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Abstract: Cloud computing has become an essential technology in many industries due to its scalability and cost-

effectiveness. The dynamic nature of cloud computing, including elasticity, on-demand provisioning, diverse 

resource types, and varied pricing model, presents a significant challenge in scheduling tasks for cloud-based 

systems, especially when considering user quality of service (QoS) constraints such as deadlines and budgets. 

Therefore, in order to optimize the performance of the cloud systems and end-user satisfaction, an efficient budget 

and deadline-aware scheduling model is necessary. Game theory provides a framework for modeling and analyzing 

the strategic interactions between self-interested entities, which makes it an ideal tool for task scheduling in cloud 

computing. Additionally, the versatility of game models enables the analysis of various cloud computing 

architectures. This paper proposes a dynamic Stackelberg (leader-follower) game model for modeling the 

interactions between tasks, scheduler, and cloud resources to find an equilibrium for the game under both budget and 

deadline constraints. The proposed dynamic task scheduling based on Stackelberg game (DTSSG) model is assisted 

by the pricing model and satisfaction factors to select the optimal virtual machine for processing the user task. To 

achieve high average resource utilization, the utilization factor of the cloud resources is considered in the proposed 

work. Experimental results show that the Stackelberg model equilibrium has been very effective in scheduling the 

user tasks across the data center resources by selecting the optimal virtual machines. The results demonstrate 

improved execution efficiency in terms of decreased makespan by 30%, reduced number of deadline violations by 

52%, decreased total gain cost by 27.13% and increased provider profit by 19.15 % on average as compared to 

existing deadline budget scheduling (DBS), genetic algorithm, and MAX–MIN methods. Also, the results show the 

effectiveness of the proposed work in terms of increased throughput by 59.4 % and decreased makespan by 27.95% 

using Google cloud jobs dataset (GoCJ) as compared to existing gradient-based optimization (GBO), multi-verse 

optimizer (MVO), enhanced multi-verse optimizer (EMVO). 
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1. Introduction 

A cloud computing system is composed of a 

number of servers that are located in remote places 

and can be accessed through the internet. These 

servers offer a variety of cloud services such as 

software, platform, and infrastructure services [1]. 

Cloud data centers offer computing and storage 

capabilities on a pay-per-use subscription model by 

utilizing a huge number of physical computers [2]. 

Cloud computing infrastructures can process a broad 

range of applications data, especially the data related 

to real-time applications like the internet of things 

(IoT), and mobile crowd sensing (MCS) 

applications which present a compelling case for 

executing their data in the cloud environment [3, 4]. 

Scheduling cloud data requires a lot of computation, 

storage, and communication costs. task scheduling is 

the process of assigning the user tasks to the data 

center resources in such a way the execution will be 

completed within the user’s specified constraints 

such as budget and deadline [5]. In cloud computing, 

the cloud service provider (CSP) offers resources 

with different capabilities and prices. Typically, 
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faster resources cost more than slower resources. 

Therefore, different plans for scheduling the same 

data load that utilize different resources may result 

in different completion times and costs. So, 

introducing an efficient task scheduling solution for 

cloud data centers requires satisfying both cost and 

time constraints according to the user's 

specifications [6]. Time constraint ensures that the 

user task is executed within the deadline given by 

the user and the cost constraint ensures that the user 

budget is not exceeded. A good scheduling 

algorithm attempts to achieve a solution that is 

nearly optimal by balancing these two values [7]. 

Game theory is a mathematical framework for 

modeling and analyzing strategic interactions 

between intelligent and rational decision-makers [8, 

9]. In the context of task scheduling, game theory 

can be used to model the interactions between 

different tasks and resources, and to analyze the 

optimal strategies for task scheduling in different 

scenarios. Some common applications of game 

theory in task scheduling include the design of 

efficient scheduling algorithms, the analysis of the 

performance of different scheduling policies, and 

the study of the impact of different system 

parameters on task scheduling [10]. Equilibrium is a 

concept of game theory in which all participant 

reaches their optimal outcome. [8, 11]. In task 

scheduling for a cloud data center, a Nash 

equilibrium is a state in which no cloud computing 

resource (such as a virtual machine) has an incentive 

to change its task allocation, given the task 

allocations of the other resources. This means that 

each resource is operating at its optimal level of 

efficiency, given the actions of the other resources. 

In this paper, a Stackelberg game is used to 

model the interactions between the task scheduler 

and resources. A Stackelberg game is a type of game 

in which one player, called the leader, makes the 

first move before the other players, called the 

followers [12-14]. In the proposed model, the task 

scheduler represents the leader while the virtual 

machines are the followers. In this setting, the leader 

chooses their best strategy first, and then the 

followers (virtual machines) respond by choosing 

their own strategies. The objective of the followers 

is to maximize their utilization, while the objective 

of the leader is to maximize profit and minimize the 

makespan of the system under the deadline and 

budget constraints imposed by the user tasks. The 

proposed dynamic task scheduling based on 

Stackelberg game (DTSSG) measures makespan, 

throughput, number of tasks violated their deadlines, 

total gain cost, and provider profit. DTSSG 

simulated using cloudsim plus environment. In 

summary, the main contributions of this paper are as 

follows. 

 

• We model the scenario of task scheduling to 

various cloud resources as a Stackelberg 

game. The model consists of one leader 

(scheduler) and many followers (virtual 

machines). The optimization of the leader 

and follower are formulated mathematically. 

• A new pricing model is introduced with 

encouraging and discouraging price 

functions to effectively utilize the system 

resources. 

• We introduce the satisfaction factors for 

both deadline and budget constraints related 

to the user task, then aggregate the virtual 

machines that maintain these constraints for 

processing the task. 

• We propose a dynamic task scheduling 

model that depends on the current utilization 

of the virtual machines at the decisive 

moment to maximize the average resource 

utilization. 

 

The rest of the paper is structured as follows. 

Section 2 presents the related work in this field, 

section 3 introduces the system model, mathematical 

modeling, the proposed scheduling algorithm, and 

evaluation metrics modeling. Section 4 describes the 

experimentation results, performance evaluation, 

and discussion. Finally, the paper is concluded in 

section 5. 

2. Related work  

Scheduling tasks across the resources of a cloud 

data center becomes a very challenging problem due 

to the fact that there are many metrics, including 

makespan and resource utilization, that affect the 

scheduling. Also, user task constraints like budget 

and deadline must be taken into account. many 

researchers studied task scheduling and tried to 

improve the system's performance under these 

constraints. Some of them adopt game theoretical 

approaches to model the problem of task scheduling 

and resource allocation under the cloud environment. 

Arabnejad et al. [15] proposed deadline-budget 

constrained scheduling (DBCS). The authors tried to 

optimize the scheduling algorithm in terms of time. 

they take into account the user quality of service 

(QoS) parameters like cost and time which represent 

the main issues in their work. DBCS looked for a 

radical schedule mapping that met the user's 

deadline and budget constraints. 

Jeny Varghese et al. [16] proposed an entropy-



Received:  February 21, 2023.     Revised: March 9, 2023.                                                                                               177 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.14 

 

based monotonic task scheduling with dynamic 

resource allocation. They aimed to complete the task 

within the deadline and improve response time, 

execution time, and use of resources. The work 

includes the processes of DC clustering, virtual 

machine (VM) clustering, resource mapping, and 

task scheduling. The clustering processes are 

managed in a federated cloud, the brokers are 

responsible for allocating the resources, and the task 

scheduler maps the tasks. 

Xingwang Huang et al. [17] presented a novel 

approach to task scheduling in cloud computing that 

is based on gradient-based optimization (GBO). 

This technique is chosen for its faster convergence 

rate and ability to prevent getting stuck in local 

optima. The author’s goal is to enhance the 

performance of a system with specific computing 

resources by reducing the makespan. 

Liu et al. [18] introduced an implementation of a 

strategy that combines hardware and software to 

optimize energy usage and meet time constraints. 

The system is designed to adjust hardware features 

based on software requirements, resulting in more 

efficient execution and lower energy costs. On the 

software side, the paper explores a task-scheduling 

algorithm that is both energy-efficient and deadline-

aware, using the Q-learning approach. 

Natesan et al. [19] proposed a performance-cost 

grey wolfoptimization (PCGWO) algorithm to 

optimize the process of scheduling the user tasks to 

the cloud resources. their main objective is to reduce 

both processing time and cost of tasks under 

deadline constraints. 

Jing et al. [20] proposed QoS-aware discrete 

particle swarm optimization (QoS-DPSO) for the 

optimization of system reliability under budget and 

deadline constraints. QoS-DPSO is a fault-tolerant 

scheduling algorithm that meets the service quality 

requirements of users. 

Velliangiri et al. [21] combined electro search 

with a genetic algorithm and presented HESGA To 

optimize multi-cloud QoS parameters such as 

makespan and cost. According to simulation results, 

HESGA outperforms other methods. 

Mokhtar A. Alworafi, and Suresha Mallappa 

[22] introduced deadline budget scheduling (DBS) 

as a model capable of scheduling tasks across 

heterogeneous cloud environments with the user  

QoS constraints: cost and time while maintaining 

the satisfaction of user tasks. The most important 

aspects of the proposed DBS model are minimizing 

the makespan under the user-specified deadline and 

minimizing cost without exceeding the user-

specified budget. 

Sarah E. Shukri et al. [23] introduced an 

improved version of the multi-verse optimizer 

(MVO) that is specifically designed to solve task 

scheduling problems in cloud computing 

environments. The new algorithm incorporates a 

novel operation that saves the best solutions at each 

iteration and reintroduces them as a new solution 

after a certain number of iterations. The primary 

focus of the proposed approach is to minimize task 

execution time while taking into account factors 

such as task length, cost, and power requirements.  

R. Swathy et al. [24] introduced a game-

theoretical model based on the Stackelberg (leader-

follower) framework, which is enhanced with a 

satisfaction factor to enable the selection of the best 

physical host for deploying incoming tasks in a 

balanced manner at a data center. The model is 

designed to optimize the deployment process by 

ensuring assigning of tasks to the appropriate host.  
Authors in [25] proposed a non-cooperative and 

cooperative game as a game-theoretic approach for 

real-time task scheduling in a cloud computing 

environment. All user actions have been considered 

as game players, and virtual machines have been 

considered as game strategies. They also compared 

the experimental results from the cooperative and 

non-cooperative games. The results demonstrate that 

the cooperative game model for task scheduling 

outperforms a non-cooperative game model when 

the payoff is taken as completion time and waiting 

time. 

Previous studies have not considered the 

utilization status of system resources dynamically 

during the scheduling process. Also, most of the 

studies did not address satisfying user quality of 

service (QoS) requirements in terms of cost and 

deadline. To address these gaps, we proposed a 

dynamic scheduling model that guarantees meeting 

user requirements by considering both cost and 

deadline satisfaction factors. Furthermore, our 

model ensures optimal task scheduling by taking 

into account the status of cloud resources and 

incorporating an effective pricing model which 

relies on the current utilization of system resources. 

By considering these factors, our proposed model 

guarantees optimal resource utilization, meeting user 

QoS requirements, maximizing provider profit, and 

improving the overall performance of the system. 

3. Problem formulation 

3.1 Proposed scheduling framework 

Cloud computing users expect their tasks to be 

scheduled efficiently and priced optimally within the 

given deadline. When users submit their tasks, these  
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Figure. 1 The proposed scheduling framework 

 

tasks come with several constraints like the deadline 

and budget. Therefore, in order to achieve good 

scheduling for user tasks in cloud data centers, it is 

essential to develop an optimal model for task 

scheduling. Stackelberg's game theoretical model 

informs the proposed solution, which maps the user 

tasks to different VMs in the cloud data center 

optimally. Fig. 1 highlights the architectural diagram 

of the Stackelberg game scheduler. The users submit 

their task requests with the deadline and budget 

constraints to the leader (scheduler), and the 

scheduler then deploys these requests among the 

followers (VMs) that have the necessary computing 

capabilities to process the user tasks. The utility 

function is computed using the satisfaction factor, 

pricing strategy, and current utilization of the VMs. 

This utility is calculated for every dynamically 

arrived task then the task is distributed to the 

optimal VM with the lowest utility value. The 

satisfaction factor ensures that the VM can satisfy 

the deadline and budget constraints of the task. 

While the pricing strategy tries to maximize the 

average utilization of the data center resources 

3.2 Mathematical formulation of the proposed 

Stackelberg game model 

The problem of the proposed model is 

formulated as follows: given a cloud data center that 

receives a set (T) of M tasks from the users,  T =
𝑡1, 𝑡2, … . , 𝑡𝑀 , each task is represented by three main 

parameters 𝑡𝑗 = (ℓ𝑗, ḏ𝑗, ḇ𝑗), where  ℓ𝑗  indicate the  
 

Table 1. Used notation 

Notations Description 

𝑇 Set of Tasks 

𝑉 Set of Virtual Machines 

𝑁 Number of VMs in V 

𝑀 Number of Tasks in T 

𝑡𝑗 The 𝑗𝑡ℎ task in T 

𝑣𝑖 The 𝑖𝑡ℎ VM in V 

ℓ𝑗 Length of 𝑡𝑗 

ḇ𝑗 Budget of 𝑡𝑗 

ḏ𝑗 Deadline of 𝑡𝑗 

𝑚𝑖𝑝𝑠𝑖  Million Instructions per Second of 𝑣𝑖 

𝑢𝑖 Current utilization of 𝑣𝑖 

𝑠𝑖 Available Storage of vi 

𝑚𝑖 The available Memory size of vi 

𝑆𝐹𝑐 Cost satisfaction factor 

𝑆𝐹𝑑 Deadline satisfaction factor 

𝑝𝑖
𝑠 Subscription Cost on a specific VM 

𝑝𝑖
𝑎 Actual cost (cost per second) using  𝑣𝑖 

𝑝𝑖
𝑏𝑎𝑠𝑒  The base price to subscribe on 𝑣𝑖 

𝑑𝑖,𝑗  Execution Time of 𝑡𝑗 on 𝑣𝑖  

𝑝𝑒𝑠𝑖 Number of Processing elements in 𝑣𝑖 

𝐸𝑇𝑣𝑖  Total execution time for 𝑣𝑖 

Nov  The number of tasks violated their deadline 

 

task length, ḏ𝑗 is the deadline allowed to execute the 

task, and ḇ𝑗 represents the cost given by the user to 

execute their task. Also, the data center has set (V) 

of N virtual machines where V = {𝑣1, 𝑣2, … . , 𝑣𝑁}, 

each virtual machine is represented by its available 

CPU million instructions per second (MIPS), 

memory, storage, and VM utilization status where 

𝑣𝑖  =  (𝑚𝑖𝑝𝑠𝑖 , 𝑚𝑖, 𝑠𝑖 , 𝑢𝑖) . One of the data center 

nodes is chosen to work as a task scheduler. The 

task scheduler deploys the tasks to different virtual 

machines based on the Stackelberg game model. 

The Stackelberg game model represents a leadership 

model. The problem applies to situations with one 

leader and many followers. Here, the selected task 

scheduler serves as the leader, while all other virtual 

machines serve as the followers. The leader 

periodically receives the available resources of the 

data center virtual machines from the CSP. The 

amount of remaining resources includes the CPU 

MIPS, Storage, memory, and the current utilization 

of the VMs. The leader (scheduler) also receives m 

number of user tasks with different deadlines and 
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budget constraints. These tasks need to be mapped 

to optimal virtual machines in the data center. Our 

work proposes a dynamic scheduling approach to 

schedule the received tasks to the most suitable VM 

under user QoS constraints. Table 1 shows the 

notation used to represent the proposed model. 

3.2.1. Scheduler—leader 

All virtual machines in cloud data center 

announce their available amount of resources to the 

leader (scheduler). The remaining amount of 

resources includes the available CPU, RAM, storage, 

and VM utilization for the set V of VMs. The price 

strategy for the resources of the data center is 

determined by the CSP. Based on the leader's 

strategy, the followers are assigned tasks for 

processing. The maximum price will be chosen for 

the VM with the high utilization ratio, and the 

minimum price will be chosen for the VM with the 

lower utilization ratio. Let  𝑃 =  {𝑝1, 𝑝2, … … , 𝑝𝑁}  
the price strategies of the followers based on the 

price functions, the price strategies 𝑝 is determined 

by the CSP for each virtual machine as in Eq. (1). 

 

𝑝𝑖 = 𝑝𝑖
𝑠 + 𝑝𝑖

𝑎   (1) 

 

Where 𝑃𝑖
𝑠 is the subscription cost for a specific 

VM with index 𝑖 = {1,2,3 … … 𝑁}, this cost depends 

on the current utilization of the VM. The 

subscription pricing function is described in Eq. (2) 

which either encourages or discourages utilizing 

VM based on it is current utilization status. Each 

virtual machine has a desired utilization range 

[𝑢𝑖
𝑙𝑜𝑤 ,𝑢𝑖

ℎ𝑖𝑔ℎ
] in this approach. The intention is to 

charge a base price (𝑃𝑖
𝑏𝑎𝑠𝑒) for the virtual machine 

𝑣𝑖 if it is utilization (𝑢𝑖) falls within this range. An 

additional price is added to the base price to 

discourage utilizing the VM if the utilization 𝑢𝑖  is 

above 𝑢𝑖
ℎ𝑖𝑔ℎ

 and less than the threshold value 𝑢𝑖
𝑡ℎ𝑟𝑒. 

(if the VM utilization reaches the threshold value, it 

cannot be used). Alternatively, a certain price is 

discounted from the base price to encourage usage if 

the VM utilization 𝑢𝑖  is below 𝑈𝑖
𝑙𝑜𝑤 . In our work, 

the values of 𝑢𝑖
𝑙𝑜𝑤, 𝑢𝑖

ℎ𝑖𝑔ℎ
, and 𝑢𝑖

𝑡ℎ𝑟𝑒.  are selected to 

be 30%, 70%, and 95% respectively.  

 

𝑝𝑖
𝑠 =  

{

𝑝𝑖
𝑏𝑎𝑠𝑒  −  𝑝𝑖

𝑒𝑛𝑐𝑜𝑢𝑟𝑎𝑔𝑒
,         0 ≤ 𝑢𝑖 ≤ 𝑢𝑖

𝑙𝑜𝑤  

 𝑝𝑖
𝑏𝑎𝑠𝑒 ,                                𝑢𝑖

𝑙𝑜𝑤 <  𝑢𝑖 < 𝑢𝑖
ℎ𝑖𝑔ℎ

 

𝑝𝑖
𝑏𝑎𝑠𝑒  + 𝑝𝑖

𝑑𝑖𝑠𝑐𝑜𝑢𝑟𝑎𝑔𝑒
,     𝑢𝑖

ℎ𝑖𝑔ℎ
≤ 𝑢𝑖 ≤ 𝑢𝑖

𝑡ℎ𝑟𝑒.

(2) 

 

The encouraging and discouraging prices are 

linearly varying functions of utilization. If VM 

utilization is slightly higher or lower than the 

desired range, the overall price should be close to 

the base price. Hence, both 𝑝𝑖
𝑒𝑛𝑐𝑜𝑢𝑟𝑎𝑔𝑒

 and 𝑝𝑖
𝑑𝑖𝑠𝑐𝑜𝑢𝑟𝑎𝑔𝑒

 

prices must be relatively small as compared to the 

base price (𝑝𝑖
𝑏𝑎𝑠𝑒). As utilization moves far from the 

desired range, both prices should rapidly increase. 

the base price is set to be 0.5 in our simulation. The 

encouraging and discouraging prices formulas 

described in Eqs. (3) and (4). 

 

𝑝𝑖
𝑒𝑛𝑐𝑜𝑢𝑟𝑎𝑔𝑒

= 𝑝𝑖
𝑏𝑎𝑠𝑒 × (𝑢𝑖

𝑙𝑜𝑤 − 𝑢𝑖)  (3) 

 

𝑝𝑖
𝑑𝑖𝑠𝑐𝑜𝑢𝑟𝑎𝑔𝑒

= 𝑝𝑖
𝑏𝑎𝑠𝑒 × (𝑢𝑖  − 𝑢𝑖

ℎ𝑖𝑔ℎ
)   (4) 

 

The actual processing price ( 𝑝𝑖
𝑎)  represent the 

cost per second for using VM resources (CPU, 

Memory, and Storage), it is calculated as in Eq. (5). 

 

𝑝𝑖
𝑎   = [𝑐𝑖

𝑐𝑝𝑢
+ 𝑐𝑖

𝑟𝑎𝑚 + 𝑐𝑖
𝑠𝑡𝑜𝑟𝑎𝑔𝑒

]   (5) 

 

The execution time needed to complete the task 

𝑡𝑗 on each 𝑣𝑖 is referred by 𝑑𝑖,𝑗 and is computed by 

the leader as in Eq. (6). 

 

𝑑𝑖,𝑗 =
ℓ𝑗 

𝑚𝑖𝑝𝑠𝑖 × 𝑝𝑒𝑠𝑖
   (6) 

 

Each task comes with a deadline ḏ𝑗 and budget 

ḇ𝑗 . First of all, the proposed approach aggregates 

the VMs suitable for processing the task by 

checking the deadline and cost satisfaction factors 

(𝑆𝐹𝑐  𝑎𝑛𝑑  𝑆𝐹𝑑). The VMs that have both 𝑆𝐹𝑐  𝑎𝑛𝑑  
𝑆𝐹𝑑 greater than zero will be passed to the mapping 

stage. This step ensures that the task will be 

processed within the specified deadline and will not 

exceed the user budget see Eqs. (7) and (8).  

 

𝑆𝐹𝑐 = 1 − 𝑒
(1−(

ḇ

𝑝
))

  (7) 

 

𝑆𝐹𝑑 = 1 − 𝑒
(1−(

ḏ

𝑑
))

  (8) 

 

Then, the satisfaction factor 𝑆𝐹 is calculated as 

in Eq. (9) to be used in the utility function of the 

followers. 

 

𝑆𝐹 = (𝛼 × 𝑆𝐹𝑐) + (𝛽 × 𝑆𝐹𝑑) where 𝛼 + 𝛽 = 1  (9) 

 

The values of 𝜶 and 𝜷 coefficients in Eq. (9) are 

tested under different conditions in the simulation, 

and the result is shown in Table 2.  

The scheduler calculates these values for each  
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Table 2. Different values of α and β coefficients 

𝑺𝑭𝒄 𝜶 𝜷 

𝑆𝐹𝑐 ≤ 0.25 0.2 0.8 

0.25 < 𝑆𝐹𝑐 ≤ 0.5 0.5 0.5 

0.5 < 𝑆𝐹𝑐 ≤ 0.75 0.7 0.3 

𝑆𝐹𝑐 > 0.75 0.9 0.1 

 

 

incoming task. This behavior aims to maximize the 

profit of the leader keeping in mind the deadline 

constraint is already satisfied. In fact, using different 

values of 𝜶 and 𝜷 coefficients in different conditions 

ensures that the task will be scheduled to the VM 

which gives the system a high profit.  

The utility function of the followers will be 

calculated only for the VMs that give a positive 𝑆𝐹𝑐 

and 𝑆𝐹𝑑 . This function is calculated based on the 

satisfaction factor 𝑆𝐹 and the total cost to execute 

the task 𝑡𝑗 on 𝑣𝑖 as in Eq. (10). 

 

𝑈𝐹𝑣(𝑝, 𝑑) =  ( 𝑝𝑖  ×   𝑑𝑖,𝑗 ) + [𝑆𝐹]𝑛 (10) 
 

The proposed model assumes that the utility 

function of the followers equally depends on both 

the 𝑆𝐹  and the total cost. Therefore, [𝑆𝐹]𝑛 

represents the normalized value of the 𝑆𝐹. The value 

of 𝑆𝐹  is normalized using the MIN-MAX 

normalization technique to fall within the range  

[0 −  ( 𝑝𝑖 ∗ 𝑑𝑖,𝑗 )]. The optimal virtual machine for 

processing the user task is described in Eq. (11). 

 

𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟 𝑏𝑒𝑠𝑡 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = 𝑀𝑖𝑛{𝑈𝐹𝑣} (11) 
 

The utility function of the leader (scheduler) is 

formulated as the total gain acquired through 

processing the successful tasks in the data center. 

Thus, the utility function is given in Eq. (12). 

 

𝑈𝐹𝐿(𝑝, 𝑑) = ∑ ∑ (𝑝𝑖,𝑗– 𝑝𝑖,𝑗
𝑠𝑚

𝑗=1
𝑛
𝑖=1 ) × 𝑑𝑖,𝑗 × 𝑀𝑖,𝑗 (12) 

 
Where 𝑀𝑖,𝑗  is a Boolean value activated only 

when a task 𝑡𝑗 mapped to VM 𝑣𝑖, the best strategy 

for the leader that ensures the task is mapped to the 

most suitable VM is shown in Eq. (13).  

 

𝐿𝑒𝑎𝑑𝑒𝑟 𝑏𝑒𝑠𝑡 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = 𝑀𝐴𝑋 {𝑈𝐹𝐿}   (13) 
 

The total gain cost of the leader is computed 

based on the follower’s best strategy. The leader 

utility value is calculated as the summation of the 

cost awarded for processing all the tasks. This utility  
 

 
Figure. 2 Flow chart of the proposed model 

 

is maximized after scheduling a task indicating that 

the user tasks are assigned to VMs optimally. 

3.2.2. Followers (virtual machines) 

The followers choose their best response 

strategies by choosing the strategy that offers the 

lowest utility function value. The follower accepts 

the task request and executes it based on its best 

strategy. The flow chart of the proposed system is 

given in Fig. 2. 

3.3 Stackelberg game scheduling model 

Following is the sequence of procedures for 

dispatching tasks according to the Stackelberg game 

model: 

 

1. The leader determines the price strategy of 

every individual VM according to the price 

strategy function. Then, it calculates the 𝑈𝐹𝑣 

for the VMS and finally, the utility strategy 

values are announced to the followers. 
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ALGORITHM 1:  DTSSG ALGORITHM 

 

Inputs: an available set of VMs 𝑽  with their status 

(𝑚𝑖𝑝𝑠𝑖 , 𝑚𝑖, 𝑠𝑖 , 𝑢𝑖), 

 task 𝒕𝒋  with its length, Deadline, and budget ( ℓ𝑗 , 

ḇ𝑗 , 𝑎𝑛𝑑 ḏ𝑗);. 

 
Output: scheduler (Leader) optimal strategy, VMs 

(Followers) optimal strategy. 

1 V= List of available VMs; 𝑡𝑗 = user task; 

2 
Set price strategy for the follower (VMs) based on 

their utilization (𝑢𝑖)  𝑃 = {𝑝1 , 𝑝2, 𝑝𝑠, … . , 𝑝𝑁] as: 

3 𝑝𝑖 = 𝑝𝑖
𝑠 + 𝑝𝑖

𝑎  , 𝑤ℎ𝑒𝑟𝑒 

4 𝑝𝑖
𝑎   = [𝑐𝑖

𝑐𝑝𝑢
+ 𝑐𝑖

𝑟𝑎𝑚 + 𝑐𝑖
𝑠𝑡𝑜𝑟𝑎𝑔𝑒

] 

5 𝑝𝑖
𝑠 = {

𝑝𝑖
𝑏𝑎𝑠𝑒  –  𝑝𝑖

𝑒𝑛𝑐𝑜𝑢𝑟𝑎𝑔𝑒
,       0 ≤ 𝑢𝑖 ≤ 𝑢𝑖

𝑙𝑜𝑤  

 𝑝𝑖
𝑏𝑎𝑠𝑒 ,                              𝑢𝑖

𝑙𝑜𝑤 <  𝑢𝑖 < 𝑢𝑖
ℎ𝑖𝑔ℎ

 

𝑝𝑖
𝑏𝑎𝑠𝑒  +  𝑝𝑖

𝑑𝑖𝑠𝑐𝑜𝑢𝑟𝑎𝑔𝑒
,   𝑢𝑖

ℎ𝑖𝑔ℎ
≤ 𝑢𝑖 ≤ 𝑢𝑖

𝑡ℎ𝑟𝑒.

 

6 for each VM 𝑣𝑖 ∈ 𝑉 do 

7  Calculate execution time for the task 𝑡𝑗 as: 

8  𝑑𝑖,𝑗 =
ℓ𝑗  

𝑚𝑖𝑝𝑠𝑖  ×  𝑝𝑒𝑠𝑖

 

9  
Check Deadline and cost satisfaction for 𝑡𝑗  

as: 

10  
𝑆𝐹𝑐 = 1 − 𝑒

(1−(
ḇ

𝑝
))

 

11  
𝑆𝐹𝑑 = 1 − 𝑒

(1−(
ḏ

𝑑
))

 

12  if (𝑆𝐹𝑑 > 0 𝐴𝑁𝐷 𝑆𝐹𝑐 > 0) 

13   𝑉𝑠𝑓 . 𝑎𝑑𝑑 (𝑣𝑖) 

1  End if 

15 End for 

16 for each 𝑣𝑖 ∈ 𝑉𝑠𝑓 do 

17  
Choose appropriate values of  𝜶 and 𝜷 

according to table 2. 

18  Calculate SF as: 

19  𝑆𝐹 = (𝛼 ×  𝑆𝐹𝑐) + (𝛽 × 𝑆𝐹𝑑)   

20  Calculate the Utility function of the VM as: 

21  𝑈𝐹𝑣 𝑖, 𝑗 = 𝑃𝑖 × 𝑑𝑖,𝑗 + [𝑆𝐹]𝑛 

22 End for  

23 
Find 𝑀𝑖𝑛{𝑈𝐹𝑣} as the optimal strategy for the 

follower 

24 Map 𝑡𝑗 → VM with 𝑀𝑖𝑛{𝑈𝐹𝑣} 

25 

Compute 

 𝑈𝐹𝐿(𝑝, 𝑑) = ∑ ∑ (𝑝𝑖,𝑗  –  𝑝𝑖,𝑗
𝑠𝑚

𝑗=1
𝑛
𝑖=1 ) × 𝑑𝑖,𝑗 × 𝑀𝑖,𝑗  

for the scheduler 

26 
The optimal strategy of the broker is given by 

𝑀𝐴𝑋 {𝑈𝐹𝐿}   

27 Update VM utilization status. 

28 Repeat the above steps for each incoming task 𝑡𝑗. 

Figure. 3 Pseudo-code of DTSSG algorithm 

 

2. The follower (VM) selects its best response 

strategy as 𝑀𝑖𝑛{𝑈𝐹𝑣 }. This strategy keeps 

the VM utilization (𝑢𝑖 ) to stay within the 

desired utilization range [𝑢𝑖
𝑙𝑜𝑤,𝑢𝑖

ℎ𝑖𝑔ℎ
]. 

3. After the follower selects its best response 

strategy, the leader selects its optimal 

strategy as 𝑀𝐴𝑋 {𝑈𝐹𝐿} . The leader then 

updates the pricing strategies for the 

followers based on their updated utilization 

status. 

 

Steps 1 to 3 are repeated for each incoming task. 

3.4 Evaluation metrics modeling: 

Five evaluation metrics are used to evaluate the 

proposed work. They are makespan, throughput, 

number of deadline violations, total gain cost, and 

total provider profit. 

Makespan refers to the maximum amount of 

time needed to complete the execution of a set of 

tasks [26]. It is influenced by various factors 

including the size and complexity of the tasks, the 

number of resources available, the load on the 

system, and the algorithms used for task scheduling. 

Minimizing the makespan is important for 

optimizing the use of resources and improving the 

performance of the cloud data center. Makespan is 

represented mathematically as shown in Eq. (14) [26, 

27]. 

 

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥(𝐸𝑇𝑣𝑖)   ∀ 𝑖 ∈ 1,2,3, … 𝑚    (14) 

 

Where 𝐸𝑇𝑣𝑖 is the execution time of all assigned 

tasks to the ith VM. As described in Eq. (15). 

 

𝐸𝑇𝑣𝑖 = ∑  𝑚
𝑗=1 𝑑𝑖,𝑗  ×  𝑀𝑖,𝑗 (15) 

 

The average makespan is computed as described 

in Eq. (16) [28]. 

 

Avg. Makespan =
∑  𝑁

𝑖=1 𝐸𝑇𝑣𝑖

𝑁
 (16) 

 

The second evaluation metric used to evaluate 

our work is throughput. It refers to the total number 

of tasks accomplished within a given makespan, 

throughput can be calculated as in Eq. (17). 

 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
∑ 𝑀𝑖,𝑗

𝑚𝑎𝑘𝑒𝑠𝑎𝑝𝑛
  (17) 

 

The next evaluation metric is the number of 

deadline violations (NoV) which represents the total 

number of tasks that violates their deadline. The 

NoV is defined in Eq. (18) [29]. 
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Table 3. simulation experimental environment 

Parameter  value 

Operating system Windows 10 

processor Intel Core i5 2.4 GHz 

RAM 8.00 GB Memory 

Simulation environment Cloudsim Plus 

IDE Tool Eclipse IDE 

Tool Ver. 1.1 

 

 

NoV = ∑  𝑚
𝑗=1 𝑇𝑣𝐷  (18) 

 

where 𝑇𝑣𝐷  is a binary variable activated only 

when the specific task violates its deadline. 

Another evaluation metric used in the 

experiment is the total gain cost, it refers to the cost 

gained by the data center for executing a set of tasks 

under specified budget and deadline constraints. the 

total gain cost is represented by the utility function 

of the leader (𝑈𝐹𝐿) and it is calculated as in Eq. (12). 

The last evaluation metric is the provider profit, 

it represents the total profit that is summed from the 

fees charged to execute the successful tasks. 

Provider profit is calculated by subtracting the 

actual implementation costs for the successful tasks 

from their budgets. The provider profit is described 

in Eq. (19) [22]. 

 
Provider Profit = ∑  𝑚

𝑗=1 ( ḇ𝑗 − 𝑝𝑗
𝑎)        (19) 

4. Performance evaluation  

The experimental setup, workload formation, as 

well as results, and discussions are presented in this 

section. 

4.1 Experimental setup 

The cloudsim plus simulator has been used to 

simulate and find out how well the proposed method 

works in practice. CloudSim plus is a popular open-

source tool developed in Java that can simulate both 

the cloud environment and cloud-based services [30]. 

The experimental setup consists of an Intel Core i5 

2.4 GHz CPU, 8.00 GB of memory, and a 512 GB 

hard drive, running on the Eclipse IDE 2021 R and 

CloudSim plus. To implement our model, we 

extended several classes of the CloudSim plus 

simulator, including Cloudlet.java, VM.java, 

Datacenter.java, and DatacenterBrokerAbstract.java. 

Also, we created some classes for the proposed 

work as needed. Table 3 shows the simulation 

experimental environment Configuration properties.  

Two simulation scenarios were studied in our 

implementation with different simulation parameters  
 

Table 4. VM, tasks, hosts, and data center configurations 

for scenario 1 

 

 

to analyze the performance of the proposed DTSSG 

model. 

Scenario 1: In this scenario, the experimental 

environment included one data center with two 

physical machines (host). Each host has (16) GB of 

RAM, (1) TB of storage, (100) GB/s of bandwidth, 

and a time–shared scheduling policy. One of the 

host machines is a quad-core with the other being a 

dual-core machine, both built on the X86 

architecture, operating on a Linux system, and 

equipped with a Xen virtual machine monitor 

(VMM) that can process at a rate of 10,000 MIPS. 

To conduct the experiments for this scenario, a 

number of virtual machines are created (5, 7, 9, 11). 

Each VM has an image size of (10) GB, (0.5) GB of 

memory, (1) GB/s of bandwidth, one processing 

element, and a MIPS value of (500, 1000, 2000, and 

3000). The configuration includes Xen VMM 

architecture and Time-Shared scheduling policy. 

Tasks are created in different lengths, different input 

and output file sizes, and with different task 

numbers for each experiment (250, 500, 750, and  

Entity 

type 

Parameters Value 

   

Data 

centers 

Number of data 

centers 

1 

 

Hosts Number of 

hosts 

2 

 PE per Host 2, 4 

 PE speed 10000 𝑀𝐼𝑃𝑆 

 RAM 16 𝐺𝐵 

 Host storage 10 𝐺𝐵 

 Host bandwidth 100 𝐺𝐵/𝑠 

 

Virtual 

machines 

Number of 

VMs 

5, 7, 9, 11 

 No. of PE 1 Per each VM 

 PE speed (500,1000,2000,300

0) MIPS 

 VM RAM 512MB 

 Bandwidth 1 𝐺𝐵/𝑠 

 Type of policy Time-shared 

 Costs for using 

CPU, RAM, 

and Storage 

(0.1, 0.1, 0.1) 

 

Tasks Number of 

tasks 

(250, 500, 750, 1000) 

 Length [300 − 3000] MIPS 

 File size [100 − 300]MB 

 Output size [20 − 40]MB 
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Table 5. GOCJ tasks distribution 

No. Job Type Job Size (MI) Distribution 

1 Small 15,000 - 55,000 20% 

2 Medium 59,000 - 99,000 40% 

3 Large 101,000 - 135,000 30% 

4 Extra 

large 

150,000 - 335,000 6% 

5 Huge 525,000-900,000 4% 

 

 
Table 6. GOCJ dataset groups 

Number of Tasks Task Group 

100 

Regular-Size 

200 

300 

400 

500 

600 

700 

Big-Size 
800 

900 

1000 

 

 

1000). The deadline and budget values associated 

with each task are produced according to the 

procedure followed in [5]. Table 4 shows the 

configuration for Cloudsim plus VM, tasks, hosts, 

and data centers. 

Scenario 2: for conducting this experiment, the 

Google cloud jobs dataset (GoCJ) is used. The key 

advantage of selecting this particular dataset was its 

ability to provide real-time information about user 

requests, thus enabling the researchers to gain 

insight into actual user behavior. The GoCJ dataset 

was created by aggregating data from MapReduce 

logs and Google cluster traces acquired from the 

M45 supercomputer cluster [31]. The repository of 

the GoCJ dataset comprises multiple collections of 

text files, each containing a specific number of tasks. 

The GOCJ dataset files are categorized into two 

groups: the regular-size dataset and the large-size 

dataset as mentioned in [32] (refer to Table 6). The 

regular dataset contains between 100 and 600 tasks, 

and 50 VMs are used for this dataset with MIPS 

ranging from 100 to 4000. The large-size dataset, on 

the other hand, contains between 700 and 1000 tasks, 

and 100 VMs are used with MIPS ranging from 100 

to 4000. 

4.2 Simulation results 

This section introduces the experimental results 

of our work. The proposed scheduling algorithm 

(DTSSG) has been evaluated and compared using a 

number of inertial parameters. Some of these 

evaluation criteria are Makespan, throughput, 

number of deadline violations, total gain cost, and 

Provider profit. The performance of the DTSSG task 

scheduling approach is measured using Eqs. (16), 

(17), (18), (12), and (19), respectively as described 

in section 3.4.  

4.2.1. Experimental results for Scenario 1 

To evaluate the performance in this experimental 

scenario, we consider 250, 500, 750, and 1000 tasks. 

with various numbers of virtual machines such as 5, 

7, 9, and 11 for all the evaluation metrics. The 

proposed method results are compared with DBS 

[22], GA [22], and MAX–MIN [22] for this scenario. 

 

i. Makespan evaluation: 

In this section, the performance of the task’s 

execution time of the proposed work is evaluated. 

The proposed method makespan results are 

compared with DBS, GA, and MAX–MIN. Fig. 4. 

clearly shows a reduction in makespan as compared 

with the other algorithms. It can be noticed from the 

figure that the DTSSG approach results in a 

makespan reduction of 25.1%, 51.7%, and 26.03% 

over DBS, GA, and MAX-MIN methods 

respectively for scheduling 250 tasks. It can also be 

observed that a reduction of 17.1%, 51.8%, and 

21.9% in makespan has been achieved using the 

DTSSG approach over DBS, GA, and MAX-MIN 

methods respectively for scheduling 500 tasks. 

When the number of tasks is 750 the DTSSG 

approach exhibits 13.8%, 47.6%, and 17.8% 

reduction in makespan over DBS, GA, and MAX–

MIN respectively. finally, when we simulate our 

algorithm on 1000 tasks, the reduction in makespan 

is 16.3%, 51.4%, and 23% over DBS, GA, and 

MAX–MIN respectively.  

ii. Number of deadline violations 

The number of deadline violations is evaluated 

for verifying the quality of service (QoS) of the 

scheduling algorithm. In this evaluation experiment, 

we also considered 250, 500, 750, and 1000 tasks.  

Fig. 5 shows the results for the number of tasks 

that violated their deadlines for our approach as 

compared with DBS, GA, and MAX-MIN. it can be 

observed that the proposed DTSSG exhibits better 

performance by reducing the number of tasks that 

violated their deadlines by using the deadline 

satisfaction factor. This help to identify and select 

the optimal VM that gives a lower execution time 

for processing the task considering the deadline 

constraint. the number of deadlines violations 

decreased by 30%, 53.3%, and 61.1 over DBS, GA, 

and MAX-MIN methods respectively for 250 tasks.  
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Figure. 4 Comparison of Makespan 

 

 
Figure. 5 Comparison of the number of deadline 

violations 

 

For scheduling 500 tasks, the reduction is 27.78%, 

79%, and 68.29% over DBS, GA, and MAX-MIN 

methods respectively. When the number of tasks is 

750, the number of violations is decreased by 26.6%, 

63.74%, and 38.89% over DBS, GA, and MAX-

MIN methods respectively. Finally, the number of 

deadline violations decreased by 42.2%, 78.5%, and 

58% as compared to DBS, GA, and MAX-MIN 

methods respectively. 

iii. Total gain cost 

Total gain cost is the actual cost for executing 

the successful tasks on the data center VMs under 

specified budget constraints. From Fig. 6, it can be 

shown that the lowest gain cost is achieved for 

executing the tasks with the DTSSG approach while 

the highest cost is for tasks executed with the MAX-

MIN approach in all cases. DTSSG approach uses 

the cost satisfaction factor in the utility function to 

ensure that the task will be executed on the optimal 

VM. Using this factor guarantee that the execution 

cost of the task will not exceed the task budget and 

reduce the execution cost by utilizing the VM that 

gives the lowest cost.  

 

 
Figure. 6 Comparison of total gain cost 

 

 
Figure. 7 Comparison of provider profit 

 

iv. Provider profit: 

The pivotal parameter for the cloud service 

provider is the profit, which is determined by the 

total revenue earned from completing the user tasks. 

As depicted in Fig. 7, the profits of the provider are 

compared to those of DBS, GA, and MAX-MIN. 

The results indicate that the proposed DTSSG 

approach outperforms all other methods in terms of 

provider profit. 

The provider profit increased by 2.9%, 22%, and 

10.9% over DBS, GA, and MAX-MIN respectively 

for scheduling 250 tasks. For 500 tasks, DTSSG 

outperforms in increasing the provider profit by 

7.9%, 33%, and 14% over DBS, GA, and MAX-

MIN methods respectively.  

Scheduling 750 tasks with the proposed method 

results in increasing provider profit by 10.6%, 

34,4%, and 17.2% over DBS, GA, and MAX-MIN 

methods respectively. Finally, for 1000 tasks the 

provider profit increased by 13%, 42.7%, and 19.2%  
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Table 7. Makespan results for regular-size datasets 

 Makespan values 

No. of 

Tasks 
DTSSG EMVO MVO GBO 

100 139 187.2 187.7 283.2 

200 322 387.6 453.5 601.4 

300 489 542.9 661 870.5 

400 698 768.5 782.1 1105.5 

500 803 875.4 1085.1 1426.9 

600 974 1099 1286.7 2042.9 

 

 
Figure. 8 Makespan comparison for regular-size datasets 

 

 

over DBS, GA, and MAX-MIN methods 

respectively. 

4.2.2. Experimental results for Scenario 2 

This section presents the experimental results of 

the proposed method for both regular-size and large-

size groups of the GOCJ dataset. We evaluate the 

performance of our method in terms of makespan, 

and throughput. The results are compared with 

EMVO [23], MVO [32], and GBO [17] methods in 

this scenario. 

 

i. Regular-size dataset: 

In this subsection, we introduce the makespan and 

throughput results of the regular dataset, the number 

of tasks used are 100, 200, 300, 400, 500, and 600. 

For these groups of tasks, 50 VM are used. Table 7 

highlights the average makespan results for the 

regular datasets. The results indicate that the 

DTSSG method performed better than EMVO, 

MVO, and GBO methods across all datasets. 

Fig. 8 illustrates the average makespan results of 

the DTSSG method as compared to other methods 

for regular-size datasets. The average makespan  
 

Table 8. Throughput results for regular-size datasets 

 Throughput values 

No. of 

Tasks 
DTSSG EMVO MVO GBO 

100 71.9% 53.4% 53.2% 35.3% 

200 62.1% 51.5% 44.1% 33.2% 

300 61.3% 55.2% 45.3% 34.4% 

400 57.3% 52% 51.1% 36.1% 

500 62.2% 57.1% 46% 35% 

600 61.6% 54.5% 46.6% 29.3% 

 

 
Figure. 9 Throughput comparison for regular-size dataset 

 

 

results obtained for this experiment are 570.8, 

643.46, 742.72, and 1055.12 for the DTSSG method, 

to EMVO, MVO, and GBO respectively. 

Also, throughput performance analysis for 

regular-size datasets is presented here. The obtained 

throughput results shown in table 8 clearly explain 

that the proposed method outperforms DTSSG, 

EMVO, MVO, and GBO in all experiments.  

Fig. 9 illustrates the throughput performance for 

the regular dataset. The average throughput was 

obtained as 62.76%, 54%, 47.77%, and 33.93% for 

DTSSG, EMVO, MVO, and GBO methods 

respectively. 

ii. Big-size dataset: 

The experimental analysis for the large-size 

group of the GOCJ dataset is presented in this 

subsection. Similar to the previous experiment, the 

performance is measured using the makespan and 

throughput. We have considered the number of tasks 

to be 700, 800, 900, and 1000 for large-size datasets. 

These tasks are scheduled on 100 VMs. 

Table 9 shows the comparative analysis for 

large-size datasets in terms of average makespan 

Fig. 10 illustrates the graphical representation 

for makespan comparison. According to this  
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Table 9. Makespan results for large-size datasets 

 Makespan values 

No. of 

tasks 
DTSSG EMVO MVO GBO 

700 803 823.7 908.2 2280 

800 896 933.1 1038.6 2489 

900 923 969.7 1158.4 3071 

1000 1089 1158.7 1275.7 3772 

 

 
Figure. 10 Makespan omparison for large-size dataset 

 

 
Table 10. Throughput results for regular-size datasets 

 Throughput values 

No. of 

tasks 
DTSSG EMVO MVO GBO 

700 87.1% 85% 77% 30.7% 

800 89.2% 86% 77% 32.1% 

900 97.5% 93% 78% 29.3% 

1000 91.8% 86% 78% 26.5% 

 

 

 
Figure. 11 Throughput comparison for large-size dataset 

experiment, the average makespan values were 

obtained as 927.75, 971.36, 1095.26, and 2903.2, 

using the proposed approach, EMVO, MVO, and 

GBO respectively. 

The obtained throughput results for the large 

dataset are compared with other existing techniques 

as shown in Table 10. 

Fig. 11 illustrates the comparative analysis of 

throughput for the large-size dataset. The obtained 

average throughput results are 91.45%, 87.50%, 

77.50%, and 29.6% for the proposed approach, 

EMVO, MVO, and GBO respectively. 

5. Conclusion 

This paper proposed a game theoretical-based 

scheduling model for the cloud data center. the 

proposed model uses Stackelberg (leader-flower) 

game model to effectively schedule user tasks under 

budget and deadline constraints. First, the favorable 

virtual machines that maintain the task cost and time 

constraints are filtered using the satisfaction factor 

and then the leader-follower strategy is used to 

identify the optimal virtual machine for processing 

the task. The proposed DTSSG method assigns tasks 

to suitable virtual machines based on the virtual 

machine's current utilization and pricing strategy. 

The proposed model benefits the virtual machines, 

and the user tasks, and maximizes the overall 

performance of the system. The simulation results 

have shown that (i) tasks are deployed to virtual 

machines in the data center at a faster rate. (ii) 

reduced the number of tasks that violates their 

deadlines by checking the deadline satisfaction 

before the scheduling process(iii) Increased 

throughput and decrease makespan values. Finally, 

the proposed model is observed to have better 

performance and increased system profit as 

compared to the state of art algorithms. 
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