
Received: February 21, 2023. Revised: March 9, 2023. 175

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.14

Deadline and Cost Aware Dynamic Task Scheduling in Cloud Computing Based

on Stackelberg Game

Ahmed R. Kadhim1* Furkan Rabee1

1Computer Science Department, Faculty of Computer Science and Mathematics,

University of Kufa, Najaf, Iraq
* Corresponding author’s Email: ahmedr.alkhafajee@uokufa.edu.iq

Abstract: Cloud computing has become an essential technology in many industries due to its scalability and cost-

effectiveness. The dynamic nature of cloud computing, including elasticity, on-demand provisioning, diverse

resource types, and varied pricing model, presents a significant challenge in scheduling tasks for cloud-based

systems, especially when considering user quality of service (QoS) constraints such as deadlines and budgets.

Therefore, in order to optimize the performance of the cloud systems and end-user satisfaction, an efficient budget

and deadline-aware scheduling model is necessary. Game theory provides a framework for modeling and analyzing

the strategic interactions between self-interested entities, which makes it an ideal tool for task scheduling in cloud

computing. Additionally, the versatility of game models enables the analysis of various cloud computing

architectures. This paper proposes a dynamic Stackelberg (leader-follower) game model for modeling the

interactions between tasks, scheduler, and cloud resources to find an equilibrium for the game under both budget and

deadline constraints. The proposed dynamic task scheduling based on Stackelberg game (DTSSG) model is assisted

by the pricing model and satisfaction factors to select the optimal virtual machine for processing the user task. To

achieve high average resource utilization, the utilization factor of the cloud resources is considered in the proposed

work. Experimental results show that the Stackelberg model equilibrium has been very effective in scheduling the

user tasks across the data center resources by selecting the optimal virtual machines. The results demonstrate

improved execution efficiency in terms of decreased makespan by 30%, reduced number of deadline violations by

52%, decreased total gain cost by 27.13% and increased provider profit by 19.15 % on average as compared to

existing deadline budget scheduling (DBS), genetic algorithm, and MAX–MIN methods. Also, the results show the

effectiveness of the proposed work in terms of increased throughput by 59.4 % and decreased makespan by 27.95%

using Google cloud jobs dataset (GoCJ) as compared to existing gradient-based optimization (GBO), multi-verse

optimizer (MVO), enhanced multi-verse optimizer (EMVO).

Keywords: Cloud computing, Game theory, Dynamic task scheduling, Stackelberg game, Makespan.

1. Introduction

A cloud computing system is composed of a

number of servers that are located in remote places

and can be accessed through the internet. These

servers offer a variety of cloud services such as

software, platform, and infrastructure services [1].

Cloud data centers offer computing and storage

capabilities on a pay-per-use subscription model by

utilizing a huge number of physical computers [2].

Cloud computing infrastructures can process a broad

range of applications data, especially the data related

to real-time applications like the internet of things

(IoT), and mobile crowd sensing (MCS)

applications which present a compelling case for

executing their data in the cloud environment [3, 4].

Scheduling cloud data requires a lot of computation,

storage, and communication costs. task scheduling is

the process of assigning the user tasks to the data

center resources in such a way the execution will be

completed within the user’s specified constraints

such as budget and deadline [5]. In cloud computing,

the cloud service provider (CSP) offers resources

with different capabilities and prices. Typically,

Received: February 21, 2023. Revised: March 9, 2023. 176

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.14

faster resources cost more than slower resources.

Therefore, different plans for scheduling the same

data load that utilize different resources may result

in different completion times and costs. So,

introducing an efficient task scheduling solution for

cloud data centers requires satisfying both cost and

time constraints according to the user's

specifications [6]. Time constraint ensures that the

user task is executed within the deadline given by

the user and the cost constraint ensures that the user

budget is not exceeded. A good scheduling

algorithm attempts to achieve a solution that is

nearly optimal by balancing these two values [7].

Game theory is a mathematical framework for

modeling and analyzing strategic interactions

between intelligent and rational decision-makers [8,

9]. In the context of task scheduling, game theory

can be used to model the interactions between

different tasks and resources, and to analyze the

optimal strategies for task scheduling in different

scenarios. Some common applications of game

theory in task scheduling include the design of

efficient scheduling algorithms, the analysis of the

performance of different scheduling policies, and

the study of the impact of different system

parameters on task scheduling [10]. Equilibrium is a

concept of game theory in which all participant

reaches their optimal outcome. [8, 11]. In task

scheduling for a cloud data center, a Nash

equilibrium is a state in which no cloud computing

resource (such as a virtual machine) has an incentive

to change its task allocation, given the task

allocations of the other resources. This means that

each resource is operating at its optimal level of

efficiency, given the actions of the other resources.

In this paper, a Stackelberg game is used to

model the interactions between the task scheduler

and resources. A Stackelberg game is a type of game

in which one player, called the leader, makes the

first move before the other players, called the

followers [12-14]. In the proposed model, the task

scheduler represents the leader while the virtual

machines are the followers. In this setting, the leader

chooses their best strategy first, and then the

followers (virtual machines) respond by choosing

their own strategies. The objective of the followers

is to maximize their utilization, while the objective

of the leader is to maximize profit and minimize the

makespan of the system under the deadline and

budget constraints imposed by the user tasks. The

proposed dynamic task scheduling based on

Stackelberg game (DTSSG) measures makespan,

throughput, number of tasks violated their deadlines,

total gain cost, and provider profit. DTSSG

simulated using cloudsim plus environment. In

summary, the main contributions of this paper are as

follows.

• We model the scenario of task scheduling to

various cloud resources as a Stackelberg

game. The model consists of one leader

(scheduler) and many followers (virtual

machines). The optimization of the leader

and follower are formulated mathematically.

• A new pricing model is introduced with

encouraging and discouraging price

functions to effectively utilize the system

resources.

• We introduce the satisfaction factors for

both deadline and budget constraints related

to the user task, then aggregate the virtual

machines that maintain these constraints for

processing the task.

• We propose a dynamic task scheduling

model that depends on the current utilization

of the virtual machines at the decisive

moment to maximize the average resource

utilization.

The rest of the paper is structured as follows.

Section 2 presents the related work in this field,

section 3 introduces the system model, mathematical

modeling, the proposed scheduling algorithm, and

evaluation metrics modeling. Section 4 describes the

experimentation results, performance evaluation,

and discussion. Finally, the paper is concluded in

section 5.

2. Related work

Scheduling tasks across the resources of a cloud

data center becomes a very challenging problem due

to the fact that there are many metrics, including

makespan and resource utilization, that affect the

scheduling. Also, user task constraints like budget

and deadline must be taken into account. many

researchers studied task scheduling and tried to

improve the system's performance under these

constraints. Some of them adopt game theoretical

approaches to model the problem of task scheduling

and resource allocation under the cloud environment.

Arabnejad et al. [15] proposed deadline-budget

constrained scheduling (DBCS). The authors tried to

optimize the scheduling algorithm in terms of time.

they take into account the user quality of service

(QoS) parameters like cost and time which represent

the main issues in their work. DBCS looked for a

radical schedule mapping that met the user's

deadline and budget constraints.

Jeny Varghese et al. [16] proposed an entropy-

Received: February 21, 2023. Revised: March 9, 2023. 177

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.14

based monotonic task scheduling with dynamic

resource allocation. They aimed to complete the task

within the deadline and improve response time,

execution time, and use of resources. The work

includes the processes of DC clustering, virtual

machine (VM) clustering, resource mapping, and

task scheduling. The clustering processes are

managed in a federated cloud, the brokers are

responsible for allocating the resources, and the task

scheduler maps the tasks.

Xingwang Huang et al. [17] presented a novel

approach to task scheduling in cloud computing that

is based on gradient-based optimization (GBO).

This technique is chosen for its faster convergence

rate and ability to prevent getting stuck in local

optima. The author’s goal is to enhance the

performance of a system with specific computing

resources by reducing the makespan.

Liu et al. [18] introduced an implementation of a

strategy that combines hardware and software to

optimize energy usage and meet time constraints.

The system is designed to adjust hardware features

based on software requirements, resulting in more

efficient execution and lower energy costs. On the

software side, the paper explores a task-scheduling

algorithm that is both energy-efficient and deadline-

aware, using the Q-learning approach.

Natesan et al. [19] proposed a performance-cost

grey wolfoptimization (PCGWO) algorithm to

optimize the process of scheduling the user tasks to

the cloud resources. their main objective is to reduce

both processing time and cost of tasks under

deadline constraints.

Jing et al. [20] proposed QoS-aware discrete

particle swarm optimization (QoS-DPSO) for the

optimization of system reliability under budget and

deadline constraints. QoS-DPSO is a fault-tolerant

scheduling algorithm that meets the service quality

requirements of users.

Velliangiri et al. [21] combined electro search

with a genetic algorithm and presented HESGA To

optimize multi-cloud QoS parameters such as

makespan and cost. According to simulation results,

HESGA outperforms other methods.

Mokhtar A. Alworafi, and Suresha Mallappa

[22] introduced deadline budget scheduling (DBS)

as a model capable of scheduling tasks across

heterogeneous cloud environments with the user

QoS constraints: cost and time while maintaining

the satisfaction of user tasks. The most important

aspects of the proposed DBS model are minimizing

the makespan under the user-specified deadline and

minimizing cost without exceeding the user-

specified budget.

Sarah E. Shukri et al. [23] introduced an

improved version of the multi-verse optimizer

(MVO) that is specifically designed to solve task

scheduling problems in cloud computing

environments. The new algorithm incorporates a

novel operation that saves the best solutions at each

iteration and reintroduces them as a new solution

after a certain number of iterations. The primary

focus of the proposed approach is to minimize task

execution time while taking into account factors

such as task length, cost, and power requirements.

R. Swathy et al. [24] introduced a game-

theoretical model based on the Stackelberg (leader-

follower) framework, which is enhanced with a

satisfaction factor to enable the selection of the best

physical host for deploying incoming tasks in a

balanced manner at a data center. The model is

designed to optimize the deployment process by

ensuring assigning of tasks to the appropriate host.
Authors in [25] proposed a non-cooperative and

cooperative game as a game-theoretic approach for

real-time task scheduling in a cloud computing

environment. All user actions have been considered

as game players, and virtual machines have been

considered as game strategies. They also compared

the experimental results from the cooperative and

non-cooperative games. The results demonstrate that

the cooperative game model for task scheduling

outperforms a non-cooperative game model when

the payoff is taken as completion time and waiting

time.

Previous studies have not considered the

utilization status of system resources dynamically

during the scheduling process. Also, most of the

studies did not address satisfying user quality of

service (QoS) requirements in terms of cost and

deadline. To address these gaps, we proposed a

dynamic scheduling model that guarantees meeting

user requirements by considering both cost and

deadline satisfaction factors. Furthermore, our

model ensures optimal task scheduling by taking

into account the status of cloud resources and

incorporating an effective pricing model which

relies on the current utilization of system resources.

By considering these factors, our proposed model

guarantees optimal resource utilization, meeting user

QoS requirements, maximizing provider profit, and

improving the overall performance of the system.

3. Problem formulation

3.1 Proposed scheduling framework

Cloud computing users expect their tasks to be

scheduled efficiently and priced optimally within the

given deadline. When users submit their tasks, these

Received: February 21, 2023. Revised: March 9, 2023. 178

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.14

Figure. 1 The proposed scheduling framework

tasks come with several constraints like the deadline

and budget. Therefore, in order to achieve good

scheduling for user tasks in cloud data centers, it is

essential to develop an optimal model for task

scheduling. Stackelberg's game theoretical model

informs the proposed solution, which maps the user

tasks to different VMs in the cloud data center

optimally. Fig. 1 highlights the architectural diagram

of the Stackelberg game scheduler. The users submit

their task requests with the deadline and budget

constraints to the leader (scheduler), and the

scheduler then deploys these requests among the

followers (VMs) that have the necessary computing

capabilities to process the user tasks. The utility

function is computed using the satisfaction factor,

pricing strategy, and current utilization of the VMs.

This utility is calculated for every dynamically

arrived task then the task is distributed to the

optimal VM with the lowest utility value. The

satisfaction factor ensures that the VM can satisfy

the deadline and budget constraints of the task.

While the pricing strategy tries to maximize the

average utilization of the data center resources

3.2 Mathematical formulation of the proposed

Stackelberg game model

The problem of the proposed model is

formulated as follows: given a cloud data center that

receives a set (T) of M tasks from the users, T =
𝑡1, 𝑡2, … . , 𝑡𝑀 , each task is represented by three main

parameters 𝑡𝑗 = (ℓ𝑗, ḏ𝑗, ḇ𝑗), where ℓ𝑗 indicate the

Table 1. Used notation

Notations Description

𝑇 Set of Tasks

𝑉 Set of Virtual Machines

𝑁 Number of VMs in V

𝑀 Number of Tasks in T

𝑡𝑗 The 𝑗𝑡ℎ task in T

𝑣𝑖 The 𝑖𝑡ℎ VM in V

ℓ𝑗 Length of 𝑡𝑗

ḇ𝑗 Budget of 𝑡𝑗

ḏ𝑗 Deadline of 𝑡𝑗

𝑚𝑖𝑝𝑠𝑖 Million Instructions per Second of 𝑣𝑖

𝑢𝑖 Current utilization of 𝑣𝑖

𝑠𝑖 Available Storage of vi

𝑚𝑖 The available Memory size of vi

𝑆𝐹𝑐 Cost satisfaction factor

𝑆𝐹𝑑 Deadline satisfaction factor

𝑝𝑖
𝑠 Subscription Cost on a specific VM

𝑝𝑖
𝑎 Actual cost (cost per second) using 𝑣𝑖

𝑝𝑖
𝑏𝑎𝑠𝑒 The base price to subscribe on 𝑣𝑖

𝑑𝑖,𝑗 Execution Time of 𝑡𝑗 on 𝑣𝑖

𝑝𝑒𝑠𝑖 Number of Processing elements in 𝑣𝑖

𝐸𝑇𝑣𝑖 Total execution time for 𝑣𝑖

Nov The number of tasks violated their deadline

task length, ḏ𝑗 is the deadline allowed to execute the

task, and ḇ𝑗 represents the cost given by the user to

execute their task. Also, the data center has set (V)

of N virtual machines where V = {𝑣1, 𝑣2, … . , 𝑣𝑁},

each virtual machine is represented by its available

CPU million instructions per second (MIPS),

memory, storage, and VM utilization status where

𝑣𝑖 = (𝑚𝑖𝑝𝑠𝑖 , 𝑚𝑖, 𝑠𝑖 , 𝑢𝑖) . One of the data center

nodes is chosen to work as a task scheduler. The

task scheduler deploys the tasks to different virtual

machines based on the Stackelberg game model.

The Stackelberg game model represents a leadership

model. The problem applies to situations with one

leader and many followers. Here, the selected task

scheduler serves as the leader, while all other virtual

machines serve as the followers. The leader

periodically receives the available resources of the

data center virtual machines from the CSP. The

amount of remaining resources includes the CPU

MIPS, Storage, memory, and the current utilization

of the VMs. The leader (scheduler) also receives m

number of user tasks with different deadlines and

Received: February 21, 2023. Revised: March 9, 2023. 179

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.14

budget constraints. These tasks need to be mapped

to optimal virtual machines in the data center. Our

work proposes a dynamic scheduling approach to

schedule the received tasks to the most suitable VM

under user QoS constraints. Table 1 shows the

notation used to represent the proposed model.

3.2.1. Scheduler—leader

All virtual machines in cloud data center

announce their available amount of resources to the

leader (scheduler). The remaining amount of

resources includes the available CPU, RAM, storage,

and VM utilization for the set V of VMs. The price

strategy for the resources of the data center is

determined by the CSP. Based on the leader's

strategy, the followers are assigned tasks for

processing. The maximum price will be chosen for

the VM with the high utilization ratio, and the

minimum price will be chosen for the VM with the

lower utilization ratio. Let 𝑃 = {𝑝1, 𝑝2, … … , 𝑝𝑁}
the price strategies of the followers based on the

price functions, the price strategies 𝑝 is determined

by the CSP for each virtual machine as in Eq. (1).

𝑝𝑖 = 𝑝𝑖
𝑠 + 𝑝𝑖

𝑎 (1)

Where 𝑃𝑖
𝑠 is the subscription cost for a specific

VM with index 𝑖 = {1,2,3 … … 𝑁}, this cost depends

on the current utilization of the VM. The

subscription pricing function is described in Eq. (2)

which either encourages or discourages utilizing

VM based on it is current utilization status. Each

virtual machine has a desired utilization range

[𝑢𝑖
𝑙𝑜𝑤 ,𝑢𝑖

ℎ𝑖𝑔ℎ
] in this approach. The intention is to

charge a base price (𝑃𝑖
𝑏𝑎𝑠𝑒) for the virtual machine

𝑣𝑖 if it is utilization (𝑢𝑖) falls within this range. An

additional price is added to the base price to

discourage utilizing the VM if the utilization 𝑢𝑖 is

above 𝑢𝑖
ℎ𝑖𝑔ℎ

 and less than the threshold value 𝑢𝑖
𝑡ℎ𝑟𝑒.

(if the VM utilization reaches the threshold value, it

cannot be used). Alternatively, a certain price is

discounted from the base price to encourage usage if

the VM utilization 𝑢𝑖 is below 𝑈𝑖
𝑙𝑜𝑤 . In our work,

the values of 𝑢𝑖
𝑙𝑜𝑤, 𝑢𝑖

ℎ𝑖𝑔ℎ
, and 𝑢𝑖

𝑡ℎ𝑟𝑒. are selected to

be 30%, 70%, and 95% respectively.

𝑝𝑖
𝑠 =

{

𝑝𝑖
𝑏𝑎𝑠𝑒 − 𝑝𝑖

𝑒𝑛𝑐𝑜𝑢𝑟𝑎𝑔𝑒
, 0 ≤ 𝑢𝑖 ≤ 𝑢𝑖

𝑙𝑜𝑤

 𝑝𝑖
𝑏𝑎𝑠𝑒 , 𝑢𝑖

𝑙𝑜𝑤 < 𝑢𝑖 < 𝑢𝑖
ℎ𝑖𝑔ℎ

𝑝𝑖
𝑏𝑎𝑠𝑒 + 𝑝𝑖

𝑑𝑖𝑠𝑐𝑜𝑢𝑟𝑎𝑔𝑒
, 𝑢𝑖

ℎ𝑖𝑔ℎ
≤ 𝑢𝑖 ≤ 𝑢𝑖

𝑡ℎ𝑟𝑒.

(2)

The encouraging and discouraging prices are

linearly varying functions of utilization. If VM

utilization is slightly higher or lower than the

desired range, the overall price should be close to

the base price. Hence, both 𝑝𝑖
𝑒𝑛𝑐𝑜𝑢𝑟𝑎𝑔𝑒

 and 𝑝𝑖
𝑑𝑖𝑠𝑐𝑜𝑢𝑟𝑎𝑔𝑒

prices must be relatively small as compared to the

base price (𝑝𝑖
𝑏𝑎𝑠𝑒). As utilization moves far from the

desired range, both prices should rapidly increase.

the base price is set to be 0.5 in our simulation. The

encouraging and discouraging prices formulas

described in Eqs. (3) and (4).

𝑝𝑖
𝑒𝑛𝑐𝑜𝑢𝑟𝑎𝑔𝑒

= 𝑝𝑖
𝑏𝑎𝑠𝑒 × (𝑢𝑖

𝑙𝑜𝑤 − 𝑢𝑖) (3)

𝑝𝑖
𝑑𝑖𝑠𝑐𝑜𝑢𝑟𝑎𝑔𝑒

= 𝑝𝑖
𝑏𝑎𝑠𝑒 × (𝑢𝑖 − 𝑢𝑖

ℎ𝑖𝑔ℎ
) (4)

The actual processing price (𝑝𝑖
𝑎) represent the

cost per second for using VM resources (CPU,

Memory, and Storage), it is calculated as in Eq. (5).

𝑝𝑖
𝑎 = [𝑐𝑖

𝑐𝑝𝑢
+ 𝑐𝑖

𝑟𝑎𝑚 + 𝑐𝑖
𝑠𝑡𝑜𝑟𝑎𝑔𝑒

] (5)

The execution time needed to complete the task

𝑡𝑗 on each 𝑣𝑖 is referred by 𝑑𝑖,𝑗 and is computed by

the leader as in Eq. (6).

𝑑𝑖,𝑗 =
ℓ𝑗

𝑚𝑖𝑝𝑠𝑖 × 𝑝𝑒𝑠𝑖
 (6)

Each task comes with a deadline ḏ𝑗 and budget

ḇ𝑗 . First of all, the proposed approach aggregates

the VMs suitable for processing the task by

checking the deadline and cost satisfaction factors

(𝑆𝐹𝑐 𝑎𝑛𝑑 𝑆𝐹𝑑). The VMs that have both 𝑆𝐹𝑐 𝑎𝑛𝑑
𝑆𝐹𝑑 greater than zero will be passed to the mapping

stage. This step ensures that the task will be

processed within the specified deadline and will not

exceed the user budget see Eqs. (7) and (8).

𝑆𝐹𝑐 = 1 − 𝑒
(1−(

ḇ

𝑝
))

 (7)

𝑆𝐹𝑑 = 1 − 𝑒
(1−(

ḏ

𝑑
))

 (8)

Then, the satisfaction factor 𝑆𝐹 is calculated as

in Eq. (9) to be used in the utility function of the

followers.

𝑆𝐹 = (𝛼 × 𝑆𝐹𝑐) + (𝛽 × 𝑆𝐹𝑑) where 𝛼 + 𝛽 = 1 (9)

The values of 𝜶 and 𝜷 coefficients in Eq. (9) are

tested under different conditions in the simulation,

and the result is shown in Table 2.

The scheduler calculates these values for each

Received: February 21, 2023. Revised: March 9, 2023. 180

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.14

Table 2. Different values of α and β coefficients

𝑺𝑭𝒄 𝜶 𝜷

𝑆𝐹𝑐 ≤ 0.25 0.2 0.8

0.25 < 𝑆𝐹𝑐 ≤ 0.5 0.5 0.5

0.5 < 𝑆𝐹𝑐 ≤ 0.75 0.7 0.3

𝑆𝐹𝑐 > 0.75 0.9 0.1

incoming task. This behavior aims to maximize the

profit of the leader keeping in mind the deadline

constraint is already satisfied. In fact, using different

values of 𝜶 and 𝜷 coefficients in different conditions

ensures that the task will be scheduled to the VM

which gives the system a high profit.

The utility function of the followers will be

calculated only for the VMs that give a positive 𝑆𝐹𝑐

and 𝑆𝐹𝑑 . This function is calculated based on the

satisfaction factor 𝑆𝐹 and the total cost to execute

the task 𝑡𝑗 on 𝑣𝑖 as in Eq. (10).

𝑈𝐹𝑣(𝑝, 𝑑) = (𝑝𝑖 × 𝑑𝑖,𝑗) + [𝑆𝐹]𝑛 (10)

The proposed model assumes that the utility

function of the followers equally depends on both

the 𝑆𝐹 and the total cost. Therefore, [𝑆𝐹]𝑛

represents the normalized value of the 𝑆𝐹. The value

of 𝑆𝐹 is normalized using the MIN-MAX

normalization technique to fall within the range

[0 − (𝑝𝑖 ∗ 𝑑𝑖,𝑗)]. The optimal virtual machine for

processing the user task is described in Eq. (11).

𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟 𝑏𝑒𝑠𝑡 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = 𝑀𝑖𝑛{𝑈𝐹𝑣} (11)

The utility function of the leader (scheduler) is

formulated as the total gain acquired through

processing the successful tasks in the data center.

Thus, the utility function is given in Eq. (12).

𝑈𝐹𝐿(𝑝, 𝑑) = ∑ ∑ (𝑝𝑖,𝑗– 𝑝𝑖,𝑗
𝑠𝑚

𝑗=1
𝑛
𝑖=1) × 𝑑𝑖,𝑗 × 𝑀𝑖,𝑗 (12)

Where 𝑀𝑖,𝑗 is a Boolean value activated only

when a task 𝑡𝑗 mapped to VM 𝑣𝑖, the best strategy

for the leader that ensures the task is mapped to the

most suitable VM is shown in Eq. (13).

𝐿𝑒𝑎𝑑𝑒𝑟 𝑏𝑒𝑠𝑡 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = 𝑀𝐴𝑋 {𝑈𝐹𝐿} (13)

The total gain cost of the leader is computed

based on the follower’s best strategy. The leader

utility value is calculated as the summation of the

cost awarded for processing all the tasks. This utility

Figure. 2 Flow chart of the proposed model

is maximized after scheduling a task indicating that

the user tasks are assigned to VMs optimally.

3.2.2. Followers (virtual machines)

The followers choose their best response

strategies by choosing the strategy that offers the

lowest utility function value. The follower accepts

the task request and executes it based on its best

strategy. The flow chart of the proposed system is

given in Fig. 2.

3.3 Stackelberg game scheduling model

Following is the sequence of procedures for

dispatching tasks according to the Stackelberg game

model:

1. The leader determines the price strategy of

every individual VM according to the price

strategy function. Then, it calculates the 𝑈𝐹𝑣

for the VMS and finally, the utility strategy

values are announced to the followers.

Received: February 21, 2023. Revised: March 9, 2023. 181

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.14

ALGORITHM 1: DTSSG ALGORITHM

Inputs: an available set of VMs 𝑽 with their status

(𝑚𝑖𝑝𝑠𝑖 , 𝑚𝑖, 𝑠𝑖 , 𝑢𝑖),

 task 𝒕𝒋 with its length, Deadline, and budget (ℓ𝑗 ,

ḇ𝑗 , 𝑎𝑛𝑑 ḏ𝑗);.

Output: scheduler (Leader) optimal strategy, VMs

(Followers) optimal strategy.

1 V= List of available VMs; 𝑡𝑗 = user task;

2
Set price strategy for the follower (VMs) based on

their utilization (𝑢𝑖) 𝑃 = {𝑝1 , 𝑝2, 𝑝𝑠, … . , 𝑝𝑁] as:

3 𝑝𝑖 = 𝑝𝑖
𝑠 + 𝑝𝑖

𝑎 , 𝑤ℎ𝑒𝑟𝑒

4 𝑝𝑖
𝑎 = [𝑐𝑖

𝑐𝑝𝑢
+ 𝑐𝑖

𝑟𝑎𝑚 + 𝑐𝑖
𝑠𝑡𝑜𝑟𝑎𝑔𝑒

]

5 𝑝𝑖
𝑠 = {

𝑝𝑖
𝑏𝑎𝑠𝑒 – 𝑝𝑖

𝑒𝑛𝑐𝑜𝑢𝑟𝑎𝑔𝑒
, 0 ≤ 𝑢𝑖 ≤ 𝑢𝑖

𝑙𝑜𝑤

 𝑝𝑖
𝑏𝑎𝑠𝑒 , 𝑢𝑖

𝑙𝑜𝑤 < 𝑢𝑖 < 𝑢𝑖
ℎ𝑖𝑔ℎ

𝑝𝑖
𝑏𝑎𝑠𝑒 + 𝑝𝑖

𝑑𝑖𝑠𝑐𝑜𝑢𝑟𝑎𝑔𝑒
, 𝑢𝑖

ℎ𝑖𝑔ℎ
≤ 𝑢𝑖 ≤ 𝑢𝑖

𝑡ℎ𝑟𝑒.

6 for each VM 𝑣𝑖 ∈ 𝑉 do

7 Calculate execution time for the task 𝑡𝑗 as:

8 𝑑𝑖,𝑗 =
ℓ𝑗

𝑚𝑖𝑝𝑠𝑖 × 𝑝𝑒𝑠𝑖

9
Check Deadline and cost satisfaction for 𝑡𝑗

as:

10
𝑆𝐹𝑐 = 1 − 𝑒

(1−(
ḇ

𝑝
))

11
𝑆𝐹𝑑 = 1 − 𝑒

(1−(
ḏ

𝑑
))

12 if (𝑆𝐹𝑑 > 0 𝐴𝑁𝐷 𝑆𝐹𝑐 > 0)

13 𝑉𝑠𝑓 . 𝑎𝑑𝑑 (𝑣𝑖)

1 End if

15 End for

16 for each 𝑣𝑖 ∈ 𝑉𝑠𝑓 do

17
Choose appropriate values of 𝜶 and 𝜷

according to table 2.

18 Calculate SF as:

19 𝑆𝐹 = (𝛼 × 𝑆𝐹𝑐) + (𝛽 × 𝑆𝐹𝑑)

20 Calculate the Utility function of the VM as:

21 𝑈𝐹𝑣 𝑖, 𝑗 = 𝑃𝑖 × 𝑑𝑖,𝑗 + [𝑆𝐹]𝑛

22 End for

23
Find 𝑀𝑖𝑛{𝑈𝐹𝑣} as the optimal strategy for the

follower

24 Map 𝑡𝑗 → VM with 𝑀𝑖𝑛{𝑈𝐹𝑣}

25

Compute

 𝑈𝐹𝐿(𝑝, 𝑑) = ∑ ∑ (𝑝𝑖,𝑗 – 𝑝𝑖,𝑗
𝑠𝑚

𝑗=1
𝑛
𝑖=1) × 𝑑𝑖,𝑗 × 𝑀𝑖,𝑗

for the scheduler

26
The optimal strategy of the broker is given by

𝑀𝐴𝑋 {𝑈𝐹𝐿}

27 Update VM utilization status.

28 Repeat the above steps for each incoming task 𝑡𝑗.

Figure. 3 Pseudo-code of DTSSG algorithm

2. The follower (VM) selects its best response

strategy as 𝑀𝑖𝑛{𝑈𝐹𝑣 }. This strategy keeps

the VM utilization (𝑢𝑖) to stay within the

desired utilization range [𝑢𝑖
𝑙𝑜𝑤,𝑢𝑖

ℎ𝑖𝑔ℎ
].

3. After the follower selects its best response

strategy, the leader selects its optimal

strategy as 𝑀𝐴𝑋 {𝑈𝐹𝐿} . The leader then

updates the pricing strategies for the

followers based on their updated utilization

status.

Steps 1 to 3 are repeated for each incoming task.

3.4 Evaluation metrics modeling:

Five evaluation metrics are used to evaluate the

proposed work. They are makespan, throughput,

number of deadline violations, total gain cost, and

total provider profit.

Makespan refers to the maximum amount of

time needed to complete the execution of a set of

tasks [26]. It is influenced by various factors

including the size and complexity of the tasks, the

number of resources available, the load on the

system, and the algorithms used for task scheduling.

Minimizing the makespan is important for

optimizing the use of resources and improving the

performance of the cloud data center. Makespan is

represented mathematically as shown in Eq. (14) [26,

27].

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥(𝐸𝑇𝑣𝑖) ∀ 𝑖 ∈ 1,2,3, … 𝑚 (14)

Where 𝐸𝑇𝑣𝑖 is the execution time of all assigned

tasks to the ith VM. As described in Eq. (15).

𝐸𝑇𝑣𝑖 = ∑  𝑚
𝑗=1 𝑑𝑖,𝑗 × 𝑀𝑖,𝑗 (15)

The average makespan is computed as described

in Eq. (16) [28].

Avg. Makespan =
∑  𝑁

𝑖=1 𝐸𝑇𝑣𝑖

𝑁
 (16)

The second evaluation metric used to evaluate

our work is throughput. It refers to the total number

of tasks accomplished within a given makespan,

throughput can be calculated as in Eq. (17).

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
∑ 𝑀𝑖,𝑗

𝑚𝑎𝑘𝑒𝑠𝑎𝑝𝑛
 (17)

The next evaluation metric is the number of

deadline violations (NoV) which represents the total

number of tasks that violates their deadline. The

NoV is defined in Eq. (18) [29].

Received: February 21, 2023. Revised: March 9, 2023. 182

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.14

Table 3. simulation experimental environment

Parameter value

Operating system Windows 10

processor Intel Core i5 2.4 GHz

RAM 8.00 GB Memory

Simulation environment Cloudsim Plus

IDE Tool Eclipse IDE

Tool Ver. 1.1

NoV = ∑  𝑚
𝑗=1 𝑇𝑣𝐷 (18)

where 𝑇𝑣𝐷 is a binary variable activated only

when the specific task violates its deadline.

Another evaluation metric used in the

experiment is the total gain cost, it refers to the cost

gained by the data center for executing a set of tasks

under specified budget and deadline constraints. the

total gain cost is represented by the utility function

of the leader (𝑈𝐹𝐿) and it is calculated as in Eq. (12).

The last evaluation metric is the provider profit,

it represents the total profit that is summed from the

fees charged to execute the successful tasks.

Provider profit is calculated by subtracting the

actual implementation costs for the successful tasks

from their budgets. The provider profit is described

in Eq. (19) [22].

Provider Profit = ∑  𝑚

𝑗=1 (ḇ𝑗 − 𝑝𝑗
𝑎) (19)

4. Performance evaluation

The experimental setup, workload formation, as

well as results, and discussions are presented in this

section.

4.1 Experimental setup

The cloudsim plus simulator has been used to

simulate and find out how well the proposed method

works in practice. CloudSim plus is a popular open-

source tool developed in Java that can simulate both

the cloud environment and cloud-based services [30].

The experimental setup consists of an Intel Core i5

2.4 GHz CPU, 8.00 GB of memory, and a 512 GB

hard drive, running on the Eclipse IDE 2021 R and

CloudSim plus. To implement our model, we

extended several classes of the CloudSim plus

simulator, including Cloudlet.java, VM.java,

Datacenter.java, and DatacenterBrokerAbstract.java.

Also, we created some classes for the proposed

work as needed. Table 3 shows the simulation

experimental environment Configuration properties.

Two simulation scenarios were studied in our

implementation with different simulation parameters

Table 4. VM, tasks, hosts, and data center configurations

for scenario 1

to analyze the performance of the proposed DTSSG

model.

Scenario 1: In this scenario, the experimental

environment included one data center with two

physical machines (host). Each host has (16) GB of

RAM, (1) TB of storage, (100) GB/s of bandwidth,

and a time–shared scheduling policy. One of the

host machines is a quad-core with the other being a

dual-core machine, both built on the X86

architecture, operating on a Linux system, and

equipped with a Xen virtual machine monitor

(VMM) that can process at a rate of 10,000 MIPS.

To conduct the experiments for this scenario, a

number of virtual machines are created (5, 7, 9, 11).

Each VM has an image size of (10) GB, (0.5) GB of

memory, (1) GB/s of bandwidth, one processing

element, and a MIPS value of (500, 1000, 2000, and

3000). The configuration includes Xen VMM

architecture and Time-Shared scheduling policy.

Tasks are created in different lengths, different input

and output file sizes, and with different task

numbers for each experiment (250, 500, 750, and

Entity

type

Parameters Value

Data

centers

Number of data

centers

1

Hosts Number of

hosts

2

 PE per Host 2, 4

 PE speed 10000 𝑀𝐼𝑃𝑆

 RAM 16 𝐺𝐵

 Host storage 10 𝐺𝐵

 Host bandwidth 100 𝐺𝐵/𝑠

Virtual

machines

Number of

VMs

5, 7, 9, 11

 No. of PE 1 Per each VM

 PE speed (500,1000,2000,300

0) MIPS

 VM RAM 512MB

 Bandwidth 1 𝐺𝐵/𝑠

 Type of policy Time-shared

 Costs for using

CPU, RAM,

and Storage

(0.1, 0.1, 0.1)

Tasks Number of

tasks

(250, 500, 750, 1000)

 Length [300 − 3000] MIPS

 File size [100 − 300]MB

 Output size [20 − 40]MB

Received: February 21, 2023. Revised: March 9, 2023. 183

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.14

Table 5. GOCJ tasks distribution

No. Job Type Job Size (MI) Distribution

1 Small 15,000 - 55,000 20%

2 Medium 59,000 - 99,000 40%

3 Large 101,000 - 135,000 30%

4 Extra

large

150,000 - 335,000 6%

5 Huge 525,000-900,000 4%

Table 6. GOCJ dataset groups

Number of Tasks Task Group

100

Regular-Size

200

300

400

500

600

700

Big-Size
800

900

1000

1000). The deadline and budget values associated

with each task are produced according to the

procedure followed in [5]. Table 4 shows the

configuration for Cloudsim plus VM, tasks, hosts,

and data centers.

Scenario 2: for conducting this experiment, the

Google cloud jobs dataset (GoCJ) is used. The key

advantage of selecting this particular dataset was its

ability to provide real-time information about user

requests, thus enabling the researchers to gain

insight into actual user behavior. The GoCJ dataset

was created by aggregating data from MapReduce

logs and Google cluster traces acquired from the

M45 supercomputer cluster [31]. The repository of

the GoCJ dataset comprises multiple collections of

text files, each containing a specific number of tasks.

The GOCJ dataset files are categorized into two

groups: the regular-size dataset and the large-size

dataset as mentioned in [32] (refer to Table 6). The

regular dataset contains between 100 and 600 tasks,

and 50 VMs are used for this dataset with MIPS

ranging from 100 to 4000. The large-size dataset, on

the other hand, contains between 700 and 1000 tasks,

and 100 VMs are used with MIPS ranging from 100

to 4000.

4.2 Simulation results

This section introduces the experimental results

of our work. The proposed scheduling algorithm

(DTSSG) has been evaluated and compared using a

number of inertial parameters. Some of these

evaluation criteria are Makespan, throughput,

number of deadline violations, total gain cost, and

Provider profit. The performance of the DTSSG task

scheduling approach is measured using Eqs. (16),

(17), (18), (12), and (19), respectively as described

in section 3.4.

4.2.1. Experimental results for Scenario 1

To evaluate the performance in this experimental

scenario, we consider 250, 500, 750, and 1000 tasks.

with various numbers of virtual machines such as 5,

7, 9, and 11 for all the evaluation metrics. The

proposed method results are compared with DBS

[22], GA [22], and MAX–MIN [22] for this scenario.

i. Makespan evaluation:

In this section, the performance of the task’s

execution time of the proposed work is evaluated.

The proposed method makespan results are

compared with DBS, GA, and MAX–MIN. Fig. 4.

clearly shows a reduction in makespan as compared

with the other algorithms. It can be noticed from the

figure that the DTSSG approach results in a

makespan reduction of 25.1%, 51.7%, and 26.03%

over DBS, GA, and MAX-MIN methods

respectively for scheduling 250 tasks. It can also be

observed that a reduction of 17.1%, 51.8%, and

21.9% in makespan has been achieved using the

DTSSG approach over DBS, GA, and MAX-MIN

methods respectively for scheduling 500 tasks.

When the number of tasks is 750 the DTSSG

approach exhibits 13.8%, 47.6%, and 17.8%

reduction in makespan over DBS, GA, and MAX–

MIN respectively. finally, when we simulate our

algorithm on 1000 tasks, the reduction in makespan

is 16.3%, 51.4%, and 23% over DBS, GA, and

MAX–MIN respectively.

ii. Number of deadline violations

The number of deadline violations is evaluated

for verifying the quality of service (QoS) of the

scheduling algorithm. In this evaluation experiment,

we also considered 250, 500, 750, and 1000 tasks.

Fig. 5 shows the results for the number of tasks

that violated their deadlines for our approach as

compared with DBS, GA, and MAX-MIN. it can be

observed that the proposed DTSSG exhibits better

performance by reducing the number of tasks that

violated their deadlines by using the deadline

satisfaction factor. This help to identify and select

the optimal VM that gives a lower execution time

for processing the task considering the deadline

constraint. the number of deadlines violations

decreased by 30%, 53.3%, and 61.1 over DBS, GA,

and MAX-MIN methods respectively for 250 tasks.

Received: February 21, 2023. Revised: March 9, 2023. 184

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.14

Figure. 4 Comparison of Makespan

Figure. 5 Comparison of the number of deadline

violations

For scheduling 500 tasks, the reduction is 27.78%,

79%, and 68.29% over DBS, GA, and MAX-MIN

methods respectively. When the number of tasks is

750, the number of violations is decreased by 26.6%,

63.74%, and 38.89% over DBS, GA, and MAX-

MIN methods respectively. Finally, the number of

deadline violations decreased by 42.2%, 78.5%, and

58% as compared to DBS, GA, and MAX-MIN

methods respectively.

iii. Total gain cost

Total gain cost is the actual cost for executing

the successful tasks on the data center VMs under

specified budget constraints. From Fig. 6, it can be

shown that the lowest gain cost is achieved for

executing the tasks with the DTSSG approach while

the highest cost is for tasks executed with the MAX-

MIN approach in all cases. DTSSG approach uses

the cost satisfaction factor in the utility function to

ensure that the task will be executed on the optimal

VM. Using this factor guarantee that the execution

cost of the task will not exceed the task budget and

reduce the execution cost by utilizing the VM that

gives the lowest cost.

Figure. 6 Comparison of total gain cost

Figure. 7 Comparison of provider profit

iv. Provider profit:

The pivotal parameter for the cloud service

provider is the profit, which is determined by the

total revenue earned from completing the user tasks.

As depicted in Fig. 7, the profits of the provider are

compared to those of DBS, GA, and MAX-MIN.

The results indicate that the proposed DTSSG

approach outperforms all other methods in terms of

provider profit.

The provider profit increased by 2.9%, 22%, and

10.9% over DBS, GA, and MAX-MIN respectively

for scheduling 250 tasks. For 500 tasks, DTSSG

outperforms in increasing the provider profit by

7.9%, 33%, and 14% over DBS, GA, and MAX-

MIN methods respectively.

Scheduling 750 tasks with the proposed method

results in increasing provider profit by 10.6%,

34,4%, and 17.2% over DBS, GA, and MAX-MIN

methods respectively. Finally, for 1000 tasks the

provider profit increased by 13%, 42.7%, and 19.2%

0

2000

4000

6000

8000

250 500 750 1000

A
ve

ra
ge

 m
ak

es
p

an
 (

s)

Number of Tasks

Makespan

TSSG DBS GA MAX-MIN

0

20

40

60

80

100

120

140

250 500 750 1000

N
u

m
b

er
 o

f
fa

ild
 t

as
ks

Number of Tasks

Number Deadline Violations

TSSG DBS GA MAX-MIN

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

250 500 750 1000

co
s

ga
in

 (
ce

n
t.

)

Number of Tasks

Total Cost Gain

TSSG DBS GA MAX-MIN

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

250 500 750 1000

P
ro

vi
d

er
 P

ro
fi

t
(c

en
t.

)

Number of Tasks

Provider Profit

TSSG DBS GA MAX-MIN

Received: February 21, 2023. Revised: March 9, 2023. 185

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.14

Table 7. Makespan results for regular-size datasets

 Makespan values

No. of

Tasks
DTSSG EMVO MVO GBO

100 139 187.2 187.7 283.2

200 322 387.6 453.5 601.4

300 489 542.9 661 870.5

400 698 768.5 782.1 1105.5

500 803 875.4 1085.1 1426.9

600 974 1099 1286.7 2042.9

Figure. 8 Makespan comparison for regular-size datasets

over DBS, GA, and MAX-MIN methods

respectively.

4.2.2. Experimental results for Scenario 2

This section presents the experimental results of

the proposed method for both regular-size and large-

size groups of the GOCJ dataset. We evaluate the

performance of our method in terms of makespan,

and throughput. The results are compared with

EMVO [23], MVO [32], and GBO [17] methods in

this scenario.

i. Regular-size dataset:

In this subsection, we introduce the makespan and

throughput results of the regular dataset, the number

of tasks used are 100, 200, 300, 400, 500, and 600.

For these groups of tasks, 50 VM are used. Table 7

highlights the average makespan results for the

regular datasets. The results indicate that the

DTSSG method performed better than EMVO,

MVO, and GBO methods across all datasets.

Fig. 8 illustrates the average makespan results of

the DTSSG method as compared to other methods

for regular-size datasets. The average makespan

Table 8. Throughput results for regular-size datasets

 Throughput values

No. of

Tasks
DTSSG EMVO MVO GBO

100 71.9% 53.4% 53.2% 35.3%

200 62.1% 51.5% 44.1% 33.2%

300 61.3% 55.2% 45.3% 34.4%

400 57.3% 52% 51.1% 36.1%

500 62.2% 57.1% 46% 35%

600 61.6% 54.5% 46.6% 29.3%

Figure. 9 Throughput comparison for regular-size dataset

results obtained for this experiment are 570.8,

643.46, 742.72, and 1055.12 for the DTSSG method,

to EMVO, MVO, and GBO respectively.

Also, throughput performance analysis for

regular-size datasets is presented here. The obtained

throughput results shown in table 8 clearly explain

that the proposed method outperforms DTSSG,

EMVO, MVO, and GBO in all experiments.

Fig. 9 illustrates the throughput performance for

the regular dataset. The average throughput was

obtained as 62.76%, 54%, 47.77%, and 33.93% for

DTSSG, EMVO, MVO, and GBO methods

respectively.

ii. Big-size dataset:

The experimental analysis for the large-size

group of the GOCJ dataset is presented in this

subsection. Similar to the previous experiment, the

performance is measured using the makespan and

throughput. We have considered the number of tasks

to be 700, 800, 900, and 1000 for large-size datasets.

These tasks are scheduled on 100 VMs.

Table 9 shows the comparative analysis for

large-size datasets in terms of average makespan

Fig. 10 illustrates the graphical representation

for makespan comparison. According to this

0

500

1000

1500

2000

2500

100 200 300 400 500 600

M
ak

es
p

an
 (

s)

Number of Tasks

Makespan Comparison for Regular dataset

DTSSG EMVO MVO GBO

0.00%

20.00%

40.00%

60.00%

80.00%

100 200 300 400 500 600

Th
ro

u
gh

p
u

t

Number of Tasks

Throughput Comparison for Regular
dataset

DTSSG EMVO MVO GBO

Received: February 21, 2023. Revised: March 9, 2023. 186

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.14

Table 9. Makespan results for large-size datasets

 Makespan values

No. of

tasks
DTSSG EMVO MVO GBO

700 803 823.7 908.2 2280

800 896 933.1 1038.6 2489

900 923 969.7 1158.4 3071

1000 1089 1158.7 1275.7 3772

Figure. 10 Makespan omparison for large-size dataset

Table 10. Throughput results for regular-size datasets

 Throughput values

No. of

tasks
DTSSG EMVO MVO GBO

700 87.1% 85% 77% 30.7%

800 89.2% 86% 77% 32.1%

900 97.5% 93% 78% 29.3%

1000 91.8% 86% 78% 26.5%

Figure. 11 Throughput comparison for large-size dataset

experiment, the average makespan values were

obtained as 927.75, 971.36, 1095.26, and 2903.2,

using the proposed approach, EMVO, MVO, and

GBO respectively.

The obtained throughput results for the large

dataset are compared with other existing techniques

as shown in Table 10.

Fig. 11 illustrates the comparative analysis of

throughput for the large-size dataset. The obtained

average throughput results are 91.45%, 87.50%,

77.50%, and 29.6% for the proposed approach,

EMVO, MVO, and GBO respectively.

5. Conclusion

This paper proposed a game theoretical-based

scheduling model for the cloud data center. the

proposed model uses Stackelberg (leader-flower)

game model to effectively schedule user tasks under

budget and deadline constraints. First, the favorable

virtual machines that maintain the task cost and time

constraints are filtered using the satisfaction factor

and then the leader-follower strategy is used to

identify the optimal virtual machine for processing

the task. The proposed DTSSG method assigns tasks

to suitable virtual machines based on the virtual

machine's current utilization and pricing strategy.

The proposed model benefits the virtual machines,

and the user tasks, and maximizes the overall

performance of the system. The simulation results

have shown that (i) tasks are deployed to virtual

machines in the data center at a faster rate. (ii)

reduced the number of tasks that violates their

deadlines by checking the deadline satisfaction

before the scheduling process(iii) Increased

throughput and decrease makespan values. Finally,

the proposed model is observed to have better

performance and increased system profit as

compared to the state of art algorithms.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Conceptualization, Furkan Rabee, and Ahmed R.

Kadim; methodology, Ahmed R. Kadhim; software,

Ahmed R. Kadhim; validation, Ahmed R. Kadim,

and Furkan Rabee; formal analysis, Ahmed R.

Kadim, and Furkan Rabee; investigation, Furkan

Rabee, and Ahmed R. Kadim; resources, Furkan

Rabee and Ahmed R. Kadim; writing—original

draft preparation, Ahmed R. Kadhim; writing—

review and editing, Ahmed R. Kadim; supervision,

Furkan Rabee.

0

1000

2000

3000

4000

700 800 900 1000

M
ak

es
p

an
 (

s)

Number of Tasks

Makespan Comparison for Large dataset

DTSSG EMVO MVO GBO

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

700 800 900 1000

Th
ro

u
gh

p
u

t

Number of Tasks

Throughput Comparison for large dataset

DTSSG EMVO MVO GBO

Received: February 21, 2023. Revised: March 9, 2023. 187

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.14

References

[1] J. Yang, L. Zhang, and X. A. Wang, “On

Cloud Computing Middleware Architecture”,

In: Proc. of 2015 10th Int. Conf. P2P, Parallel,

Grid, Cloud Internet Comput. 3PGCIC 2015,

pp. 832–835, 2015.

[2] R. M. Singh, L. K. Awasthi, and G. Sikka,

“Towards Metaheuristic Scheduling

Techniques in Cloud and Fog: An Extensive

Taxonomic Review”, ACM Comput. Surv, Vol.

55, No. 3, pp. 1–43, 2023.

[3] S. Akter, T. N. Dao, and S. Yoon, “Time-

Constrained Task Allocation and Worker

Routing in Mobile Crowd-Sensing Using a

Decomposition Technique and Deep Q-

Learning”, IEEE Access, Vol. 9, pp. 95808–

95822, 2021.

[4] X. Ma, H. Gao, H. Xu, and M. Bian, “An IoT-

based task scheduling optimization scheme

considering the deadline and costaware

scientific workflow for cloud computing”,

EURASIP Journal on Wireless

Communications and Networking, No.

2019:249, 2019.

[5] Verma and S. Kaushal, “A hybrid multi-

objective Particle Swarm Optimization for

scientific workflow scheduling”, Parallel

Comput, Vol. 62, pp. 1–19, 2017.

[6] S. Pandey, “Scheduling and Management of

Data Intensive Application Workflows in Grid

and Cloud Computing Environments”, PhD

Thesis, Univ. Melbourne, Aust., No. December,

p. 203, 2010.

[7] K. Chakravarthi and L. Shyamala, “TOPSIS

inspired Budget and Deadline Aware Multi-

Workflow Scheduling for Cloud computing”,

Journal of Systems Architecture, Vol. 114, p.

101916, 2021.

[8] B. Heydenreich, R. Müller, and M. Uetz,

“Games and mechanism design in machine

scheduling-an introduction”, Prod. Oper.

Manag, Vol. 16, No. 4, pp. 437–454, 2007.

[9] M. O. Agbaje, O. B. Ohwo, T. G. Ayanwola,

and O. Olufunmilola, “A Survey of Game-

Theoretic Approach for Resource Management

in Cloud Computing”, Journal of Computer

Networks and Communications, Vol. 2022,

2022.

[10] S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly,

and S. M. Abdulhamid, “Recent advancements

in resource allocation techniques for cloud

computing environment: a systematic review”,

Cluster Comput., Vol. 20, No. 3, pp. 2489–

2533, 2017.

[11] X. Xu and H. Yu, “A game theory approach to

fair and efficient resource allocation in cloud

computing”, Math. Probl. Eng, Vol. 2014, No.

1, 2014.

[12] Y. Liu, L. L. Njilla, J. Wang, and H. Song, “An

LSTM Enabled Dynamic Stackelberg Game

Theoretic Method for Resource Allocation in

the Cloud”, In: Proc. of 2019 Int. Conf. Comput.

Netw. Commun. ICNC 2019, pp. 797–801, 2019.

[13] T. Roughgarden, “Stackelberg scheduling

strategies”, SIAM J. Comput, Vol. 33, No. 2, pp.

332–350, 2004.

[14] P. Y. Nie and P. A. Zhang, “A note on

Stackelberg games”, In: Proc. of Chinese

Control Decis. Conf. 2008, CCDC 2008, pp.

1201–1203, 2008.

[15] H. Arabnejad, J. G. Barbosa, and R. Prodan,

“Low-time complexity budget-deadline

constrained workflow scheduling on

heterogeneous resources”, Futur. Gener.

Comput. Syst., Vol. 55, pp. 29–40, 2016.

[16] J. Varghese and J. Sreenivasaiah, “Entropy

Based Monotonic Task Scheduling and

Dynamic Resource Mapping in Federated

Cloud Environment”, International Journal of

Intelligent Engineering and Systems, Vol. 15,

No. 1, pp. 235–250, 2022, doi:

10.22266/ijies2022.0228.22.

[17] X. Huang, Y. Lin, Z. Zhang, X. Guo, and S. Su,

“A gradient-based optimization approach for

task scheduling problem in cloud computing”,

Cluster Comput, Vol. 25, No. 5, pp. 3481–3497,

2022.

[18] X. Liu, P. Liu, L. Hu, C. Zou, and Z. Cheng,

“Energy-aware task scheduling with time

constraint for heterogeneous cloud datacenters”,

Concurrency and Computation: Practice and

Experience, Vol. 32, No. 18, pp. 260–267, 2020.

[19] G. Natesan and A. Chokkalingam, “An

improved grey wolf optimization algorithm

based task scheduling in cloud computing

environment”, Int. Arab J. Inf. Technol., Vol.

17, No. 1, pp. 73–81, 2020.

[20] W. Jing, C. Zhao, Q. Miao, H. Song, and G.

Chen, “QoS-DPSO: QoS-aware Task

Scheduling for Cloud Computing System”,

Journal of Network and Systems Management,

Vol. 29, No. 1, pp. 1–29, 2021.

[21] S. Velliangiri, P. Karthikeyan, V. M. Arul

Xavier, and D. Baswaraj, “Hybrid electro

search with genetic algorithm for task

scheduling in cloud computing”, Ain Shams

Eng. J., Vol. 12, No. 1, pp. 631–639, 2021.

[22] M. A. Alworafi and S. Mallappa, “A

collaboration of deadline and budget constraints

Received: February 21, 2023. Revised: March 9, 2023. 188

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.14

for task scheduling in cloud computing”,

Cluster Comput, Vol. 23, No. 2, pp. 1073–1083,

2020.

[23] S. E. Shukri, R. A. Sayyed, A. Hudaib, and S.

Mirjalili, “Enhanced multi-verse optimizer for

task scheduling in cloud computing

environments”, Expert Systems with

Applications, Vol. 168, No. February 2020,

2021.

[24] R. Swathy, B. Vinayagasundaram, G. Rajesh, A.

Nayyar, M. Abouhawwash, and M. A. Elsoud,

“Game theoretical approach for load balancing

using SGMLB model in cloud environment”,

PLoS One, Vol. 15, No. 4, pp. 1–22, 2020.

[25] M. K. Patra, S. Sahoo, B. Sahoo, and A. K.

Turuk, “Game theoretic approach for real-time

task scheduling in cloud computing

environment”, In: Proc. of 2019 Int. Conf. Inf.

Technol. ICIT 2019, No. December, pp. 454–

459, 2019.

[26] M. Y. Mulge, “Optimization of task scheduling

algorithm using modified mean Grey-Wolf”,

International Journal of Intelligent Engineering

and Systems, Vol. 12, No. 4, pp. 192–200, 2019,

doi: 10.22266/ijies2019.0831.18.

[27] D. Alsadie, “TSMGWo: Optimizing task

schedule using multi-objectives grey Wolf

optimizer for cloud data centers”, IEEE Access,

Vol. 9, pp. 37707–37725, 2021.

[28] Dhari and K. I. Arif, “An Efficient Load

Balancing Scheme for Cloud Computing”,

Indian Journal of Science and Technology, Vol.

10, No. 11, pp. 1–8, 2017.

[29] M. A. Alworafi and S. Mallappa, “An enhanced

task scheduling in cloud computing based on

deadline-Aware model”, Int. J. Grid High

Perform. Comput, Vol. 10, No. 1, pp. 31–53,

2018.

[30] M. C. S. Filho, R. L. Oliveira, C. C. Monteiro,

P. R. M. Inácio, and M. M. Freire, “CloudSim

Plus: A cloud computing simulation framework

pursuing software engineering principles for

improved modularity, extensibility and

correctness”, In: Proc. of IM 2017 - 2017

IFIP/IEEE Int. Symp. Integr. Netw. Serv.

Manag., No. i, pp. 400–406, 2017.

[31] Hussain and M. Aleem, “GoCJ: Google cloud

jobs dataset for distributed and cloud

computing infrastructures”, Data, Vol. 3, No. 4,

pp. 1–12, 2018.

[32] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou,

“Multi-Verse Optimizer: a nature-inspired

algorithm for global optimization”, Neural

Computing and Applications, Vol. 27, No. 2, pp.

495–513, 2016.

