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Abstract: Sign language recognition in real time has been leveraged by the continuously varying hand movements in 

both shape and orientation across Spatio-Temporal dimensions. This is accomplished by either independent view or 

shared view feature learning. However, information movement between views is neither total nor restricted to achieve 

view insensitivity during testing where all views are needed. The objective is to perform pose based multi view sign 

language recognition by applying triplet loss on a pair of specific and shared view features. Shared view features are 

obtained using view compatibility matrix which maps within class between view features and between class within 

view features. This mapping helps in increasing information flow between views from the same class and restricting 

it between classes thereby making highly discriminative feature representation for all views. Subsequently, metric 

learning enables to build a view invariant feature embedding by stacking view specific and shared features from 

different layers for training deep models. In the end, a blended view feature representation is obtained per class. 

Experiments were designed on our multi view skeletal sign language video dataset and three benchmark action datasets. 

The results of the experimentation have shown that the performance of the classifier has improved by 8% over the 

linear view combiners such as Laplacian eigenmaps. Further, the proposed model is useful in constructing a view 

invariant feature for recognition of multi view sign language. 

Keywords: 3D video analysis, Triplet loss, Multi view spatio temporal features, Sign language recognition. 

 

 

1. Introduction 

Sign language recognition (SLR) is an automated 

machine learning system for the classification of 

visual information of the human signer into text or 

voice commands. The visual inputs are in either 2 or 

3-dimensional spatiotemporal information [1]. 

Generally, sign language is a visual form of 

communication between the hearing impaired or hard 

hearing people. The language corpus is made from 

finger and hand movements with respect to the face, 

head and upper torose of the signer. Particularly, the 

SLR models used in machine translation used RGB 

video frames as input. Specifically, some cases 

considered depth and skeletal sequences for 

recognition [2]. Appearance features were extracted 

from RGB and depth sequences whereas pose-based 

features were operated upon for classification [3]. 

Unquestionably, the RGB is considered the primary 

choice as input to the machine interpreters due to 

availability and cost. However, the results show that 

the machine learning models find it difficult to extract  
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Figure. 1 Illustration of the proposed view invariant feature generation process 

 

features from low-resolution finger data and their 

nonlinear movement in space and time [4]. Whereas 

these problems can be easily mitigated in the 3D 

model-based approaches where the signs are 

represented as skeletal data. The 3D skeletal 

information can be characterized as multi-

dimensional vectors, images, and RGB video data. 

Any of these formats can be used for developing a 

pose-based automated SLR [5]. Consequently, 

applying skeletal 3D video data in the development 

of a real time sign language interpreter comes with 

many synchronization challenges.  

To conciliate the above research challenges, we 

propose to learn viewpoint features as well as shared 

features simultaneously resulting in blended Spatio-

Temporal feature. Here viewpoint features are 

specific features obtained from each of the views that 

carry information representing one view in a class. 

The shared features are constructed from within class 

between views and between class within views with 

the help of a proposed mapping function called as 

view compatibility matrix (VCM). The within class 

between view features define the similarities in 

multiple views from the same class. The VCM 

mapping function is a diagonal matrix that gives the 

mean distance coefficients between views. 

Specifically, VCM gives the percentage of similarly 

metric between views of a class. Correspondingly, 

the between class within view features define the 

similarities between classes which must be restricted 

for effective discrimination of class labels. 

Hence to generate a maximally discriminating 

spatio temporal representation for a specified target 

view, there should be efficient transfer of information 

between specific and shared view features from 

across the dataset. Consequently, this is 

accomplished through deep metric learning (DML) in 

this work. The DML model operates on pairs of 

specific and shared views using triplet loss 

embedding. Admittedly, the output of DML is a 

feature representation for the target class that is 

closely associated with all the within view between 

class features and loosely associated between class 

within views. Finally, the resulting feature vector is 

decoded using the skip connections from the target 

stream in DML model to reconstruct blended features. 

The obtained blended features are highly 

discriminating and extremely expressive. These 

Spatio-Temporal features are constructed from 

multiple layers in the CNN architecture which are 

bonded together into a training dataset. We call our 

proposed method as deep triplet encoder decoder 

(DTED). Any deep learning model trained on the 

generated singular view blended Spatio-Temporal 

feature set per class is enough to test the previously 

unseen view within the class. The primary advantage 

of our work is to achieve high accuracy with single 

view testing which was highly unlikely on the 

previous models. Fig. 1 shows the illustration of the 

proposed view invariant feature generation process. 

The proposed method has been investigated on 

our 3D skeletal video datasets of sign language 

(KLEF3DSL_2Dskeletal) [6] and four other 

multiview action datasets NTU RGB-D [7], SBU 

Kinect Interaction [8], KLYoga3D [9] and 

KL3D_MVaction [10]. Subsequently, we validated 

the proposed method against the state – of – the – art 

on these multi view datasets. The rest of the paper is 

organized into four sections. The literature related to 

multi view methods is highlighted in section two. 
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Section three consists of methodology and the 

experimentation is provided in section four. Finally, 

the last section draws conclusion on the results 

obtained in section four. 

2. Literature review 

This section gives an extensive analysis of the 

multi view deep learning models for sign language 

and human action recognition. Furthermore, the 

advantages and disadvantages of each of the previous 

methods has been discussed. 

The deep learning revolution has seen an 

exponential growth of 2D video based SLR models, 

which has transformed from feature extraction to 

feature learning paradigms [11]. On one hand, these 

models reported the highest possible accuracies and 

on the other hand it has become difficult to get 

generalized on the inputs with multiple signers and 

viewing angles. This problem found the solution in 

the form of higher dimensional datasets such as depth 

and 3D skeletal representations. Admittedly these 

models have shown exceptional performance with 

multi stream convolutional neural networks for 

action recognition [12]. In comparison to single 

modal datasets, the multi modal data has been shown 

to establish higher recognition accuracies. Usually, 

the computational power required for training on 

multi modal datasets is on the higher side when 

compared to single-modal datasets. 

Correspondingly, to develop a real time 

deployable sign language machine translator it is 

necessary to train the model with multi view datasets. 

Following this has seen an incremental surge in the 

use of multi view human action datasets for training 

and testing the deep models [13]. The developments 

in this direction generated research related to 

dictionary learning [14, 15], artificial neural 

networks [16], convolutional neural networks [17] 

and deep attention networks [18]. Obviously, the 

attention mechanisms with deep networks have 

shown to learn specific features across views when 

compared to other models [19]. The attention models 

were able to produce good view-specific features but 

have failed to generate cross view features for 

classification. Moreover, the fusion of view specific 

and cross view features into a single view invariant 

feature has failed to capture most of the view 

variations in the multi view data [20].  

 The past works on multi-view can be classified as 

learning based and view invariant models. In 

multiview learning approaches, the machine learned 

time series representation of actions or signs in 

different views independently [21, 22, 23]. The 

methods generated combined view features based on 

low level observations of the spatial frames in the 

videos sequence [24]. Consequently, different 

training algorithms and network architectures have 

been proposed to learn a set of equivalent features 

between views [25, 26]. The canonical correlation 

coefficient (CCA) [27] and view projection matrices 

were used to extract relationships across views of a 

class [28]. These methods are further improved 

through matrix factorization [29] and low rank 

constrained matrix factorization [30] for finding 

similarities between views. The above works have 

shown to provide good recognition accuracies trained 

with limited number of views.  

Alternatively, the above limitations were 

subjugated through mapping descriptors which 

transfer information between views. These mapping 

functions that have shown maximum robustness for 

action recognition applications are self-similarity 

matrix (SSM) [31] and sample affinity matrix (SAM) 

[32]. The SSM models summarize views across all 

class and transfer those similarities to all views 

during learning. However, the biggest disadvantage 

of SSM comes from the assumption that all views 

contribute equally to the shared features. This 

assumption has shown to have negative implications 

on the overall performance of the classifier as each 

view contributes differently to the viewpoint. 

Additionally, the intra class variations across views 

were ignored in SSM which define the dissimilarities 

between classes. 

The above two problems were handled by sample 

affinity matrix (SAM) [32]. The SAM is a 

transformation matrix to generate the weighted 

similarities between views within class and 

dissimilarities between class within views. The 

mapping function was learned on autoencoder 

features at each level which are bonded together to 

generate a view invariant feature representation. The 

only drawback of this method is the use of 

regularizers for prevention of data transfer between 

target and shared views. The regularizer parameters 

have to randomly selected through experimentation 

to make the model efficient.  

In this paper, we propose to learn the regularizer 

parameters through metric learning. Instead of 

performing regularization through random selection, 

we propose to learn the view invariant features by 

simultaneously attracting the within class between 

view features and pushing out the between class 

within view shared features. This process leverages 

highly discriminative Spatio-Temporal feature 

embedding space for skeletal video data. There is a 

threefold difference of the proposed method from 

works in literature. 1) The design of a view 

compatibility matrix which discovers the 
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dependencies between shared features. 2) The 

proposed method has constructed a highly 

discriminative Spatio-Temporal features by metric 

learning on triplet pairs of target views and shared 

views. 3) Our model learns the target vectors using 

the decoder network with skip connections. The 

following objectives are formulated: 1. To map a 

view compatibility matrix for finding relationships 

between shared view features. 2. To learn mapping 

function for making a view invariant Spatio-

Temporal feature matrix. 3. To test the trained model 

with only one view. We call our model deep triplet 

encoder decoder (DTED). 

3. Multi view feature learning (MVFL): the 

deep triplet encoder decoder (DTED) 

The objective is to construct a blended view 

feature by learning the relations between target and 

shared views across classes on skeletal sign language 

videos. This will enable inferencing the trained model 

with any one view as against all the views required in 

the previous models.  

3.1 View compatibility matrix (VCM) 

Based on the previous models such as self-

similarity matrix (SSM) [31] and sample - affinity 

matrix (SAM) [32] for defining view transformations 

among classes, we propose view compatibility matrix 

(VCM). VCM measures the similarity between pairs 

of multiple views in skeletal sign videos. Given 

𝑉 skeletal sign views for training: {𝑋𝑣 , 𝑦𝑣}𝑣=1
𝑉 , 

consisting of 𝐶 sign language classes. The 𝑐𝑡ℎclass in 

𝑣𝑡ℎ  view consists of 𝑆  videos: 𝑋𝑣𝑐 =
[𝛸𝑣1, 𝛸𝑣2, . . . . . , 𝛸𝑣𝐶] ∈ 𝑅𝑓×𝐶, where 𝑓 is the feature 

dimension per video sample. The corresponding class 

labels are 𝑦𝑣𝑐 = [𝑦𝑣1, 𝑦𝑣2, . . . . . , 𝑦𝑣𝐶] . Similar to 

SAM, we construct VCM using the parametrized 

distance function between the features 𝐹𝑣𝑐 =
[𝑓𝑣1, 𝑓𝑣2, . . . . . . , 𝑓𝑣𝐶] ∈ 𝑅𝑔×𝑁, where𝑁is the number 

of frames in the skeletal video and 𝑔 is the length of 

the feature vector. The block diagonal matrix 𝐷 =
𝑑𝑖𝑎𝑔(𝐷1, 𝐷2, . . . . . , 𝐷𝐶) is defined as 

 

𝐷𝑖 =

𝑐1𝑣1𝑡𝑜 𝑉
𝑐2𝑣1𝑡𝑜 𝑉

⋮
𝑐𝑐𝑣1𝑡𝑜 𝑉

(

 
 

0 𝑑𝑖
12

𝑑𝑖
12 0

⋯
𝑑𝑖

1𝑉

𝑑𝑖
2𝑉

⋮ ⋱ ⋮
𝑑𝑖

𝑉1 𝑑𝑖
𝑉2 ⋯ 0

)

 
 

     (1) 

𝑐1𝑣1𝑡𝑜 𝑉 𝑐2𝑣1𝑡𝑜 𝑉
… 𝑐𝑐𝑣1𝑡𝑜 𝑉 

 

The 𝐷 ∈ 𝑅𝐶𝑉×𝐶𝑉  is a matrix giving similarities 

between all views within a class and also between 

class views. The  𝑑𝑖
𝑐𝑣 is a distance of the 𝑖𝑡ℎ sample 

computed as 

 

𝑑𝑖
𝑐𝑣 =

𝑒𝑥𝑝(‖𝑓𝑖
𝑣−𝑓𝑖

𝑢‖
2
)

2𝐶
                           (2) 

 

Where, (𝑢, 𝑣) are view pointers in all classes. The 

features𝑓 exhibit spatio temporal characteristics of 

the skeletal sign in the video sequence.  

The resulting block diagonal matrix 𝐷𝑖represent 

distances between features 𝑓of video samples across 

multiple views within the class and across the class. 

This gives similarity measure of within class between 

view features and between class within view features. 

Consequently, the within class between view 

similarity measure tells the appearance distinction 

between views and also the distance provides the 

amount of closeness between views. Similarly, the 

between class view feature distances account for the 

information that is invariably shared across signs for 

incorrect classification. To this extent the between 

class shared information has to be eliminated to 

generate a highly discriminative feature vector. 

Specifically, the VCM defines the combinations of 

shared features across views and classes. The 

objective is to effectively learn the right combination 

of shared features to generate a view invariant feature 

for a target class. 

3.2 Spatio temporal feature extraction 

Let 𝑋𝑣𝑐 = (𝑥𝑣 = {𝑆𝑣}∀𝑣 = 1 𝑡𝑜 𝑉, 𝑐 =  1 𝑡𝑜 𝐶) 

be 𝑉views of the video frames with 𝑉 ∈ 𝑅3 . The 

deep learning model learns 𝑓𝑣  features from 𝑥𝑣 on 

labels 𝑦𝑣  at specific views with 𝜃𝑓𝑒𝑛  trainable 

parameters for 𝐿 loss function optimization on the 

dataset as 

 

𝜃𝑓𝑒𝑛 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜃𝑓𝑒𝑛

𝐿(𝜃𝑓𝑒𝑛 ; 𝑥𝑣, 𝑦𝑣)             (3) 

 

The trained model 𝜃𝑓𝑒𝑛 has view specific features 

𝑓𝑣 at the output of the dense layers as  

 

{𝑓𝑣}𝑣={1,𝑁} = ∑ ∑ 𝑥𝑣(𝑖, 𝑗)
𝐽
𝑗=1

𝐼
𝑖=1   

∗ 𝐾(𝑘 − 𝑖, 𝑘 − 𝑗)∀𝑘 ∈ kernel size           (4) 

 

Fig. 2 shows the features learning network.  The 

network is built with four convolution layer pairs on 

top of the rectified linear activations and a 2 × 2 

maximum pooling layer. The convolution layers use 

strides of one and the maximum pooling uses two. 

Subsequently, a batch normalization layer 

standardizes inputs of deeper layers. Lastly, fully  
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Figure. 2 Spatio temporal view feature extraction network 

 

connected layers learn on the features generated by 

the convolutional layers. Then, a complete spatio 

temporal feature matrix representing the 2D skeletal 

video sequence is generated by concatenating the 

frame wise spatial features at the output of dense 

layers. Altogether, 𝑉networks operate separately for 

producing view specific class features 𝐹𝑐𝑣 =
{𝑓𝑖𝑐} ∀𝑖 = 1 to 𝑉 ∈ 𝑅𝑔×𝑁. Categorical cross entropy 

loss with stochastic gradient descent optimizer is 

applied during training on the entire dataset. The 

trained model 𝜃𝑓𝑒�̃�  is employed for all classes to 

obtain the features as 

 

𝐹𝑐𝑣 = 𝜃𝑓𝑒�̃�(𝑤, 𝑏) × 𝑋𝑐𝑣∀𝑉&𝐶 ∈ 𝑅𝑔×𝑁     (5) 

 

The spatio temporal feature matrix for all views in 

all classes are inputted to calculate the weighted 

dependencies of shared views against the target views.  

Firstly, the input is a skeletal 2D video data 

obtained from mapping of 3D motion captured sign 

language data. The 2D skeletal video data is 

considered to achieve our long-term goal of finding a 

reliable relationship between 2D real time sign video 

data and 2D skeletal information for better recovery 

of spatial and motion information respectively. 

Secondly, the input training data for the network in 

Fig. 2 is 2D skeletal video frames in multiple views. 

This multi stream network is trained using supervised 

learning approach on individual views per stream. 

Inferencing is conducted with any view randomly 

from the set of trainable views and select the stream 

that generates maximum recognition rate. 

Subsequently, extract Spatio-Temporal features from 

this stream from multiple layers for further 

processing.  

3.3 Shared feature factorization 

All previous works had considered this as a linear 

combination of views and calculated the weights for 

individual views that re contributing to the target 

view using laplacian eigenmaps [31, 32]. The 

effectiveness of laplacian eigenmaps has been proved 

to provide excellent results when the number of views 

available for training is small (V=4). This is because 

of the computational complexities for classification 

of eigenmaps. Since, we have more than 15 views 

available for processing, we propose to learn these 

weights using triplet loss embedding based 

autoencoder. The proposed novel idea can help in 

training a database with large number of views. For 

experimentation, we selected mocap videos to 

reciprocate the large number of views which can be 

constructed with ease. However, the principal 

question worth answering is why video data of 

skeletal joints Instead of 3D joint information directly. 

The 3D joint data has minimalistic variations within 

views which cannot be rationalized into actual view 

representation in real time. Hence our project 

contains 3D skeletal representations of 2D videos 

where the view variations have considerable impact 

on the performance of the multi view training. 
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Given a set of learned spatio temporal features 

𝐹𝑐𝑣 ∀ 𝑐 = 1 𝑡𝑜 𝐶, 𝑣 = 1 𝑡𝑜 𝑉, the aim of this module 

is to generate a weighted combination of shared 

feature using VCM, the distance matrix 𝐷𝑖 . The 

VCM consists of two types of shared features with 

one representing similarities between within class 

between view features 𝑑𝑖
𝑐𝑣∀𝑐, 𝑣 = 1 𝑡𝑜 𝑉  and the 

other between class within view features 𝑑𝑖
𝑐𝑣∀𝑣, 𝑐 =

1 𝑡𝑜 𝐶 . The subscript 𝑖  indexes the location of 

weights in 𝐷𝑖 . Specifically, we calculate the 

relationships between all views from within a class 

and across classes using 𝐷𝑖 . Given a class 𝑐  with 

view 𝑣𝑡ℎ  target features, the within class between 

views relationship 𝑅𝑊𝐶𝐵𝑉  is a weighted feature 

combination of all (𝑣 − 1)𝑡ℎ  views defined by the 

𝑑𝑖
𝑐𝑣∀𝑐, 𝑣 = 1 𝑡𝑜 𝑉. The 𝑅𝑊𝐶𝐵𝑉is calculated as 

 

𝑅𝑊𝐶𝐵𝑉 = 𝐷𝑖 × 𝐹𝑐𝑣  ∀ 𝑖 = 𝑖𝑛𝑑𝑒𝑥(𝑑𝑖𝑎𝑔(𝐷))   (6) 

 

Explicitly the 𝑅𝑊𝑉𝐵𝐶for a single class is shown as 

 

𝑅𝑊𝐶𝐵𝑉 =

[
 
 
 
 
 

0 𝑑1
12 𝑑1

13 . 𝑑1
1𝑉

𝑑1
21 0 𝑑1

23 . 𝑑1
2𝑉

. . 0 . 𝑑1
3𝑉

. . . 0 .

𝑑1
𝑉1 . . 𝑑1

𝑉(𝑉−1)
0 ]

 
 
 
 
 

× 

[
 
 
 
 
𝑓𝑣1

𝑓𝑣2

.

.
𝑓𝑣𝑉]

 
 
 
 

∀𝑐 = 1      (7) 

 

Consequently, the 𝑅𝑊𝐶𝐵𝑉 ∈ 𝑅𝑉×1  is a column 

vector representing the weight combination of a 

particular view against all other views within a class. 

The challenge is to select a particular weighted 

combination from𝑅𝑊𝑉𝐵𝐶which closely matches the 

target view in a particular class. This was achieved by 

learning a set of shared and unshared features using a 

mapping matrix with two regularizes on the feature 

set [32]. Despite success, the method suffers from 

dependence on hyper parameters of regularizes. To 

overcome this disadvantage, we extract the second 

relationship 𝑅𝑊𝑉𝐵𝐶 , which defines the weighted 

combination of between class views as 

 

𝑅𝑊𝑉𝐵𝐶 = 𝐷𝑖 × 𝐹𝑐𝑣 ∀ 𝑖 = 𝑖𝑛𝑑𝑒𝑥(𝑛𝑜𝑛 𝑑𝑖𝑎𝑔(𝐷)) 

(8) 

 

The 𝑅𝑊𝑉𝐵𝐶 ∈ 𝑅1×𝑉𝐶 is a feature space with 

common features between classes that has the ability 

to interfere during classification. Markedly, the view 

invariant feature for a particular class should be 

similar to 𝑅𝑊𝐶𝐵𝑉 and dissimilar to 𝑅𝑊𝑉𝐵𝐶 . As 

discussed previously, this was achieved through an 

objective function with two regularization terms [39]. 

In this work, we apply deep Triplet learning along 

with a set of encoder decoder network to learn a 

highly discriminative and robust view invariant 

feature per class. 

3.4 Deep triplet view invariant feature learning 

The proposed model is built on Triplet learning 

with single encoder decoder network. The 

architecture of the proposed model is illustrated in 

Fig. 3. Given the 𝑣𝑡ℎ target view features 𝑓𝑣𝑐 from a 

particular class 𝑐  and the shared features 
(𝑅𝑊𝐶𝐵𝑉, 𝑅𝑊𝑉𝐵𝐶) , the objective is to learn a view 

invariant feature embedding. Firstly, the features are 

pre-processed by selecting the maximum operator 

and only 100 features per video frame are selected. 

Secondly, feature pairs are constructed as positive 

and negative sets. The positive set consisting of view 

specific target features and within class between view 

features. Subsequently, the negative features are 

paired as view specific targets and between class 

within view features. Thirdly, we apply the triplet 

loss embeddings on the paired features specified by a 

set of multi view training data 𝑆 = {𝐹𝑇
𝑖𝑣 , 𝑦𝑖}∀𝑖 =

1 𝑡𝑜 𝐶, 𝑣 =  1 𝑡𝑜 𝑉with 𝑉 views and 𝐶 classes, deep 

Triplet encoder decoder (DTED) classifier focuses on 

learning a mapping function relating the target view 

features 𝐹𝑇
𝑖𝑣 to 𝑦𝑖  such that the predicted label �̂�𝑖 →

𝑦𝑖. 

Lastly, a decoder is built alongside the encoder 

network with view specific feature inputs. The 

decoder reconstructs the encoded target features 

which are closely related to within class view features 

and distant to between class view features.  This 

mapping is achieved by reducing the view specific 

triplet loss. The trained model 𝐷𝑇𝐿  extracts the 

maximally discriminant target features 𝑓𝑐𝑣 ∈ 𝑅𝑑in 𝑑 

dimensions being represented as 

 

𝑓𝑐𝑣 = 𝐷𝑀𝐿(𝐹𝑇
𝑣, 𝜃𝑀𝐿)∀𝑣 = 1 𝑡𝑜 𝑉, 𝑐 = 1 𝑡𝑜 𝐶 

            (9) 

 

Here 𝜃𝑀𝐿 consists of trained parameters of the model 

𝐷𝑀𝐿  that extracts the 𝑑  dimensional view invariant 

features per class. The 𝐷𝑀𝐿 model is trained in each 

iteration with a single triplet pair 𝑡𝑧 =
(𝑓𝑇

𝑐𝑣, 𝑅𝑊𝐶𝐵𝑉, 𝑅𝑊𝑉𝐵𝐶)  which is constructed by 

applying the following the condition 𝑦𝑇 = 𝑦𝑊𝐶𝐵𝑉 ≠
𝑦𝑊𝑉𝐵𝐶 . Fig. 3 shows the deep network used for 

learning from 𝑡𝑧 . The deep triplet encoder decoder  
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Figure. 3 Deep triplet encoder decoder (DTED) architecture for view invariant feature learning 

 

learning (DTEDL) network learns the view mapping 

function through view specific loss computed on the 

feature embedding space𝑡𝑧. 

The triplet loss functional 𝑙𝑡𝑟𝑖𝑝𝑙𝑒𝑡 is 

 

𝑙𝑡𝑟𝑖𝑝𝑙𝑒𝑡(𝑡𝑧) = ∑ ℎ(𝛿 − ‖𝑓𝑇
𝑧 − 𝑅𝑊𝐶𝐵𝑉

𝑧 ‖2 +∀𝑉

‖𝑓𝑇
𝑧 − 𝑅𝑊𝑉𝐵𝐶

𝑧 ‖)     (10) 

 

Where 𝛿 is the allowable margin that marks the 

boundary to discriminate positive and negative pairs. 

Here ℎ( ) = 𝑚𝑎𝑥(, 0) is the hinge loss. The triplet 

loss aims to rationalize the weight vectors in the 

direction dictated at maximizing the Triplets between 
(𝑓𝑇

𝑐𝑣, 𝑅𝑊𝑉𝐵𝐶)  features and minimizing Triplets 

between (𝑓𝑇
𝑐𝑣, 𝑅𝑊𝐶𝐵𝑉) , respectively.  

Consequently, the trained network on target view 

features is extracted for pairing with a decoder 

network to form an encoder decoder network 𝐷𝐸𝐷 . 

The encoder weights are transferred directly to the 

decoder side which enables for reconstruction of 

complete set of view invariant features for a 

particular target view within a specified class. 

Notably, view invariant features can be inferenced 

on𝐷𝐸𝐷 for any set of target views from any class. 

Despite multiple networks and excessive trainings, 

view invariant features can be generated 

instantaneously by inferencing on the auto encoder 

for any number of untrained views within a class. 

Finally, these features can be learned by any deep 

neural network architecture for view invariant 

skeletal sign or action video classification. 

3.5 The classification network 

The classification process is designed in Fig. 4. 

Any CNN architecture can be trained on the view 

invariant features in a class label for classification. 

The CNN model is trained with categorical cross 

entropy loss function and stochastic gradient descent 

optimizer. The proposed methodology has dual 

advantages in the form of marginal computational 

complexity and single view inferencing. Moreover, 

the generated features are packed with both spatial 

and temporal information. 

The following procedure is instigated to train the 

proposed networks. First, view specific features for 

all classes are extracted through the network in Fig. 

2. There are 100 frames in each video sample. From  
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Figure. 4 The classification process 

 

each frame 100 features are selected from the output 

of the dense with 512 values per frame. The top 100 

feature are the values greater than the mean of the 512 

values. The reason behind selecting 100 features out 

of 512 is experimental in nature. Since the skeletal 

representation in video sequences occupied minimum 

pixel density, it facilitates highly concentrated 

features with minimalistic representation. After 

multiple attempts to find the right feature length for 

maximum performance, we arrived at 100 features 

per frame. Importantly, the position of the selected 

features was unaltered in the final representations. 

The learning rate for this network was fixed at 0.001. 

The extracted spatial features are concatenated to 

form a spatio temporal feature matrix characterizing 

each video sample. Secondly, VCM is calculated on 

the view specific spatio temporal features to 

determine the weighted combination of shared 

features across views and classes. Thirdly, Triplet 

auto encoder learning model in Fig. 3 is trained to 

extract view invariant features across views in each 

class. Here, the network is trained with triplet loss 

first and then, decoder is added to extract the features. 

A learning rate of 0.00001 is selected initially, which 

was the progressively regularized with a decay of 0.1 

whenever the error became constant. Finally, these 

view invariant features are used for classification 

using as shown in Fig. 4. The learning rate of the 

network in Fig. 4 is selected as 0.01. All the models 

were trained with Adam optimizer on 8GB NVDIA 

RTX 1070x GPU with 16GB memory using 

TensorFlow 2.5 APIs.  Subsequent sections provide a 

detailed description of the results obtained through 

rigorous experimentation on various skeletal video 

datasets to evaluate the performance of the proposed 

method against similar frameworks. 

 

4. Experimentation 

The proposed deep triplet encoder decoder 

(DTED) has been trained and tested on multi view 

skeletal sign (action) video datasets with multiple 

train test splits. The experimentation was conducted 

with a one – to – one, one – to – many, many – to – 

one and many – to – many cross view training and 

testing approaches on DTED. Additionally, the 

findings of DTED were validated against the other 

state – of – the – art multi view methods. Ultimately, 

to check the robustness of the proposed feature 

extraction process multiple CNNs architectures were 

tested for generating view invariant features. 

4.1 Skeletal video datasets and evaluation metrics 

To experiment with the proposed methodology, 

we start with our multi view sign language dataset 

KLEF3DSL_2Dskeletal with 𝑉 = 15 views, 200 

classes. The dataset is produced at KL biomechanics 

and vision computing research centre utilizing 3D 

motion capture technology [6]. Additional to our 

multi view sign language data, we evaluated the 

methods proposed on multi view benchmark skeletal 

action datasets such as NTU RGB-D [7], SBU Kinect 

Interaction [8], KLYoga3D [9] and KL3D_MVaction 

[10]. Fig. 5 shows data sample subset from 

KLEF3DSL_2Dskeletal for a sign basketball. The 

train test ratios are maintained stable through the 

entire experimentation phase. The preferred ratios are 

one – to – one and one – to – many. Because there are 

not any multi view sign language datasets, we 

estimated our model on multi view benchmark action 

datasets. Even though there are enormous action 

dataset classes, we preferred just 40 action classes for 

experimentation in 15 views per class for preserving 

homogeneity throughout comparison. Random views 

were generated through rotation of original skeletal 

data to create more views in some databases used in 

this paper. For example, NTU RGB-D dataset has 

only 8 views. Specifically, our sign language data has 

15 views. To compensate for the remaining views in 

NTU RGB-D, we rotated the skeleton by angles that 

in-between the available views. All the rotations were 

performed on the front view skeleton and then it was 

transformed into a continuous video sequence. The 

predominant rotation angles were +-10,+-15,+-20,+-

25,+-30,+-40 and +-45 degrees. Here, the assessment 

is accomplished unbiased of the nature of view in 

which the action is filmed. Fig. 6 (a). shows examples 

from NTU RGB-D dataset. Fig. 6 (b) shows samples 

from KL3D_MVaction and Fig. 6 (c) shows multi 

view samples from KLYoga3D dataset. Mean 

recognition accuracy (mRA) has been used as 

performance evaluator throughout this work.  

The Fig. 2 network has been trained on all the views 

of sign (action) skeletal videos with analogous hyper 

parameters with the exception of learning rate and 

epochs. The learning rate for KLEF3DSL_2Dskeletal 

sign language video dataset is 0.001 and it was 0.005  
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Figure. 5 An example frame in 15 different views for the skeletal video sign “Basketball” from KLEF3DSL_2Dskeletal 

sign language video dataset 

 

for all other action datasets. 

Nevertheless, the KLYoga3D have being trained 

on a learning rate of 0.0001 for 300 epochs owing to 

substantial number of skeletal joints. The residual 

datasets were trained for 200 epochs. The trained 

models are inferenced by the training sets for feature 

extraction. Consequently, the dense layer features 

were concatenated to construct a spatio temporal 

feature representation for each of the views in a class. 

Interestingly, the significance of features across other 

layers is also evaluated from the model in Fig. 2. The 

features obtained on the trained CNN model in Fig. 2 

are termed as view specific features. To generate 

shared view features across multiple classes, VCM is 

applied. The VCM generates a set of within view 

between class 𝑅𝑊𝑉𝐵𝐶 and within class between view 

features 𝑅𝑊𝐶𝐵𝑉 . The connection between view 

specific and shared features is critical in creating 

view invariant features, which are learned using the 

proposed deep triplet encoder decoder (DTED) 

architecture in Fig. 3. The entire model was trained 

using triplet loss embeddings with different 𝛿values 

without the decoder network. The hyperparameter 
(𝛿)for DTED on KLEF3DSL_2Dskeletal(𝛿 = 0.28), 

NTU RGB-D (𝛿 = 0.35) , SBU Kinect Interaction 
(𝛿 = 0.37) , KLYoga3D (𝛿 = 0.38)  and 

KL3D_MVaction (𝛿 = 0.29) is selected iteratively. 

After successful training of the deep Triplet network, 

the view specific trained parameters were transferred 

directly to the decoder network. The deconvolution 

on the encoder features in decoder network in 

successive layers has generated view invariant 

features that have high correlativity within class 

views and disassociation with between class views. 

Overfitting on datasets is avoided by setting the 

training stop loss at 0.001 across all datasets. Finally, 

these created view invariant features are applied for 

classification. Exclusively, the obtained skeletal 

feature robustness for classification is tested by 

regulated training and inferencing on standard CNN 

models. However, these models are diminished in 

layers and depth to source a size of 100 × 100 to 

avoid vanishing gradients. To corroborate the actual 

effectiveness the view invariant features, multiple 

evaluation processes on the classifier are presented. 

4.2 One – to – one classifier evaluation 

The one – to – one cross view identification test 

is organised by training the classifier in Fig. 4. in 

conjunction with one view invariant feature on behalf 

of all views and testing on separate views. 

Exclusively, the crucial standpoint of this is to test the 

strength of the produced view invariant features in 

predicting a particular class based on its fundamental 

views on which it is created. To establish this, we 

constructed the deep network virtuoso with VGG-16 

consisting of six convolutional layers, three 

maximum pooling, one flatten and two dense layers. 

The produced view invariant features in each class 

are used for training the deep network and 

subsequently it is tested on view specific features. 

Accordingly, we preferred the learning rate of 0.0001 

for the network and is trained using categorical cross 

entropy loss and Adam optimizer. Later, the overhead 

process is repeated for all datasets with the identical 

hyper parameters. Moreover, three baseline 

architectures such as Inception – V4, GoogleNet and 

ResNet – 50 have been used for training and testing. 
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Figure. 6 Action datasets in multiple views used as benchmarks for evaluating the models: (a) NTU RGB-D in 5 views, 

(b) KL3D_MVaction in 5 views, and (c) KLYoga3D in 9 views 

 

Then again vanishing gradients and overfitting 

difficulty were reduced by re-constructing the 

architectures with only one-half the layers than the 

initial models. The composition of the initial models 

was well-preserved to accomplish peak performance. 

Ultimately, mRA is calculated throughout 

inferencing and the 10-fold highest value is given in 

table 1 for all the datasets. 

After analysing the mRA in Table 1, it is obvious 

that the models operate perfectly on test views that 

have additional visible knowledge when compared to 

views consisting of intersecting joints. The results 

from Table 1 too implies that the view invariant 

features have appeared to lessen false positives in all 

classes. Remarkably, the DTED has produced 

extremely discriminatory features from view specific 

features to enhance the functioning of the classifier. 

Additionally, the proposed design emphasizes the use 

of one individual view for testing as against the 

earlier models, where all views are mandatory as 

input. The advantage of DTED over prior works is to 

learn discriminations within view between class 

features and merging within class between view 

features. Subsequently, it will be noteworthy to test 

the many – to – one cross view evaluation, where the 

models are trained with view specific features and 

tested with only one view invariant feature. 

4.3 Many – to – one classifier evaluation 

At this juncture, we train the classifiers with all 

available views and test with just one view invariant 

feature. The mRA values for several sets of training 

views is presented in Table 2. The findings in Table 

2 shows that an increase in the number of view 

specific training view features increases the test 

performance of the models. This assessment 

highlights the efficacy of the produced view invariant 

features by DTED model. The Inception – V4 has 

demonstrated to outshine other baseline classifiers 

employed for investigation owing to the point that it 

comprises numerous attention layers for picking 

maximally impacting vectors.  

4.4 Performance of view invariant feature at 

multiple convolutional layers 

The evidence from the previous works [24] 

suggests that the view invariant features in multiple 

layers across the CNN in Fig. 2 will affect the overall 

performance of the classifier. In this regard, we 

experimented with features from different 

convolutional layers from Fig. 2. Given the trained 

model of Fig. 2, we inferenced using all views from 

all classes and extracted features after the maximum 

pooling layers. For convenience, we name these  
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Table 1. One – to – one evaluation of the designated classifiers trained with the one view invariant feature and examined 

with specific view features using the performance measure mRA 
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Views 
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T
in

y
 V

G
G

 –
 1
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KLEF3DSL_2

Dskeletal 
0.74 0.76 0.78 0.76 0.81 0.75 0.76 0.70 0.69 0.70 

NTU RGB-D 0.72 0.78 0.78 0.76 0.82 0.77 0.74 0.75 0.74 0.77 

SBU Kinect 

Interaction 
0.72 0.74 0.73 0.75 0.73 0.74 0.74 0.68 0.67 0.64 

KLYoga3D 0.77 0.77 0.81 0.80 0.84 0.80 0.79 0.74 0.75 0.77 

KL3D_MVact

ion 
0.76 0.75 0.75 0.77 0.75 0.73 0.76 0.72 0.71 0.71 
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n

 -
 V

4
 

KLEF3DSL_2

Dskeletal 
0.79 0.81 0.82 0.80 0.85 0.79 0.80 0.75 0.73 0.74 

NTU RGB-D 0.77 0.82 0.83 0.81 0.86 0.81 0.79 0.79 0.79 0.81 

SBU Kinect 

Interaction 
0.77 0.78 0.78 0.79 0.77 0.78 0.78 0.72 0.72 0.69 

KLYoga3D 0.81 0.82 0.85 0.84 0.89 0.84 0.83 0.78 0.79 0.82 

KL3D_MVact

ion 
0.81 0.79 0.79 0.82 0.80 0.78 0.80 0.76 0.75 0.75 

G
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KLEF3DSL_2

Dskeletal 
0.69 0.71 0.73 0.71 0.76 0.70 0.71 0.65 0.64 0.65 

NTU RGB-D 0.67 0.73 0.74 0.72 0.77 0.72 0.70 0.70 0.69 0.72 

SBU Kinect 

Interaction 
0.68 0.69 0.68 0.70 0.68 0.69 0.69 0.63 0.62 0.60 

KLYoga3D 0.72 0.72 0.76 0.75 0.79 0.75 0.74 0.69 0.70 0.72 

KL3D_MVact

ion 
0.71 0.70 0.70 0.72 0.70 0.69 0.71 0.67 0.66 0.66 

R
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N
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KLEF3DSL_2

Dskeletal 
0.70 0.75 0.76 0.74 0.80 0.74 0.72 0.72 0.72 0.75 

NTU RGB-D 0.70 0.72 0.71 0.72 0.71 0.71 0.72 0.65 0.65 0.62 

SBU Kinect 

Interaction 
0.74 0.75 0.79 0.77 0.82 0.77 0.76 0.72 0.72 0.75 

KLYoga3D 0.74 0.73 0.72 0.75 0.73 0.71 0.74 0.70 0.69 0.69 

KL3D_MVact

ion 
0.77 0.79 0.81 0.79 0.84 0.78 0.79 0.73 0.72 0.72 
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mRA  
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Datasets 
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KLEF3DSL_2

Dskeletal 
0.70 0.78 0.81 0.74 0.77 0.75 

NTU RGB-D 0.74 0.76 0.81 0.75 0.81 0.77 

SBU Kinect 

Interaction 
0.66 0.71 0.76 0.75 0.73 0.72 

KLYoga3D 0.76 0.83 0.85 0.75 0.77 0.78 

KL3D_MVact

ion 
0.70 0.77 0.79 0.75 0.76 0.75 
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KLEF3DSL_2

Dskeletal 
0.74 0.82 0.85 0.78 0.81 0.79 

NTU RGB-D 0.78 0.80 0.85 0.79 0.85 0.81 

SBU Kinect 

Interaction 
0.71 0.75 0.81 0.79 0.78 0.76 

KLYoga3D 0.81 0.88 0.89 0.79 0.81 0.83 

KL3D_MVact

ion 
0.75 0.81 0.84 0.79 0.81 0.79 
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KLEF3DSL_2

Dskeletal 
0.65 0.73 0.76 0.69 0.72 0.70 

NTU RGB-D 0.69 0.71 0.76 0.70 0.76 0.72 

SBU Kinect 

Interaction 
0.62 0.66 0.71 0.70 0.69 0.67 

KLYoga3D 0.71 0.78 0.80 0.70 0.72 0.74 

KL3D_MVact

ion 
0.65 0.72 0.74 0.70 0.72 0.70 
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KLEF3DSL_2

Dskeletal 
0.72 0.73 0.78 0.72 0.78 0.74 

NTU RGB-D 0.64 0.69 0.74 0.72 0.71 0.69 

SBU Kinect 

Interaction 
0.74 0.81 0.82 0.72 0.74 0.76 

KLYoga3D 0.68 0.75 0.77 0.72 0.74 0.72 

KL3D_MVact

ion 
0.73 0.81 0.84 0.77 0.79 0.78 

 

Table 2. Many – to – One evaluation of the classifiers trained with several sets of training views and tested with one view 

invariant feature produced using DTED. The mixture of training views was introduced arbitrarily 
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KLEF3DSL_2

Dskeletal 
0.62 0.63 0.64 0.64 0.69 0.70 0.70 0.72 0.74 0.76 

NTU RGB-D 0.61 0.63 0.65 0.68 0.70 0.72 0.73 0.75 0.77 0.80 

SBU Kinect 

Interaction 
0.61 0.62 0.63 0.63 0.64 0.65 0.69 0.71 0.73 0.75 

KLYoga3D 0.61 0.62 0.64 0.66 0.68 0.69 0.70 0.72 0.74 0.76 
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ion 
0.61 0.63 0.64 0.64 0.68 0.68 0.69 0.73 0.75 0.76 
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KLEF3DSL_2
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0.68 0.68 0.69 0.69 0.74 0.75 0.75 0.76 0.77 0.79 

NTU RGB-D 0.67 0.69 0.70 0.73 0.75 0.78 0.79 0.79 0.81 0.83 

SBU Kinect 

Interaction 
0.66 0.68 0.69 0.69 0.70 0.71 0.74 0.75 0.76 0.78 

KLYoga3D 0.67 0.68 0.69 0.71 0.73 0.74 0.75 0.76 0.78 0.80 
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0.67 0.69 0.69 0.70 0.73 0.74 0.75 0.76 0.79 0.80 
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0.65 0.65 0.66 0.66 0.71 0.73 0.73 0.73 0.75 0.77 

NTU RGB-D 0.64 0.66 0.67 0.70 0.72 0.75 0.76 0.76 0.78 0.81 
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SBU Kinect 
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NTU RGB-D 0.62 0.64 0.65 0.68 0.70 0.73 0.74 0.76 0.78 0.80 

SBU Kinect 

Interaction 
0.61 0.63 0.64 0.63 0.65 0.66 0.69 0.72 0.73 0.75 

KLYoga3D 0.61 0.63 0.64 0.66 0.68 0.69 0.70 0.73 0.75 0.77 
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KLEF3DSL_2
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0.82 0.83 0.88 0.90 0.93 0.78 

NTU RGB-D 0.85 0.87 0.90 0.91 0.95 0.80 

SBU Kinect 

Interaction 
0.82 0.84 0.88 0.90 0.93 0.77 

KLYoga3D 0.83 0.85 0.86 0.89 0.93 0.78 
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G
o

o
g

le
N

et
 

KLEF3DSL_2
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SBU Kinect 

Interaction 
0.79 0.83 0.86 0.88 0.91 0.74 
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KL3D_MVact
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Figure. 7 One – to – one performance of view specific features extracted from different layers on view invariant trained 

Inception – V4 classifier for all skeletal video datasets 

 

layers as mc3, mc6 and mc9. Markedly, the previous 

experiments considered the feature after the second 

dense layer, which will be called as d2. The features 

from mc3, mc6 and mc9 are multi-dimensional with,  

126 × 126 × 32 , 61 × 61 × 64 and 15 × 15 ×
128respectively. Eventually, the entire feature set is 

considered for training the DTED feature generators. 

The obtained view invariant features from these 

layers were used for classification. Here, we evaluate 

these intermediate layered features on Inception – V4 

model classifier for its highest 10-fold mRA for the 

features in layer d2 on all datasets. The one – to – one 

evaluation is adopted where the inception – V4 is 

trained with view invariant features obtained from 

DTED and tested with view specific features in all 

views. The hyper parameters for training on each of 

these layered features are kept constant, except for 

the number of training epochs. Customarily, as the 

learning rate was kept constant at 0.0001 for all 

layered features, it becomes inevitable to train the 

network for more iterations. Therefore, the number of 

epochs were selected based on the input size and the 

maximum number of iterations was 650 for mc6 with 

maximum input size. The results of this experiment 

are shown in Fig. 7.  

The results show that the mc3 features performed 

poorly over features from other layers. Because the 

features in mc3 have less overall information to 

characterize a particular object in the video frame 

when compared the deeper layers. Overall, we can 

observe that the d2 layer features have produced the 

highest recognition accuracies across all datasets. 

This is evidenced by the fact that the d2 features 

consists of comprehensive information about the 

structure of skeletal data in a video frame in 

comparison to features across other layers. Despite 

high performance of the proposed DTED in 

generating view invariant features, it would be 

interesting to find their usefulness against the 

previously proposed state – of – the – arts such as 

self-similarity matrix (SSM) [23] and sample affinity 

matrix (SAM) [24].  

4.5 Evaluations compared to view invariant 

production techniques 

The previous models SSM [23] and SAM [24] are 

designed with objective functions that require precise 

control on hyperparameters for maximizing the 

performance of the classifier. Though the proposed 

work has three independent deep learning models to 

be trained and inferenced for classification, it is free 

from those independently selectable hyperparameters. 

Table 3 presents the results of SSM and SAM along 

with our proposed DTED model on benchmark 

datasets.  

The results in Table 3 were averaged across views for 

estimating the performance of these methods. 

Interestingly, the SSM has performed weakly against 

the SAM and DTED methods. The reason being that 

the SMM does not consider the relationships among 

views between classes to build view invariant 

features. Even though, SAM considers both within 

class between view and within view between class 

relationships, it is built on optimization platform with 

multiple regularization terms. Obviously, it has 

become difficult to predict the hyper parameters of 

regularizers, especially for skeletal sign language 

data. The concept of SAM was adopted in our work,  
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Table 3. Evaluation of the proposed view invariant feature generator DTED against two most efficient methods SSM, 

SAM and temporal self similarities 
M

u
lt

i 
V

ie
w

 

A
lg

o
ri

th
m

s Classifiers Tiny VGG – 16 Inception - V4 GoogleNet ResNet – 50  

Train Test 

Methods One – 

to – one 

Many – 

to – one  

One – 

to – one 

Many – 

to – one  

One – 

to – one 

Many – 

to – one  

One – 

to – one 

Many – 

to – one  
Datasets 

S
S

M
 [

3
1

] 

KLEF3DSL

_2Dskeletal 
0.58 0.68 0.65 0.77 0.58 0.73 0.62 0.72 

NTU  

RGB-D 
0.61 0.77 0.68 0.81 0.66 0.79 0.65 0.77 

SBU Kinect 

Interaction 
0.56 0.71 0.63 0.73 0.60 0.70 0.61 0.70 

KLYoga3D 0.61 0.75 0.69 0.83 0.67 0.80 0.67 0.78 

KL3D_ 

MVaction 
0.59 0.71 0.67 0.77 0.64 0.76 0.64 0.75 

S
A

M
 [

3
2

] 

KLEF3DSL

_2Dskeletal 
0.68 0.77 0.73 0.87 0.68 0.81 0.72 0.82 

NTU  

RGB-D 
0.71 0.87 0.78 0.91 0.75 0.89 0.75 0.87 

SBU Kinect 

Interaction 
0.66 0.81 0.73 0.82 0.70 0.80 0.70 0.80 

KLYoga3D 0.71 0.85 0.79 0.93 0.77 0.90 0.76 0.88 

KL3D_ 

MVaction 
0.69 0.80 0.76 0.86 0.74 0.85 0.74 0.85 

T
em

p
o

ra
l 

se
lf

-s
im

il
ar

it
ie

s 

[2
1

] 

KLEF3DSL

_2Dskeletal 
0.60 0.73 0.65 0.80 0.61 0.73 0.62 0.73 

NTU  

RGB-D 
0.64 0.76 0.68 0.82 0.65 0.79 0.65 0.77 

SBU Kinect 

Interaction 
0.58 0.71 0.63 0.73 0.61 0.71 0.60 0.70 

KLYoga3D 0.65 0.75 0.69 0.83 0.67 0.81 0.66 0.78 

KL3D_ 

MVaction 
0.63 0.71 0.66 0.78 0.64 0.76 0.64 0.75 

D
T

E
D

 P
ro

p
o

se
d

 

KLEF3DSL

_2Dskeletal 
0.72 0.85 0.77 0.92 0.73 0.85 0.74 0.85 

NTU  

RGB-D 
0.76 0.88 0.79 0.94 0.77 0.91 0.77 0.89 

SBU Kinect 

Interaction 
0.70 0.83 0.75 0.85 0.73 0.83 0.72 0.82 

KLYoga3D 0.77 0.87 0.81 0.95 0.79 0.93 0.78 0.90 

KL3D_ 

MVaction 
0.75 0.82 0.78 0.90 0.76 0.87 0.76 0.87 

 

except for the fact that the view invariant features 

were learned using triplet loss embedding between 

within class views and across class views by 

eliminating the dependencies. More importantly, the 

generated view invariant features have shown highest 

recognition accuracies on complicated skeletal video 

datasets. Further, we evaluated our spatio temporal 

representation of features against temporal self-

similarities method [21] for view invariance. 

However, the self-similarities in temporal domain 

have lost the overall appearance information in the 

skeletal frames resulting in weakly modelled features. 

4.6 Validation of DTED against state – of – the – 

arts 

Chronological validation of the DTED is 

presented by judging it with state – of – the – art 

view invariant methods. The techniques 

preferred for evaluation have employed various  
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Table 4. Comparison between several view-based identification techniques 

    V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 
N

T
U

 R
G

B
+

D
 

[16] 0.65 0.63 0.62 0.65 0.69 0.70 0.62 0.59 0.64 0.61 

[17] 0.66 0.64 0.63 0.66 0.70 0.71 0.63 0.60 0.65 0.62 

[18] 0.63 0.61 0.60 0.63 0.67 0.68 0.60 0.57 0.62 0.59 

[19] 0.66 0.64 0.62 0.66 0.69 0.71 0.62 0.60 0.65 0.62 

[21] 0.63 0.61 0.60 0.63 0.67 0.68 0.60 0.57 0.62 0.60 

[26] 0.67 0.65 0.63 0.67 0.70 0.72 0.63 0.61 0.66 0.63 

[33] 0.64 0.69 0.70 0.68 0.74 0.69 0.66 0.66 0.66 0.69 

ours 0.77 0.82 0.83 0.81 0.86 0.81 0.79 0.79 0.79 0.81 

S
B

U
 K

in
ec

t 
In

te
ra

ct
io

n
 

[16] 0.67 0.65 0.64 0.67 0.71 0.72 0.64 0.61 0.67 0.64 

[17] 0.67 0.65 0.64 0.67 0.71 0.72 0.64 0.61 0.66 0.63 

[18] 0.68 0.66 0.65 0.68 0.72 0.73 0.65 0.62 0.67 0.64 

[19] 0.65 0.63 0.62 0.65 0.69 0.70 0.62 0.59 0.64 0.61 

[21] 0.68 0.66 0.64 0.68 0.71 0.73 0.64 0.62 0.67 0.64 

[26] 0.65 0.63 0.62 0.65 0.69 0.70 0.62 0.59 0.64 0.62 

[33] 0.66 0.71 0.72 0.70 0.76 0.70 0.68 0.68 0.68 0.70 

Ours 0.77 0.78 0.78 0.79 0.77 0.78 0.78 0.72 0.72 0.69 

K
L

Y
o

g
a3

D
 

[16] 0.69 0.67 0.65 0.69 0.72 0.74 0.65 0.63 0.68 0.65 

[17] 0.69 0.67 0.66 0.69 0.73 0.74 0.66 0.63 0.69 0.66 

[18] 0.68 0.66 0.65 0.68 0.72 0.73 0.65 0.62 0.67 0.64 

[19] 0.69 0.67 0.66 0.69 0.73 0.74 0.66 0.63 0.68 0.65 

[21] 0.66 0.64 0.63 0.66 0.70 0.71 0.63 0.60 0.65 0.62 

[26] 0.69 0.67 0.65 0.69 0.72 0.74 0.65 0.63 0.68 0.65 

[33] 0.68 0.73 0.74 0.72 0.78 0.72 0.70 0.70 0.70 0.72 

Ours 0.81 0.82 0.85 0.84 0.89 0.84 0.83 0.78 0.79 0.82 

K
L

3
D

_
M

V
ac

ti
o

n
 

[16] 0.66 0.64 0.63 0.66 0.70 0.71 0.63 0.60 0.65 0.63 

[17] 0.70 0.68 0.66 0.70 0.73 0.75 0.66 0.64 0.69 0.66 

[18] 0.70 0.68 0.67 0.70 0.74 0.75 0.67 0.64 0.70 0.67 

[19] 0.64 0.62 0.61 0.64 0.68 0.69 0.61 0.58 0.63 0.60 

[21] 0.65 0.63 0.62 0.65 0.69 0.70 0.62 0.59 0.64 0.61 

[26] 0.62 0.60 0.59 0.62 0.66 0.67 0.59 0.56 0.61 0.58 

[33] 0.67 0.72 0.73 0.71 0.76 0.71 0.69 0.69 0.69 0.71 

Ours 0.81 0.79 0.79 0.82 0.80 0.78 0.80 0.76 0.75 0.75 

K
L

E
F

3
D

S
L

_
2

D
sk

el
et

al
 

[16] 0.65 0.63 0.61 0.65 0.68 0.70 0.61 0.59 0.64 0.61 

[17] 0.62 0.60 0.59 0.62 0.66 0.67 0.59 0.56 0.61 0.59 

[18] 0.66 0.64 0.62 0.66 0.69 0.71 0.62 0.60 0.65 0.62 

[19] 0.66 0.64 0.63 0.66 0.70 0.71 0.63 0.60 0.66 0.63 

[21] 0.63 0.61 0.59 0.63 0.66 0.68 0.59 0.57 0.62 0.59 

[26] 0.60 0.58 0.56 0.60 0.64 0.65 0.56 0.54 0.59 0.56 

[33] 0.66 0.71 0.72 0.70 0.75 0.70 0.68 0.68 0.68 0.70 

Ours 0.79 0.81 0.82 0.80 0.85 0.79 0.80 0.75 0.73 0.74 
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    V11 V12 V13 V14 V15 
Average 

mRA 

N
T

U
 R

G
B

+
D

 
[16] 0.62 0.61 0.62 0.65 0.61 0.63 

[17] 0.63 0.62 0.61 0.65 0.68 0.65 

[18] 0.60 0.59 0.58 0.62 0.65 0.62 

[19] 0.63 0.62 0.62 0.65 0.69 0.65 

[21] 0.60 0.59 0.62 0.66 0.69 0.63 

[26] 0.64 0.63 0.61 0.65 0.68 0.65 

[33] 0.66 0.67 0.73 0.67 0.72 0.68 

ours 0.78 0.80 0.85 0.79 0.85 0.81 

S
B

U
 K

in
ec

t 
In

te
ra

ct
io

n
 

[16] 0.64 0.63 0.62 0.66 0.69 0.66 

[17] 0.64 0.63 0.59 0.63 0.66 0.65 

[18] 0.65 0.64 0.62 0.66 0.69 0.66 

[19] 0.62 0.61 0.59 0.63 0.66 0.63 

[21] 0.65 0.64 0.63 0.66 0.70 0.66 

[26] 0.62 0.61 0.63 0.67 0.70 0.64 

[33] 0.67 0.69 0.74 0.68 0.74 0.70 

Ours 0.71 0.75 0.81 0.79 0.78 0.76 

K
L

Y
o

g
a3

D
 

[16] 0.66 0.65 0.57 0.61 0.64 0.66 

[17] 0.66 0.65 0.58 0.62 0.65 0.67 

[18] 0.65 0.64 0.55 0.59 0.62 0.65 

[19] 0.66 0.65 0.58 0.62 0.65 0.66 

[21] 0.63 0.62 0.55 0.59 0.62 0.63 

[26] 0.66 0.65 0.59 0.62 0.66 0.66 

[33] 0.69 0.71 0.76 0.70 0.76 0.72 

Ours 0.81 0.88 0.89 0.79 0.81 0.83 

K
L

3
D

_
M

V
ac

ti
o

n
 

[16] 0.63 0.62 0.59 0.63 0.66 0.64 

[17] 0.67 0.66 0.63 0.66 0.70 0.68 

[18] 0.67 0.66 0.63 0.67 0.70 0.68 

[19] 0.61 0.60 0.57 0.61 0.64 0.62 

[21] 0.62 0.61 0.58 0.62 0.65 0.63 

[26] 0.59 0.58 0.55 0.59 0.62 0.60 

[33] 0.68 0.70 0.75 0.69 0.75 0.71 

Ours 0.75 0.81 0.84 0.79 0.81 0.79 

K
L

E
F

3
D

S
L

_
2

D
sk

el
et

al
 

[16] 0.62 0.61 0.58 0.62 0.65 0.63 

[17] 0.59 0.58 0.55 0.59 0.62 0.60 

[18] 0.63 0.62 0.59 0.62 0.66 0.64 

[19] 0.63 0.62 0.59 0.63 0.66 0.64 

[21] 0.60 0.58 0.56 0.59 0.63 0.61 

[26] 0.57 0.56 0.53 0.57 0.60 0.58 

[33] 0.67 0.69 0.74 0.68 0.74 0.70 

Ours 0.74 0.82 0.85 0.78 0.81 0.79 
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kinds of learning algorithms for production and 

categorization of video views. Because the 

information employed in these techniques were 

distinct, we reconstructed these models from scratch 

as given in their corresponding scripts. All the 

experimentations were performed on the benchmark 

skeletal data utilized in this paper with one – to – one 

train – test design. We represented our finest outcome 

gained from inception V4 classifier in this 

comparison. Nevertheless, the hyper parameters for 

this comparison networks were implemented from 

our Inception V4. 

Based on the results in Table 4, the success of our 

DTED blended view feature generator when 

compared to previous models is threefold. One, the 

selection of feature representation as spatio temporal 

matrix as against either spatial or temporal in 

previous works. Two, the computation VCM which 

calculates the shared features across views and 

classes. Finally, the application of deep Triplet 

encoder decoder network to generate highly 

Discrimant view invariant features. 

5. Conclusions 

Exalting multi view skeletal sign language 

recognition to leverage the effects of view sensitivity 

during classification has been achieved. Accordingly, 

the VCM provided weighted relationships between 

shared features across views and class from 

automated view specific spatio temporal features. 

These shared features are grouped with view specific 

ones using triple loss embedding on deep triplet 

encoder decoder learning model. Eventually, a highly 

discriminative view invariant features were generated 

which can be applied independently for classification 

as against other previous models where these are 

mixed with view specific features. Undoubtedly, the 

classifiers performance has registered an upward 

improvement over similar methods.  
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