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Abstract: Currently, cloud computing and its application is a popular area of research in which, intrusion detection 

has become an imperative system for detecting several security breaches. The main motivation of this research is to 

develop an automated intrusion detection system (IDS) for the detection of intrusions in the cloud and internet of things 

(IoT) systems. After the acquisition of intrusion data from the NSL-KDD, CICIDS2017, Kyoto 2006+, and UNSW-

NB15 databases, the Min-Max normalization approach is employed for data rescaling. Then, the relevant 

attributes/features are selected by proposing pareto optimality based grasshopper optimization algorithm (POGOA), 

where the selection of relevant features efficiently reduces the system's complexity and computational time. In the 

POGOA, the relevant features are selected based on pareto optimal solutions that help in enhancing the premature 

convergence and distribution rate of the traditional GOA. Further, the selected features are given to the stacked 

autoencoder model for classifying the normal and attack classes. The proposed POGOA with stacked autoencoder 

model’s experiment is conducted using the Matlab environment. The proposed model shows better performance by 

means of precision, f1-score, accuracy, and recall when related to the comparative models. The proposed POGOA 

with stacked autoencoder model has obtained 99.32%, 99.84%, 99.56%, and 97.24% of detection accuracy on the 

CICIDS2017, NSL-KDD, Kyoto 2006+, and UNSW-NB15 databases. 

Keywords: Cloud computing, Grasshopper optimization algorithm, Intrusion detection, Machine learning, Stacked 

autoencoder. 

 

 

1. Introduction 

Cloud computing is a recent development in 

information technology (IT), which provides 

facilities, a platform, and software as internet services 

[1]. Cloud computing represents the realization of an 

old ideal termed “computing for use”, and it is slowly 

being adopted by businesses as private, public, and 

hybrid clouds. Its primary goal is to provide on-

demand software and infrastructure services to 

consumers [2]. Cloud computing is an effective IT 

infrastructure platform, but it still requires 

considerable security efforts, to reduce its flaws. 

Because cloud data centers have a large quantity of 

personal and business information, security concerns 

and vulnerabilities related to cloud computing must 

be detected and mitigated [3]. The statistics show that 

the virtual network layer of cloud computing has seen 

an enormous number of security breaches in recent 

years [4]. To uncover assaults on cloud infrastructure, 

several IDS tools and approaches are now accessible 

on the cloud platform. Due to high traffic and its 

dynamic behavior, traditional or current IDS tools are 

proven to be useless and inefficient.  

The IDS is often used in conjunction with a 

firewall to create a comprehensive security solution. 

These factors have compelled researchers to devise a 

new strategy for enhancing cloud computing's IDS. 

The ability to monitor network traffic and detect 

network intrusions is provided by the software [5]. 

The most common method for discovering assaults 

on cloud infrastructure is through the deployment of 

IDS. Because of the virtualized and dispersed nature 
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of cloud settings, it is difficult to create effective IDS. 

Attacks on systems and applications by 

cybercriminals lead to system and application 

failures, which is why cyber-attack protection is so 

important. When an assault is detected, the IDS stops 

it by discarding packets, resetting the connection, or 

blocking traffic [6]. The IDS is considered effective 

if it optimizes detection accuracy while minimizing 

the number of false alarms it generates. There are four 

main types of IDS: virtual machine-based (VMIDS), 

host-based (HIDS), network-based (NIDS), and 

perimeter-based (PIDS) [7]. The NIDS keeps track of, 

and analyses all network traffic, including inbound 

and outbound. For monitoring and alerting purposes, 

a HIDS is put in place on the hosts. When an intrusion 

attempt is made on a perimeter fence around a critical 

system infrastructure, such as the main server, the 

PIDS identifies and locates it. The VMIDS is 

identical to any of the three IDSs listed above, except 

it is run on a remote virtual machine instead of locally 

[8]. There is a low probability of false alarms with 

these sorts of systems, but the systems are not able to 

identify assaults that have not been previously 

recognized with no historical information [9-10]. To 

address this concern, a new machine learning-based 

framework is developed in this paper.  The objectives 

of this paper are illustrated below: 

 

• In the initial phase, the efficacy of the 

proposed machine learning based framework 

is validated on the cloud databases such as 

CICIDS2017, NSL-KDD, Kyoto 2006+ and 

UNSW-NB15, which are widely utilized 

databases in intrusion classification. 

• Implemented min-max normalization 

approach and POGOA for rescaling and 

selecting the relevant attributes from the 

CICIDS2017, NSL-KDD, Kyoto 2006+ and 

UNSW-NB15 databases for better intrusion 

classification. The elimination of irrelevant 

attributes significantly diminishes the 

proposed framework’s complexity and time. 

In the proposed POGOA, the target (relevant 

attributes) is chosen based on the Pareto 

optimal solutions that improve the premature 

convergence and distribution rate of the 

conventional GOA. 

• By using the selected attributes, the stacked 

autoencoder model classifies the normal and 

attack intrusions in the cloud systems. The 

proposed framework’s effectiveness is 

investigated using the evaluation measures 

like precision, f1-score, accuracy, and recall. 

The manuscripts related to intrusion detection are 

reviewed in section 2. The undertaken methodology 

details, simulation outcomes, and the conclusion of 

the proposed framework are analyzed in sections 3, 4, 

and 5, respectively. 

2. Related works 

Bhushan and Gupta [11] performed a high-level 

attribute extraction based on a stacked autoencoder 

model. Application-level distributed denial-of-

service (DDoS) attack detection using encrypted 

protocols, made use of the anomaly detection 

approach based on estimated statistics from network 

packets. Client-server negotiations were organized, 

and real user behavior was projected in the way it was 

supplied. A stacked autoencoder was used for 

evaluating the distribution of negotiations among 

these groups. Anomalies were client negotiations that 

diverged from the normal. Deep learning was used in 

the IoT fog environment to identify distributed 

threats. Instead of using shallow neural networks, the 

distributed detection approach was more efficient. A 

deep learning-based defense system for DDoS attack 

detection was envisaged in the software-defined 

networking (SDN) setup. The developed system was 

able to recognize patterns in the network traffic and 

track an attack’s progress over time, but it was 

computationally complex.  

Pillutla and Arjunan [12] used fuzzy self-

organizing maps for cleaning up traffic after a DDoS 

assault on SDN. Although there were several IDS 

models available at the network layer, the existing 

models had obtained low detection accuracy and 

needed extensive computing resources. Furthermore, 

the IDS developed with the traditional networks 

cannot be used in the cloud platforms; as a result, a 

superior IDS model for the cloud was required. 

Almiani [13] implemented a novel automated 

intrusion detection model for fog computing security 

against cyber-attacks. A new multi-layered recurrent 

neural network (RNN) model was implemented for 

fog computing security, which was close to the IoT 

devices and end-users. A balanced database: NSL-

KDD was utilized for demonstrating the efficacy of 

the multi-layered RNN model, and its performance 

was validated using Cohen’s kappa coefficients and 

Matthew’s correlation coefficients. The simulation 

and the experimental results proved that the 

implemented model was robust and stable in 

intrusion detection. The implemented multi-layered 

RNN model was computationally expensive, where it 

required enormous amounts of data for obtaining 

better intrusion detection performance.  

Benmessahel [14] integrated locust swarm 

optimization (LSO) with feed-forward neural 
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network (FNN) for effective intrusion attack 

classification. In this literature, the developed LSO-

FNN model was employed in a series of experiments 

for studying its performance and capability in 

intrusion detection. The benchmark database: NSL-

KDD was used for analyzing the developed LSO-

FNN model’s performance. The experimental 

investigation showed that the developed LSO-FNN 

model not only obtained better convergence speed 

but also achieved better reliability in intrusion 

detection. However, the LSO was easily trapped into 

local minima, which was a major problem in this 

literature. 

Choobdar [15] incorporated stacked auto 

encoders for learning the features from the 

CICIDS2017 and NSL-KDD databases. In the next 

phase, the softmax classifier was utilized for training 

the system, and further, the system parameters were 

optimized in the final phase. The extensive 

experimental examination states that the above model 

had achieved efficient performance in the intrusion 

attack classification on the CICIDS2017 and NSL-

KDD databases. The overfitting and the vanishing 

gradient were the major concerns associated with the 

developed model, which needs to be concentrated as 

a future extension.  

Han [16] developed an effective automated 

intrusion detection system based on proximal policy 

optimization (PPO) for protecting the IoT 

environments against cyber-attackers. At first, the 

discriminative features were obtained from the 

acquired database by implementing a deep neural 

network (DNN), and then the similar extracted 

features were clustered by using the k-means 

clustering technique. Further, feature dimensionality 

reduction and intrusion classification were performed 

by utilizing PPO and fine-tuned neural networks. The 

effectiveness of the developed model was analyzed 

utilizing the CICIDS2017 database by means of f1-

score, and the obtained results state that the 

developed model was computationally expensive. 

Chikkalwar and Garapati [17] integrated 

autoencoder, support vector machine (SVM), and 

GOA for effective detection of network intrusions. 

The presented model effectively resolves overfitting 

and data imbalance issues in the intrusion detection, 

but it has an issue of high computational time, Aziz 

and Alfoudi [18] developed a new network intrusion 

detection model named restoration particle swarm 

optimization (RPSO) for selecting relevant features 

from the NSL-KDD database. Sandhya and 

Kumarappan [19] used spider monkey optimization 

algorithm, and Krishna and Arunkumar [20] 

implemented a hybrid model: PSO and gray wolf 

optimization (GWO) for IoT based network intrusion  
 

 
Figure. 1 Flow-chart of the proposed framework 

 

detection. However, the traditional optimization 

algorithms include optimization issues like poor 

premature convergence and distribution rate. To 

address the aforementioned problems, a novel 

POGOA with stacked autoencoder is introduced in 

this paper. 

3. Methods 

For an effective intrusion attack classification, the 

proposed framework comprises four steps: Database 

description: CICIDS2017, NSL-KDD, Kyoto 2006+, 

and UNSW-NB15, pre-processing: Min-max 

normalization approach, feature optimization: 

POGOA and intrusion attack classification: Stacked 

autoencoder. The flowchart of the proposed 

framework is depicted in Fig. 1. 

3.1 Database description and pre-processing 

The POGOA with stacked autoencoder model’s 

performance is evaluated on four online databases 

such as CICIDS2017, NSL-KDD, Kyoto 2006+, and 

UNSW-NB15. In recent periods, the CICIDS2017 is 

one of the advanced intrusion detection databases, 

which almost covers up to data attacks like 

infiltration attacks, web attacks, DoS attacks, DDoS 

attacks, heart-bleed attacks, brute force attacks, and 

Botnet. The CICIDS2017 database includes 225,745 

packages, while every package has 80 features with 

labels [21]. The NSL-KDD is an updated version of 

the KDD’99 database, which is a benchmark database 

that helps researchers in comparing the proposed 

model with the existing intrusion detection models. 

The NSL-KDD test set includes 311,027 original 

records and 77,289 distinct records in comma 

separated values (CSV) format, and the train set has 

4,898,431 original records and 1,074,992 distinct 
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records in CSV format [22]. In addition, the Kyoto 

2006+ database has 24 features, 113,120 normal data, 

118,191 attack data, and 231,311 number of sample 

sizes. The UNSW-NB15 database has nine attacks 

like worms, shellcode, reconnaissance, generic, 

exploits, DoS, backdoors, analysis, and fuzzers. The 

UNSW-NB15 database has 49 features, 82,332 

testing records, and 175,341 training records. 

After the acquisition of CICIDS2017, NSL-KDD, 

Kyoto 2006+, and UNSW-NB15 databases, the Min-

Max normalization approach is employed for data 

rescaling that preserves the shape of the original 

distribution. The Min-Max normalization approach 

scales the data features in the range of [-1, 1] or [0, 

1], if there are negative feature values in the database. 

After denoising, the acquired data, the relevant 

features/attributes are selected by implementing a 

modified version of GOA, where this process helps 

in the reduction of computational complexity and 

time. 

3.2 Feature optimization 

After data pre-processing, the relevant attributes 

are selected by implementing POGOA. The 

conventional GOA is an effective swarm intelligence 

optimization algorithm, which is inspired by the 

swarming and foraging behaviors of grasshoppers 

[23, 24]. The conventional GOA is successfully 

employed in solving several optimization issues [25, 

26] and the 𝑖𝑡ℎ grasshopper’s position is represented 

as𝑉𝑖, it is mathematically denoted in Eq. (1). 

 

𝑉𝑖 = 𝑆𝑖 + 𝑂𝑖 + 𝐴𝑖                                             (1) 

 

Where, 𝐴𝑖  indicates wind advection, 𝑂𝑖 
represents gravitational force and 𝑆𝑖 indicates social 

interactions experienced by 𝑖𝑡ℎ grasshoppers. In the 

conventional GOA, these three elements replicate the 

grasshopper’s motions that are defined in Eqs. (2), (3), 

and (4). [27, 28]. 

 

𝐴𝑖 = 𝑢𝑒𝑤                                                                 (2) 

 
𝑂𝑖 = −𝑔𝑒𝑔                                                              (3) 

 
𝑆𝑖 = ∑ 𝑠(𝑑𝑖𝑗)�̀�𝑖𝑗

𝑁
𝑗=1,𝑗≠𝑖                                                (4) 

 
Where, 𝑢  represents constant drift, 𝑒𝑤 𝑎𝑛𝑑 𝑒𝑔 

indicate unity vectors, which are directed towards the 

global centers, 𝑠(𝑟) =
𝑘𝑒−𝑟

𝑙−𝑒−𝑟
 indicates the strength of 

the social forces,  �̀�𝑖𝑗 =
𝑣𝑗−𝑣𝑖

𝑑𝑖𝑗
 and 𝑑𝑖𝑗 = |𝑣𝑗 − 𝑣𝑖| 

represents a unit vector, 𝑙  represents the attractive 

length scale, 𝑘  indicates attraction intensity, and 𝑜 

specifies gravitational constant. The grasshopper’s 

nymph motion  𝑉𝑖  is computed utilizing the 

elements  𝑂𝑖 ,  𝐴𝑖  and  𝑆𝑖 , and it is mathematically 

mentioned in Eq. (5). 

 

𝑉𝑖 = 𝑗 = 1, 𝑗𝑖𝑁 𝑠(𝑑𝑖𝑗)(𝑑𝑖𝑗) − 𝑔𝑒𝑔 + 𝑢𝑒𝑤      (5) 

 

Where, 𝑁 indicates the number of grasshoppers. 

The GOA performs exploitation and exploration for 

identifying the global optimal approximations to 

resolve the optimization problems. Eq. (5) is updated 

as mentioned in Eq. (6). 

 

𝑉𝑖𝑑 = 𝑐𝑗 = 1, 𝑗𝑖𝑁𝑐𝑢𝑏𝑑 − 

𝐼𝑏𝑑2𝑠(|𝑣𝑗𝑑 − 𝑣𝑖𝑑|)𝑣𝑗 − 𝑣𝑖𝑑𝑖𝑗 + 𝑇𝑑 (6) 
 
Where, 𝑢𝑏𝑑  denotes the upper bound, 𝐼𝑏𝑑 

specifies the lower bound, 𝑇𝑑  represents the target 

value, and 𝑐 indicates decreasing coefficients, which 

are inversely proportional to the iteration numbers, as 

determined in Eq. (7). 

 

𝐶 = 𝑐𝑚𝑎𝑥 − 𝐼𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛 × 𝑀𝑎𝑥𝑖𝑡𝑟            (7) 

 
Where,  𝑀𝑎𝑥𝑖𝑡𝑟 = 100  represents a maximum 

number of iterations, 𝑐𝑚𝑖𝑛 denotes the minimum 𝑐 

value, 𝐼  denotes the present iteration number, and 

𝑐𝑚𝑎𝑥 represents maximum 𝑐 value. In the traditional 

GOA, the target values are chosen based on the best 

solutions obtained so far, which are ineffective in the 

larger intrusion databases. Therefore, the target 

values are selected based on the Pareto optimal 

solutions in the POGOA that superiorly improves the 

premature convergence and distribution rates. The 

neighborhood solutions are considered and counted 

as the quantitative measures in the Pareto optimal 

solutions for determining the crowded-ness regions. 

The probability of the target value selection 𝑃𝑟𝑖 is 

defined in Eq. (8). In the proposed POGOA, a roulette 

wheel approach is applied along with 𝑃𝑟𝑖  for 

choosing the target values from the archives. 

 

𝑃𝑟𝑖 =
1

𝑁𝑖
                                                                  (8) 

 
Where, 𝑁𝑖  represents the number of solutions. 

The assumed parameters of the proposed POGOA are 

determined as follows: upper bound is 11, population 

size is 22, minimum 𝑐 value is 0.2, lower bound is 0, 

and maximum 𝑐 value is 1. The selected 28 attributes 

of CICIDS2017, NSL-KDD, Kyoto 2006+, and 

UNSW-NB15 databases are given to the stacked 

autoencoder for intrusion attack classification. 



Received:  February 13, 2023.     Revised: March 15, 2023.                                                                                             273 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.21 

 

3.3 Intrusion attack classification 

After selecting the optimal features from the 

CICIDS2017, NSL-KDD, Kyoto 2006+, and UNSW-

NB15 databases, the stacked autoencoder classifier is 

employed for classifying the intrusion attacks. The 

stacked autoencoder classifier comprises multi-layer 

autoencoders that obtain higher-level representation 

of the selected features by reconstructing its structure. 

In the input layer, the original information is encoded 

for obtaining the higher-level features of the middle 

hidden layers, and further, the respective feature 

information is reconstructed by decoding it. By 

minimizing the reconstruction error, the stacked 

autoencoder networks are trained. The original 

training data is considered as 𝑥(𝑖)  and the hidden 

layer 𝑦(𝑖) is mathematically expressed in Eq. (9) [29]. 

 

𝑦(𝑖) = 𝑓(𝑊1
𝑇 × 𝑥(𝑖) + 𝑏)                                          (9) 

 
Where 𝑓  indicates encoding function (tangent 

activation function), 𝑊1
𝑇  represents the weight 

matrix of the encoder, and 𝑏  indicates bias vector. 

Further, the output 𝑧(𝑖) is obtained by decoding the 

original information, which is mathematically 

represented in Eq. (10). Then, the objective 𝐽(𝑋, 𝑍) is 

minimized for training the autoencoder that is defined 

in Eq. (11). 

 

𝑧(𝑖) = 𝑔(𝑊2
𝑇 × 𝑦(𝑖) + 𝑏)                                 (10) 

 
Where, 𝑔  denotes the decoding function, 𝑊2

𝑇 

indicates the weight matrix of the decoder and 𝑏 

indicates the bias vector [30, 31]. 

 

𝐽(𝑋, 𝑍) =
1

2
∑ ‖𝑥(𝑖) − 𝑧(𝑖)‖

2𝑀
𝑖=1                        (11) 

 
Where, 𝑀 indicates the number of autoencoder. 

Generally, the stacked autoencoder classifier is 

trained based on a layer-by-layer greedy model. Here, 

the hidden layer vectors of the upper layer are used as 

the input of the successive layers, and this step is 

named pre-training. Further, the pre-trained network 

weights are connected and then the weights of the 

final network are obtained by fine-tuning. The 

assumed parameters of the stacked autoencoder 

classifier are stated as follows: maximum iterations: 

softmax learning is 100, sparsity proportion is 0.15, 

sparsity regularization is 4, L2 weight regularization 

is 0.004, and the number of hidden layers is 100. The 

obtained experimental outcomes of the POGOA with 

stacked autoencoder model are mentioned in the 

upcoming section. 

4. Experimental results 

The proposed POGOA with stacked autoencoder 

model’s performance is validated using Matlab 

R2020a software tool with Intel core i3 processor, 8 

GB Random Access Memory and 4TB hard disk. In 

this manuscript, the proposed POGOA with stacked 

autoencoder model’s performance is analyzed by 

using the performance measures like precision, f1-

score, accuracy and recall, and it is mathematically 

specified in Eqs. (12), (13), (14), and (15). In this 

scenario, the false negatives (FN) values specify that 

the attack classes are inaccurately determined as 

normal classes, and the false positives (FP) values 

indicate that the attack classes are precisely identified 

as attack classes. Additionally, the true positives (TP) 

values indicate that the normal classes are accurately 

identified as normal classes, and the true negatives 

(TN) values denote that the normal classes are 

inaccurately determined as attack classes. The 

formulae to compute precision, f1-score, accuracy, 

and recall are denoted in Eqs. (12), (13), (14), and 

(15). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100                                      (12) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
× 100           (13) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100                 (14) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                                             (15) 

4.1 Analysis of the CICIDS2017 database 

The proposed POGOA with stacked autoencoder 

model’s efficacy is analyzed on the CICIDS2017 

database with fivefold cross-validation (80:20% 

training and testing of data). As specified in Table 1, 

an ablation study is performed with different 

optimizers: Squirrel optimization algorithm (SOA), 

GOA and POGOA, and classifiers: RNN, long short 

term memory (LSTM) network and stacked 

autoencoder. By inspecting the obtained results, the 

combination of POGOA with stacked autoencoder 

has higher classification results on the CICIDS2017 

database with precision of 99.58%, f1-score of 

99.18%, accuracy of 99.32%, and recall of 99.50% 

on the CICIDS2017 database. On the other hand, the 

combination of POGOA with a stacked autoencoder 

consumed a computational time of 44.22 seconds, 

which is limited compared to other combinations. 

The graphical diagram of the experimental results 

obtained by the proposed POGOA with stacked  
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Table 1. Obtained results of the proposed POGOA with stacked autoencoder model on the CICIDS2017 database 
Classifiers Optimizers Precision (%) F1-score (%) Accuracy (%) Recall (%) 

 

RNN 

SOA 90.32 92 91.20 88.92 

GOA 91.20 92.69 93.44 93.28 

POGOA 93.28 93.20 92.92 94.47 

 

LSTM 

SOA 93.12 92.10 93.28 92.22 

GOA 94.77 94.36 95.68 94.38 

POGOA 95.44 95.38 95.90 95 

 

Stacked autoencoder 

SOA 96.80 96.55 96.49 96.06 

GOA 97.02 97.35 97.40 96.57 

POGOA 99.58 99.18 99.32 99.50 

 

 

 
Figure. 2 Graphical diagram of the experimental results obtained by the proposed model on the CICIDS2017 database 

 
Table 2. Obtained results of the proposed POGOA with stacked autoencoder model on the NSL-KDD database 

Classifiers Optimizers Precision (%) F1-score (%) Accuracy (%) Recall (%) 

 

RNN 

SOA 89.40 90.45 88.22 88.34 

GOA 90.28 91.60 90.54 90.90 

POGOA 92.12 92.28 92.80 92 

 

LSTM 

SOA 90.78 93.67 92.77 92.20 

GOA 92.60 92.30 93.60 93.30 

POGOA 93.42 94.44 94.62 95.88 

 

Stacked autoencoder 

SOA 95.84 95.50 95.90 96.84 

GOA 96.67 96.88 96.88 96.90 

POGOA 99.67 99.72 99.84 99.52 

 

 

autoencoder model on the CICIDS2017 database is 

specified in Fig. 2. 

4.2 Analysis of the NSL-KDD database 

In this section, the proposed POGOA with 

stacked autoencoder model’s effectiveness is tested 

on the NSL-KDD database by means of precision, f1-

score, accuracy and recall, and the results are 

specified in Table 2. Similar to the CICIDS2017 

database, the combination: POGOA with stacked 

autoencoder has achieved higher classification results 

on the NSL-KDD database with precision of 99.67%, 

f1-score of 99.72%, accuracy of 99.84%, and recall 

of 99.52%. In the NSL-KDD database, the 

combination: POGOA with stacked autoencoder 

consumed a computational time of 49.34 seconds, 

which is better related to other combinations, due to 

the selection of the relevant attributes by POGOA. 

The graphical diagram of the experimental results 

obtained by the proposed model on the NSL-KDD 

database is represented in Fig. 3.  

4.3 Analysis of the Kyoto 2006+ and UNSW-NB15 

databases 

Similar to the previous two databases, the 

proposed POGOA with stacked autoencoder model 

obtained higher classification results related to other 

comparative models on the Kyoto 2006+ and UNSW-

NB15 databases. The proposed POGOA with stacked 

autoencoder model has obtained 99.56%, and 97.24% 

of detection accuracy on the Kyoto 2006+, and 

UNSW-NB15 databases. Compared to the existing  
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Figure. 3 Graphical diagram of the experimental results obtained by the proposed model on the NSL-KDD database 

 
Table 3. Obtained results of the proposed POGOA with stacked autoencoder model on the Kyoto 2006+ database 

Classifiers Optimizers Precision (%) F1-score (%) Accuracy (%) Recall (%) 

 

RNN 

SOA 90.48 91.40 90.29 90.36 

GOA 91.28 92.69 91.58 92.97 

POGOA 93.17 93.28 93.88 92.67 

 

LSTM 

SOA 91.76 94.68 94.76 94.24 

GOA 93.65 95.33 95.66 94.34 

POGOA 94.44 94.44 96.60 95.90 

 

Stacked autoencoder 

SOA 96.85 96.54 97.09 97.81 

GOA 97.60 97.84 97.87 98.93 

POGOA 99.12 99.23 99.56 99.24 

 

 
Table 4. Obtained results of the proposed POGOA with stacked autoencoder model on the UNSW-NB15 database 

Classifiers Optimizers Precision (%) F1-score (%) Accuracy (%) Recall (%) 

 

RNN 

SOA 90.43 91.11 90.43 90.22 

GOA 91.21 92.35 92.59 92.82 

POGOA 93.19 93.78 94.84 93.22 

 

LSTM 

SOA 91.33 94.34 94.90 93.42 

GOA 93.68 94.33 95.64 94.82 

POGOA 94.56 95.22 96.43 96.80 

 

Stacked autoencoder 

SOA 96.22 96.58 97 97.68 

GOA 97.33 97.90 97.09 97.92 

POGOA 98.80 98.92 97.24 98.58 

 

 

classification techniques, the stacked autoencoder 

greatly decreases the input data noise, which makes 

this deep-learning model more effective in intrusion 

classification. In the Kyoto 2006+ and UNSW-NB15 

databases, the combination: POGOA with stacked 

autoencoder consumed a limited computational time 

of 29.30 and 44.02 seconds, and it is better than the 

comparative models. The graphical diagram of the 

experimental results obtained by the proposed model 

on the Kyoto 2006+ and UNSW-NB15 database is 

presented in Figs. 4 and 5. 

4.4 Comparative analysis  

The comparative analysis between the proposed 

POGOA with the stacked autoencoder model and the 

prior models is mentioned in Tables 5 and 6. Almiani 

[13] implemented a new intrusion detection model: 

multi-layered RNN for improving fog computing 

security. The developed multi-layered RNN model’s 

performance was analyzed on the NSL-KDD 

database, where it achieved 92.18% of detection 

accuracy. Benmessahel [14] combined LSO with 

FNN for effective intrusion detection. The 

experimental analysis showed that the presented 

LSO-FNN model achieved 94.02% of detection 

accuracy on the NSL-KDD database. Choobdar [15] 

incorporated stacked autoencoder with softmax 

classifiers for intrusion attack classification on the 

CICIDS2017 database. The developed model has 

averagely obtained 98.50% of detection accuracy on 

the CICIDS2017 database. Chikkalwar and Garapati 

[17] integrated autoencoder, SVM and GOA for  
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Figure. 4 Graphical diagram of the experimental results obtained by the proposed model on the Kyoto 2006+ database 

 

 
Figure. 5 Graphical diagram of the experimental results obtained by the proposed model on the UNSW-NB15 database 

 
Table 5. Comparative results by means of detection accuracy 
Models Database Detection accuracy (%) 

Multi-layered RNN [13] NSL-KDD 92.18 

LSO with FNN [14] NSL-KDD 94.02 

Stacked autoencoder [15] CICIDS2017 98.50 

POGOA with stacked autoencoder NSL-KDD 98.12 

CICIDS2017 98.74 

 

 
Table 6. Comparative results by means of detection accuracy, precision, f1-score, recall, and computational time 

Models Database Accuracy (%) Precision 

(%) 

Recall (%) F1-score 

(%) 

Time 

(seconds) 

 

Autoencoder-

SVM-GOA [17] 

UNSW-NB15 95.30 94.10 95.20 94.65 41 

CICIDS2017 99.20 99.10 99.10 99.10 36 

NSL-KDD 99.60 99.50 99.40 99.45 27 

Kyoto 2006+ 99.10 99.10 99.10 99.10 16 

 

POGOA with 

stacked 

autoencoder 

UNSW-NB15 97.24 98.80 98.58 98.92 32.12 

CICIDS2017 99.32 99.58 99.50 99.18 27.30 

NSL-KDD 99.84 99.67 99.52 99.72 18 

Kyoto 2006+ 99.56 99.12 99.24 99.23 9.48 

 

 

effective detection of network intrusions. Whereas, 

the presented model has obtained higher intrusion 

classification outcomes by means of precision, f1-

score, accuracy, and recall on the CICIDS2017, NSL-

KDD, Kyoto 2006+, and UNSW-NB15 databases. 

As specified in Tables 5 and 6, the proposed 

POGOA with stacked autoencoder model obtained 

higher detection accuracy compared to the existing 

research papers. In addition to this, the selection of 

optimal attributes by the POGOA significantly 

reduces the system complexity to linear and 

computational time, which are the major concerns 

highlighted in the literature section. The proposed 

POGOA with stacked autoencoder model consumed 

limited computational time of 32.12, 27.30, 18, and 

9.48 seconds on the UNSW-NB15, CICIDS2017, 

NSL-KDD, and Kyoto 2006+ databases. 
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5. Conclusion 

In this paper, a POGOA with stacked autoencoder 

model is implemented for effective intrusion 

detection in the cloud and IoT systems. The proposed 

framework is implemented in the Matlab 

environment on the CICIDS2017, NSL-KDD, Kyoto 

2006+, and UNSW-NB15 databases. The proposed 

framework comprises two major phases: feature 

optimization using POGOA and intrusion 

classification by stacked autoencoder. As mentioned 

in the comparative analysis section, the proposed 

POGOA with stacked autoencoder model has 

achieved higher classification results compared to the 

existing models: stacked autoencoder, LSO with 

FNN, multi-layered RNN, and autoencoder-SVM-

GOA. The POGOA with stacked autoencoder model 

achieved 99.32%, 99.84%, 99.56%, and 97.24% of 

detection accuracy on the CICIDS2017, NSL-KDD, 

Kyoto 2006+, and UNSW-NB15 databases. Still, the 

proposed model needs to concentrate on the data 

imbalance problem to further enhance its detection 

accuracy. Therefore, as a future extension, an 

effective data balancing technique is incorporated 

with the proposed POGOA with stacked autoencoder 

model to further achieve better results in intrusion 

attack classification. 

Notations 

Parameter Definition 

𝐴𝑖 Wind advection 

𝑂𝑖 Gravitational force 

𝑆𝑖 Social interactions experienced by 

𝑖𝑡ℎ grasshoppers 

𝑢 Constant drift 

𝑒𝑤 𝑎𝑛𝑑 𝑒𝑔 Unity vectors 

𝑠(𝑟) Strength of the social forces 

𝑙 Attractive length scale 

𝑘 Attraction intensity 

𝑜 Gravitational constant 

𝑉𝑖 Grasshopper’s nymph motion 

𝑢𝑏𝑑 Upper bound 

𝐼𝑏𝑑 Lower bound 

𝑇𝑑 Target value 

𝑐 Decreasing coefficients 

𝑀𝑎𝑥𝑖𝑡𝑟 Maximum number of iterations 

𝑐𝑚𝑖𝑛 Minimum 𝑐 value 

𝐼 Present iteration number 

𝑐𝑚𝑎𝑥 Maximum 𝑐 value 

𝑃𝑟𝑖 Probability of the target value 

selection 

𝑁𝑖 Number of solutions 

𝑊1
𝑇 Weight matrix of the encoder 

𝑓 Encoding function 

𝑏 Bias vector 

𝑊2
𝑇 Weight matrix of the decoder 

𝑔 Decoding function 

𝑀 Number of autoencoder 
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