𝐿𝑝𝑜𝑑𝑛) . Now, with the obtained

value of W, a sequence of pod array from over-

loaded to low-loaded is created. Based on this

obtained sequence array the incoming job requests

are prioritized for allocation. The process of job

allocation we discuss in the next section.

B. Job allocation method (JAM)

Allocation of job workloads is a major problem

with the use of critical resources. Therefore, it is

very important to predict the best herd before the

work is done. The resources needed to run the

distributed pod must also be guaranteed. Various

activities must be performed to ensure that the pods

identified in the above process do not overload new

pods hosting these activities and reduce resource

utilization. After recognizing the pod to which a job

can be allocated we have to identify the job which

can best fit the selected pod as shown in Fig. 3. To

do so we implement the function of the Best-Fit

method [34] to predict the most appropriate pods

suitable for allocation.

Here the resources required for the job need to

be considered primarily. The job is compared with

the computed weighted load vector to identify the

Received: March 14, 2023. Revised: April 13, 2023. 525

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.41

Table 2. Load with varying resource use

CPU/Mem

Use
fcpu fmem wcpu wmem

Load

(L)

0.5 0.44 0.41 0.49 0.48 0.79

0.6 0.33 0.29 0.37 0.35 0.89

0.7 0.22 0.18 0.25 0.21 0.95

0.8 0.11 0.06 0.12 0.07 0.99

pod for utilization based on a defined level of

minimum weight load (MWL) as β1 and Highest

weight load (HWL) as β2 to find the pod for

allocation. The process of JAM tries to select the

pod which has the least load or is idle currently. In a

case, if no pod is found for allocation based on the

threshold configured then a new pod is started for

the allocation.

To choose the best pod for the job, we use the

BestFit algorithm, which organizes the collection of

jobs based on the increase in processor capacity

required by the collection of pods.

Let’s consider a pod having Ctotal =1,

Cresv=0.10 and Mtotal =1, Mresv=0.15, then its

fcpu , fmem, and wcpu , wmem will be as given in

Table 2.

The computed L values are stored in a WVector,

and it is utilized as input for evaluating the incoming

job resource need and its allocation. Let’s assume an

incoming job demands a load of JOBUtilz = 0.42,

then we select the best-fit pod within the range of

minimum weighted load (MWL) as β1=0.2 and

highest weighted load (HWL) as β2=0.95. Here,

with iteration based on the number of pods count

and comparing the JOBUtilz with the value of

WVector we get three pods having load {0.79, 0.89,

0.95}, and among these the least loaded pod is

considered for allocating the incoming job.

This methodology of allocation is implemented

by the JAM method to discover a suitable pod for

the job as described in Algorithm. 1,

Algorithm-1: JAM method

Input: Selected pod collection with weighted load

value, WVector.

1. JOBUtilz = calculate the utilization of

jobToAllocate.

2. MWL →β1;HWL →β2;

3. minUtilz=β2;bestAllocation=-1;

4. podcnt=sizeOf (WVector);

5. for (p=0; p<podcnt; p++)

6. {

7. if (JOBUtilz+ WVector[p]>=

β1)&&(JOBUtilz+ WVector[p]<= β2))

8. {

9. if (WVector[p]<minUtilz)

10. {

11. minUtilz=WVector[p];

12. bestAllocation =Pod[p] ;

13. }

14. }

15. }

16. if (bestAllocation>0) {

17. JobToAllocate=bestAllocation;

18. }

19. else {

20. createNewPod(JobToAllocate);

21. }

Algorithm-1 takes the selected collection from

the PSM method as a WVector to determine the

distribution of jobs. Here, for each pod in the

WVector, iterative estimation is performed compared

to every performance requirement to identify the

best allocation. It calculates the sum of JOBUtilz of

the present job with the pod weight value and then

compares it with the threshold value. If it is>= β1

and <= β2, and the present value of the JOBUtilz pod

is lower than the relative to a minimum utility

constant (minUtilz) which is configured to 0.2, then

it is mapped to the best pod. If no pod is found, then

a new pod will be created to perform the job.

4. Experiment evaluation

To evaluate the effectiveness of the proposed

JSM, we configure the spark application on a

kubernetes cluster in a self-contained environment

with identical nodes and implement the JSM method

to predict low-loaded pods to distribute the

incoming Spark application requests. For evaluation,

we set up a comparison program with baseline

schedulers over benchmark application data [33].

Evaluation measures are used to measure costs,

performance, and cost planning. The VMs are

configured on the GCP platform with 4 CPU cores,

16 GB of memory, and 20 GB of storage for a cost

of $0.24/hour.

4.1 Benchmark applications data

We evaluate the enhancement of the proposed

JSM using benchmark data information provided in

BigDataBench [33]. We selected three types of

application outputs for comparison as discussed by

Islam et al. [12] WordCount, Sort, and PageRank.

It creates a varying job workload input ranging

from 1 Gb to 20 Gb for evaluating the execution

performance. These jobs are extracted from the

Facebook and Hadoop response traces for these

Received: March 14, 2023. Revised: April 13, 2023. 526

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.41

varying jobs. Incoming jobs vary according to high

and low load for the different intervals of period.

There are more than 100 job requests when the load

is high and nearly 50 job requests when the load is

low. Therefore, during periods of high load,

maximum pod resources are over-loaded, whereas in

low-load pods they are underutilized.

4.2 Baseline schedulers performance

The problem with most cluster scheduling

methods for spark jobs is that they don't take

facilitator-level job assignments into account. These

methods primarily focus on choosing the resources

or several nodes required by the respective job when

it performing a decision for scheduling. However,

the proposed JSM executes at the level of pod

selectivity by incorporating resource utilization

predictions to efficiently schedule for assigning

jobs. The following scheduler is compared to

identify the improvement of the proposal.

• FIFO: Apache spark's default FIFO scheduler

is installed on apache mesos. Here, jobs are

scheduled based on a first-come first-service.

Instead of using the scheduler's merge

preference, it distributes executors in a round-

robin manner. Most existing scheduling

algorithms use this preferred method of placing

jobs and choose this scheduler as one of their

baselines as it is also a common choice for

users using spark jobs.

• Morpheus [32]: In this strategy, low-cost

packaging is utilized for actuator assignment.

Based on the present load in a cluster it

employs the strategy to detect the job's resource

requirements (such as memory or CPU cores).

Later, the jobs are sorted in ascending order as

per the limited resource requirements. As a

result, the cluster's resource is well-

proportioned during the scheduling and allows

for running maximum jobs.

• BFD [12]: This proposal is a greedy procedure

inherited from the best-fit decreasing (BFD)

heuristic to optimize the cost of apache spark

clusters deployed using apache mesos as cluster

scheduler for the applications.

4.3 Result evaluation

A. Cost efficiency

This evaluation shows that the proposed

scheduling algorithm can be applied to diverse kinds

of applications while decreasing the cost of

employing big data clusters. It stores the state of

several pods used by the node to compute the sum of

the cost acquired by the scheduler. Here, over period

T, we summed up the number of pods used for the

various jobs. The number of pods utilized in a given

period is directly proportional to the running cost.

So, the total cost we computed using the given Eq.

(6).

𝑇𝑜𝑡𝑎𝑙_𝐶𝑜𝑠𝑡 = ∑ 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑃𝑜𝑑𝑠(𝑡)𝑡∈𝑇 (6)

It calculates the cost of each scheduling

algorithm under heavy and light workloads to

evaluate cost-effectiveness.

Tables 3 and 4 shows the sum of cost acquired

by diverse scheduling procedures during low and

high job load period respectively. The proposed JSM

utilizes pod resources efficiently, significantly

reducing the cost of running jobs compared to other

schedulers. Assigning work with effective

scheduling allows JSM to achieve better cost

efficiencies compared to BFD, Morpheus, and

FIFO. Besides, Morpheus achieves somewhat

improved than FIFO to keep costs down due to it

jobs orders in a queue that balances the cluster

resources to run additional jobs in the whole

scheduling technique.

Table 3. Schedulers cost having low-load

Workload

Type
FIFO MORPHEUS BFD JSM

WordCount 3.1 2.85 2.2 1.58

Sort 3.4 3.2 2.4 1.61

PageRank 6.82 6.54 6.12 5.14

Table 4. Schedulers cost having high-load

Workload

Type
FIFO MORPHEUS BFD JSM

WordCount 4.5 4.35 3.76 3.45

Sort 4.31 4.2 4.15 3.81

PageRank 7.52 7.32 7.21 6.85

Figure. 4 Cost of schedulars at low-load

Received: March 14, 2023. Revised: April 13, 2023. 527

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.41

Figure. 5 Cost of schedulars at high-load

Table 5. Job performance having low-load

Workload

Type
FIFO MORPHEUS BFD JSM

WordCount 98 97 99 96

Sort 96 95 98 96

PageRank 498 489 421 401

Table 6. Job performance having high-load

Workload

Type
FIFO MORPHEUS BFD JSM

WordCount 97 99 100 95

Sort 125 128 124 120

PageRank 302 303 295 292

Fig. 4 shows the proposed JSM exhibits

significant cost reduction during the low-load

period. In comparison to the baseline scheduling

algorithm, JSM reduces the cost of cluster usage for

WordCount and sort applications by at least 35%

and 40%, respectively. For PageRank applications,

JSM reduces resource consumption costs by at least

15% compared to FIFO. JSM also decreases

resource utilization costs by 8% related to

morpheus. The proposed JSM attempts to allocate

the jobs of the similar assignment in fewer pods, so

most of the random work happens within the pods,

improving job performance and thus reducing the

overall cost of applications. As shown in Fig. 5,

during high-load the decrease in cost is lesser than

low-load due to the overused of the cluster. In this

situation, JSM shows cost efficiency near 6% to

24% with variation in the value of workloads.

B. Job Performance

Tables 5 and 6 shows the average job finishing

time for the scheduling procedures at low and high-

load variation.

It shows similar or marginally improved by

FIFO, morpheus, and BFD in comparison to the

Figure. 6 Job execution performance at low load

Figure. 7 Job execution performance at high load

JSM with WordCount and sort. The enhancement of

JSM is due to the use of fewer pods to accommodate

the workloads and utilizing the available resources

to their maximum efficiency as shown in Figs. 6 and

7.

In contrast, network-based applications such as

PageRank degrade the result of FIFO, morpheus,

and BFD because of unwarranted communication

during the job allocation. However, JSM

outperforms the comparing procedure in both load

situations with PageRank applications. During high-

load periods, the cluster gets over-loaded, so it is not

likely to combine a few pods shaving the same

kind’s job. Hence, the outcome shows a better for

PageRank applications at low load hours than at

high load hours. During low-load hours, JSM

improves runtime by at least 15% with WordCount,

Sort, and PageRank by 5%.

C. Scheduling overhead

Here we evaluate the scheduling costs of several

scheduling procedures in terms of deadline. The

deadline is defined as proportional to the time it

takes the scheduler to allocate jobs that are waiting

in the queue for execution. The obtain values of

each schedulers are given in Table 7.

Received: March 14, 2023. Revised: April 13, 2023. 528

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.41

Table 7. Scheduling overhead comparison

Schedulers Deadline Violation (%)

FIFO 43

MORPHEUS 35

BFD 8

JSM 12

Figure.8 Scheduling overload for deadline violation

In FIFO mode, the important job having the first

deadline must have to wait in the scheduling queue,

if it is requested after a few non-importance jobs. It

needs to wait till other jobs have been completed

which are in the queue ahead of it. Morpheus

independently determines the priority of work,

where the work that leads is well-adjusted for the

important job through sharing of resources in the

cluster. But, in reality, time-constrained importance

may not provide a balanced distribution of resources

during deployment. Therefore, other important jobs

are performed before these jobs. BFD uses a modest

scheme known as “Earliest Deadline First”, where

entire jobs are organized as per their deadlines, and

the job has the first deadline is scheduled first. The

proposed JSM follows a similar allocation scheme

to schedule jobs and allocate the best jobs using the

BestFit method.

Fig. 8 depicts scheduling overload in the case of

deadline violation percentages for different

schedulers. Here the higher the violation, the more

overload in scheduling. In such cases, FIFO show

41% and Morpheus shows 35% of jobs had deadline

violations. Here, BFD shows a minimum deadline

will of 8%. Compared with BFD, the proposed JSM

has a 3% higher deadline violation rate. It has a

marginally more time violation than BFD because it

occasionally acquires a long period to identify the

best cost-efficient allocation with this method,

which arise more time violations compared to BFD.

This makes JSM slightly higher scheduling

overhead than BFD. However, this overhead can be

ignored in comparison to baseline scheduling

procedures.

Table 8. Cost efficiency performance comparison

No. of

Requests
 [5] [12] [26] [28] JSM

2000 3.89 3.75 5.29 3.79 3.45

4000 4.66 4.15 5.95 4.5 3.81

6000 6.88 7.21 7.25 5.88 5.85

8000 7.85 7.81 9.54 7.59 6.54

10000 9.81 8.33 11.28 8.9 7.52

D. Comparison with schedulers
In this section, we compare the proposed JSM

with a few schedulers for evaluating the

effectiveness of our proposal by measuring the cost

efficiency and scheduling overhead measure. We

compare with the scheduler proposed by Z. He [5]

for managing large-scale job requests in Kubernetes

using predictive models and request control

mechanisms, Islam et al. [12] suggest a scheduler

through job prioritizing and resource management in

spark with apache mesos, Hu et al. [26] suggest a

scheduler for auto-scaling of resources to dynamic

managing load in kubernetes, and Liu et al. [28]

presents a load-balancing scheduler based defined

balancing guidelines to accommodate the incoming

jobs in Kubernetes.

All these schedulers are well managed and

schedule the incoming job at low load, but at high

load, they show variability in the results of cost

efficiency and scheduling overhead as given in

Tables 8 and 9.

Fig. 9 shows the cost efficiency performance of

the proposed JAM in comparing the schedulers. All

the methods show an increase in cost with the

increasing number of requests. It is due to the

increasing job queue demands more resources which

inflame the usage and reduces the cost efficiency

(higher the cost lower the efficiency). The proposal

given in [26] shows a high-cost value because it

frequently does pod replication to balance the load

of the incoming requests, whereas [5, 12, 28] and

the proposed JSM shows nearby similar cost

efficiency at lower request numbers, but with

increasing requests they show an average growth in

their cost it is because all these schedule methods

are based on prediction and resource management.

The proposed JSM shows a lower cost at a higher

number of costs due to efficiently allocating the job

within the best-fit pod with the least pod creation. It

shows an average of 2% better cost efficiency in

comparison.

Fig. 10 shows the scheduling overhead among

the schedulers. Here, [26] shows the least

scheduling overhead due to its high scale pod

creation with load variation due to which it attains

Received: March 14, 2023. Revised: April 13, 2023. 529

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.41

Figure. 9 Cost efficiency performance

Table 9. Scheduling overload comparison

No. of

Requests
 [5] [12] [26] [28] JSM

2000 1 1 1 1 1

4000 3 2 1 3 2

6000 12 8 3 10 8

8000 14 12 6 12 10

10000 18 15 10 16 12

Figure. 10 Scheduling overload performance

high cost as a limitation. The other schedulers also

show similar scheduling overhead in case of low

request numbers, but at high numbers, an 3-4 % of

deadline violation is observed. It is due to the

effective management of resources by employing

load-balancing and employing the assessment policy

by [28], whereas [5] employ the predictive models

and control mechanisms for incoming application

requests, and the [12] employ efficient scheduling

algorithms that minimize resource consumption

which causes the deadline violation in high request.

The proposed JSM shows a 3% lower scheduling

overhead in comparison to [5, 12, 28] due to its

allocation scheme to schedule jobs and allocate the

best jobs using the BestFit method. As a result,

resource utilization reduction and average

scheduling overhead make JSM a cost-efficient

scheduler for application systems.

5. Conclusion

Job scheduling seems to be a challenge for big

data processing in distributed cloud computing. This

paper describes a job scheduling method (JSM) for

apache spark on kubernetes to improve cost

efficiency. The JSM defines two methods for

predicting the overload and underload of pods

running jobs and assigning jobs to underload pods to

conserve resources on nodes. The PSM is defined

for selecting pods, and the JSM is to find the best

running pod for a specific job run.

It contributes a mechanism to identify the

upcoming workload of a pod and determine the best

fit using PSM. It also reduces the usage of CPU and

memory which result in enhancing cost efficiency,

and the JSM contributes to the effective

management of job allocation and migration among

the underload pods to shut down the pod to preserve

the resources and enhances cost efficiency. The

comparison with the existing scheduler with varying

requests shows an improvisation of 2% of cost

efficiency and 3% lower scheduling overhead.

We demonstrated extensive experimental results

on benchmark application datasets to demonstrate

the efficiency of the proposed JSM in different types

of workloads. We also compared the algorithm to

the existing default scheduler. The results

recommend that the JSM scheduling method reduces

the cost of resource usage by up to 35-40% in

Apache Spark clusters deployed in the cloud.

Evaluation measures of cost, job performance, and

scheduling overhead show improved cost efficiency

for job execution. The proposed work will evaluate

the performance of heterogeneous work applications

with different workload types to further improve

work scheduling and cost efficiency.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Conceptualization, methodology, software,

validation, Jayanthi; formal analysis, investigation,

resources, data curation, Jayanthi; writing—original

draft preparation, writing—review and editing,

Jayanthi; visualization, supervision, Dr. K. Ram

Mohan Rao.

Received: March 14, 2023. Revised: April 13, 2023. 530

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.41

References

[1] R. Busetti, N. E. Ioini, H. R. Barzegar, C. Pahl,

"Distributed Synchronous Particle Swarm

Optimization for Edge Computing", In: Proc. of

International Conf. on Future Internet of

Things and Cloud (FiCloud), Rome, Italy, pp.

153-160, 2022.

[2] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M.

Armbrust, A. Dave, X. Meng, J. Rosen, S.

Venkataraman, M. J. Franklin, A. Ghodsi, J.

Gonzalez, S. Shenker, I. Stoica, "Apache spark:

a unified engine for big data processing",

Communications of the ACM, Vol. 59, No. 11,

pp 56–65, 2016.

[3] Y. Mao, Y. Fu, W. Zheng, L. Cheng, Q. Liu,

and D. Tao, "Speculative Container Scheduling

for Deep Learning Applications in a

Kubernetes Cluster", IEEE Systems Journal,

Vol. 16, No. 3, pp. 3770-3781, 2022,

[4] A. Marchese and O. Tomarchio, "Network-

Aware Container Placement in Cloud-Edge

Kubernetes Clusters", In: Proc. of IEEE

International Symposium on Cluster, Cloud and

Internet Computing (CCGrid), Taormina, Italy,

pp. 859-865, 2022

[5] Z. He, "Novel Container Cloud Elastic Scaling

Strategy based on Kubernetes", In: Proc. of

International Conf. of Information Technology

and Mechatronics Engineering Conference

(ITOEC), Chongqing, China, pp. 1400-1404,

2020.

[6] M. A. A. Fattah, N. A. Othman, and N. Goher,

"Predicting Chronic Kidney Disease Using

Hybrid Machine Learning Based on Apache

Spark", Computational Intelligence and

Neuroscience, Vol. 2022, Article ID 9898831,

p. 12, 2022.

[7] A. A. Hagar and B. W. Gawali, "Apache Spark

and Deep Learning Models for High-

Performance Network Intrusion Detection

Using CSE-CIC-IDS2018", Computational

Intelligence and Neuroscience, Vol. 2022,

Article ID 3131153, pp. 11, 2022.

[8] M. N. Tran, D. D. Vu, and Y. Kim, "A Survey

of Autoscaling in Kubernetes", In: Proc. of

International Conf. on Ubiquitous and Future

Networks (ICUFN), Barcelona, Spain, pp. 263-

265, 2022.

[9] N. T. Nguyen and Y. Kim, "A Design of

Resource Allocation Structure for Multi-Tenant

Services in Kubernetes Cluster", In: Proc. of

International Conf. on Communications

(APCC), Jeju Island, Korea, pp. 651-654, 2022.

[10] F. Rossi, V. Cardellini, F. L. Presti, and M.

Nardelli, "Geo-distributed efficient deployment

of containers with Kubernetes", Computer

Communications, Vol. 159, pp. 161–174, 2020.

[11] S. Huaxin, X. Gu, K. Ping, and H. Hongyu,

"An Improved Kubernetes Scheduling

Algorithm for Deep Learning Platform", In:

Proc. of International Computer Conf. on

Wavelet Active Media Technology and

Information Processing, pp. 113 – 116, 2020.

[12] T. Islam, S. N. Sriramaa, S. Karunasekeraa, and

R. Buyya, "Cost-efficient dynamic scheduling

of big data applications in Apache spark on

cloud", Journal of Systems and Software, Vol.

162, p. 110515, 2020.

[13] C. Li, L. Huo, and H. Chen, "Real-time

workflow oriented hybrid scheduling approach

with balancing host weighted square

frequencies in clouds", IEEE Access, Vol. 8, pp.

40828-40837, 2020.

[14] S. Jangiti, S. E, R. Jayaraman, H. Ramprasad,

and V. S. S. Sriram, "Resource ratio based

virtual machine placement in heterogeneous

cloud data centres", Sadhana, Vol. 44, Article:

236, 2019.

[15] Z. Li, S. Guo, L. Yu, and V. Chang, "Evidence-

Efficient Affinity Propagation Scheme for

Virtual Machine Placement in Data Center",

IEEE Access, Vol. 8, pp. 158356-158368, 2020.

[16] Z. Liu, "Research on Public Management

Application Innovation Based on Spark Big

Data Framework", Mathematical Problems in

Engineering, Vol. 2022, ArticleID: 3797050, p.

9, 2022.

[17] Z. Wan, Z. Zhang, R. Yin, and G. Yu,

"KFIML: Kubernetes-Based Fog Computing

IoT Platform for Online Machine Learning",

IEEE Internet of Things Journal, Vol. 9, No. 19,

pp. 19463-19476, 2022.

[18] J. Yan and X. Ma, "Microblog Emotion

Analysis Method Using Deep Learning in

Spark Big Data Environment", Mobile

Information Systems, ArticleID: 1909312, p. 9,

2022.

[19] W. Zhouhuo, "Parallel Classification Algorithm

Design of Human Resource Big Data Based on

Spark Platform", Security and Communication

Networks, Vol. 2021, ArticleID: 5811918, p. 10,

2021.

[20] J. Wang, "Clustering Algorithm for Big

Datasets with Mixed Attribute Features under

Spark", Mathematical Problems in Engineering,

Vol. 2022, ArticleID: 6156799, p. 11, 2022.

[21] S. Ilbeigipour, A. Albadvi, and E. A. Noughabi,

"Real-Time Heart Arrhythmia Detection Using

Apache Spark Structured Streaming", Journal

Received: March 14, 2023. Revised: April 13, 2023. 531

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.41

of Healthcare Engineering, Vol. 2021,

ArticleID: 6624829, pp. 13, 2021.

[22] M. A. Mohamed, I. M. E. Henawy, and A.

Salah, "Usages of Spark Framework with

Different Machine Learning", Algorithms

Computational Intelligence and Neuroscience,

Vol. 2021, ArticleID: 1896953, p. 7, 2021.

[23] G. Gousios, "Big Data Software Analytics with

Apache Spark", In: Proc. of International Conf.

on Software Engineering: Companion,

Gothenburg, Sweden, pp. 542-543, 2018.

[24] M. Zaharia, M. Chowdhury, M. J. Franklin, S.

Shenker, and I. Stoica, "Spark: Cluster

computing with working sets", In: Proc. of

International USENIX Conf. on Hot Topics in

Cloud Computing, p. 10, 2010.

[25] A. P. Ferreira and R. Sinnott, "A Performance

Evaluation of Containers Running on Managed

Kubernetes Services", In: Proc. of International

Conf. on Cloud Computing Technology and

Science (CloudCom), Sydney, NSW, Australia,

pp. 199-208, 2019.

[26] T. Hu and Y. Wang, "A Kubernetes Autoscaler

Based on Pod Replicas Prediction", In: Proc. of

International Asia-Pacific Conf. on

Communications Technology and Computer

Science (ACCTCS), Shenyang, China, pp. 238-

241, 2021.

[27] J. Sithiyopasakul, T. Archevapanich, B.

Purahong, P. Sithiyopasakul, and C.

Benjangkaprasert, "Automated Resource

Management System based on Kubernetes

Technology", In: Proc. of International Conf.

on Electrical Engineering/Electronics,

Computer, Telecommunications and

Information Technology (ECTI-CON), Chiang

Mai, Thailand, pp. 1146-1149, 2021.

[28] Q. Liu, E. Haihong, and M. Song, "The Design

of Multi-Metric Load Balancer for Kubernetes",

In: Proc. of International Conf. on Inventive

Computation Technologies, Coimbatore, India,

pp. 1114-1117, 2020.

[29] J. Park, U. Choi, S. Kum, J. Moon, K. Lee,

"Accelerator-Aware Kubernetes Scheduler for

DNN Tasks on Edge Computing Environment",

IEEE/ACM Symposium on Edge Computing

(SEC), San Jose, CA, USA, pp. 438-440, 2021.

[30] R. Kang, M. Zhu, F. He, T. Sato, and E. Oki,

"Design of Scheduler Plugins for Reliable

Function Allocation in Kubernetes", In: Proc.

of International Conf. on the Design of Reliable

Communication Networks, Milano, Italy, pp. 1-

3, 2021.

[31] Y. Huimin, "Research on Parallel Support

Vector Machine Based on Spark Big Data

Platform", Scientific Programming, Vol. 2021,

ArticleID: 7998417, pp. 9, 2021.

[32] S. A. Jyothi, C. Curino, I. Menache, S. M.

Narayanamurthy, A. Tumanov, J. Yaniv, R.

Mavlyutov, I. N. Goiri, S. Krishnan, J. Kulkarni,

and S. Rao, "Morpheus: Towards automated

SLOs for enterprise clusters", In: Proc. of

International USENIX Conf. on Operating

Systems Design and Implementation, pp. 117–

134, 2016.

[33] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y.

He, W. Gao, Z. Jia, Y. Shi, S. Zhang, C. Zheng,

G. Lu, K. Zhan, X. Li, and B. Qiu,

"Bigdatabench: A big data benchmark suite

from internet services", IEEE International

Symposium on High Performance Computer

Architecture, Orlando, FL, USA, pp. 488-499,

2014.

[34] J. Sgall, "A new analysis of Best Fit bin

packing", In: Proc. of International Conf. on

Fun with Algorithms, Springer, Berlin,

Heidelberg, pp 315–321, 2012.

