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Abstract: Order allocation problem is a crucial problem in the manufacturing system. Many studies have been carried 

out to overcome this problem. On the other hand, future studies related to this problem are still available due to its 

complexity, circumstance, and methods. This work develops a new metaheuristic called a multiple interaction 

optimizer (MIO). MIO has distinct mechanics in finding the optimal solution. MIO consists of two phases. In the first 

phase, each agent interacts with some randomly selected agents in the population. The guided search is conducted in 

every interaction. In the second phase, each agent carries out a local search which linearly reduces the search space 

during the iteration. Three tests are carried out on the performance of MIO. In the first test, the MIO is challenged to 

solve 23 functions. The second test is performed as the investigation of the hyper parameters. In the third test, MIO is 

challenged to solve the order allocation problem with the objective is minimizing the total cost, total lateness, and total 

defect. In this test, MIO is benchmarked with five metaheuristics: particle swarm optimization (PSO), marine predator 

algorithm (MPA), grey wolf optimizer (GWO), slime mould algorithm (SMA), and golden search optimizer (GSO). 

The result indicates that MIO is superior in solving both 23 functions and order allocation problems. In the theoretical 

test, MIO outperforms PSO, MPA, GWO, SMA, and GSO in 22, 21, 22, 19, and 18 functions respectively. MIO is 

also superior in achieving minimum cost, minimum lateness, and minimum total defect in solving order allocation 

problems. 
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1. Introduction 

Order allocation is a crucial part of the 

manufacturing system. This process consists of 

selecting the supplier and determining the requested 

quantity [1]. This process becomes the first step in 

affecting the production cost and quality of service. In 

general, three main aspects are considered when 

ordering raw materials, i.e., quality, cost, and time. 

Any companies, especially manufacturers should 

make orders to any suppliers who can deliver the best 

raw materials in the combination of the aspects. The 

worse quality or higher number of defects in the raw 

material may reduce the quantity and quality of the 

finished product. The purchasing cost affects the 

production cost directly [2]. Higher purchasing cost 

leads to an increase in production cost and a decrease 

in profit. Meanwhile, tardiness of the incoming raw 

material may lead to tardiness in the finished product, 

and it can decrease the company’s quality of service. 

Order allocation problems and supplier selection also 

become an integral part of supply chain management 

[3]. Meanwhile, order allocation becomes more 

difficult due to the uncertainty because the incoming 

customers’ request is also uncertain [4]. 

Nowadays, there are many studies concerning the 

order allocation problem. This enormous number of 

works comes from the enormous circumstances faced 

in the order allocation problem. Meanwhile, there are 

several common objectives in order allocation or 

supplier selection, such as maximizing profit [5] or 

minimizing total cost [2]. Besides, there are many 

considerations taken by any companies in selecting 

suppliers or determining order quantity, such as price 

[6], lead time [7], location [8], responsiveness [9], 

flexibility [10], long term relationship [11], and many 

more. Many studies on the supplier selection or order 
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allocation problem utilized metaheuristic methods, 

such as genetic algorithm (GA) [2], grey wolf 

optimizer (GWO) [1], teaching learning-based 

optimizer (TLBO) [12], and so on. 

Many studies in operational research, especially in 

the manufacturing system, used metaheuristic 

methods for the optimization process. The popularity 

of metaheuristics is related to its advantage as a 

stochastic method. Metaheuristic does not trace all 

possible solutions within the space so that it can tackle 

the computational resource limitation [13]. In the 

beginning, metaheuristic starts with a randomized 

solution. Then, the solution is improved during the 

iteration. This advantage comes with the consequence 

that metaheuristic does not guarantee to find the 

global optimal solution [13]. The second advantage is 

that metaheuristics can be implemented in any 

optimization problem if the objective and constraints 

of the problem are well-defined. 

The popularity of metaheuristics also comes from 

the existence of an enormous number of 

metaheuristics, especially the swarm-based 

metaheuristics. It is easy to find any studies related to 

the optimization problem in the manufacturing system 

that utilized metaheuristics, such as in flow-shop 

scheduling [14], parallel machine scheduling [15], 

and so on. Meanwhile, there is a lot of new swarm-

based metaheuristics proposed in the shortcoming 

years. Some metaheuristics adopt the behavior of 

animals during mating or foraging, such as the marine 

predator algorithm (MPA) [16], slime mould 

algorithm (SMA) [17], Komodo mlipir algorithm 

(KMA) [18], red deer algorithm (RDA) [19], 

stochastic Komodo algorithm (SKA) [20], pelican 

optimization algorithm (POA) [21], northern 

goshawk optimizer (NGO) [22], butterfly 

optimization algorithm (BOA) [23], and so on. Some 

metaheuristics adopt the mechanics of human 

activities, such as driving training-based optimizer 

(DTBO) [24], modified social forces algorithm 

(MSFA) [25], chef-based optimization algorithm 

(CBOA) [26], and so on. Some metaheuristics adopt 

the term leader that represents the mechanism of the 

guided search, such as hybrid leader-based optimizer 

(HLBO) [27], multi leader optimizer (MLO) [28], 

mixed leader-based optimizer (MLBO) [29], and so 

on. Some metaheuristics do not use metaphors and 

their name represent the main concept of their 

mechanics, such as average subtraction-based 

optimizer (ASBO) [30] and golden search optimizer 

(GSO) [31]. 

The explosive development of metaheuristics can 

be linked to the no-free-lunch theory and the nature of 

the stochastic approach. The no-free-lunch theory 

states that there is not any method that is suitable to 

solve all problems. Meanwhile, the performance of 

any method also depends on the problem to solve. 

Some metaheuristics may be good to solve some 

problems but perform poorly when solving other 

problems. For example, some algorithms may be 

better to solve unimodal problems while others are 

better at solving multimodal problems. A 

metaheuristic may perform well in solving problems 

with low dimensions or narrow search space, but it 

performs poorly in solving problems with high 

dimensions or large search space. 

Even though a lot of swarm-based metaheuristics 

already exist, in most of them, each agent carries out 

only a single movement in the guided search. 

Metaheuristic with multiple agent movements in the 

guided search phase is rare to find. Moreover, 

operational research is not commonly implemented in 

the first introduction of many metaheuristics. Most of 

the studies proposing a new metaheuristic used the 

engineering problem for the practical case. Based on 

this circumstance, proposing a new swarm-based 

metaheuristic using an order allocation problem for its 

practical problem is still available. 

This work aims to propose a new metaheuristic 

specially to solve the order allocation problem. The 

proposed metaheuristic is developed based on swarm 

intelligence in which the system consists of a 

population trying to find the optimal solution 

autonomously. Meanwhile, the agents interact with 

each other to improve the optimization process. The 

proposed metaheuristic is called a multiple interaction 

optimizer (MIO). Its novel mechanics is that each 

agent carries out multiple interactions, and each 

interaction is followed by the guided search. In most 

metaheuristics, each agent carries out only a single 

guided search in every iteration. Another contribution 

of this work is adopting the order allocation problem 

as an integer-based practical problem in the 

introduction of a new metaheuristic. 

The remainder of this paper is constructed as 

follows. The literature regarding the order allocation 

problem and metaheuristic development is reviewed 

in the second section. A detailed explanation of the 

proposed metaheuristic is presented in the third 

section. The fourth section presents the carried-out 

test to evaluate the performance of MIO and its result. 

The fifth section discusses the in-depth analysis of the 

result, the relation between the test result and the 

theory, and the limitation. In the end, the sixth section 

summarizes the conclusion and the future research 

potential. 
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Table 1. Comparison among shortcoming metaheuristics and their practical problems in their first introduction 

Metaheuristic Ref. for guided search Phases Practical Problem Reference 

GSO Best solution 1 - [31] 

ASBO Best solution, worst solution 3 - [30] 

DTBO Randomly selected solution 3 Pressure vessel design, welded beam 

design 

[24] 

SMA Best solution, two randomly 

selected solutions 

1 Welded beam structure problem, 

pressure vessel structure problem, 

cantilever structure problem, I-beam 

structure problem 

[17] 

NGO Randomly selected solution 2 Pressure vessel, welded beam, 

tension/compression spring, speed 

reducer 

[22] 

BOA Best solution, two randomly 

selected solutions 

1 Spring design, welded beam design, 

and gear train design 

[23] 

MLBO Best solution, randomly 

selected solution 

1 - [29] 

MLO Several best solutions 2 - [28] 

HLBO Best solution, randomly 

selected solution 

2 - [27] 

POA Random solution within the 

search space 

2 Pressure vessel, speed reducer, 

welded beam, spring 

[21] 

MPA Local best solution, two 

randomly selected solution 

2 Pressure vessel, welded beam, 

spring, fan scheduler, building 

design 

[16] 

MSFA Randomly solution within the 

search space 

1 - [25] 

KMA Best solution, several best 

solutions 

1 - [18] 

 

2. Related works 

Many swarm-based metaheuristics adopt the 

mechanics of animals during searching for food or 

mating. Searching for an optimal solution has 

similarities to searching for food. From the agent’s 

perspective, the location of the solution is unknown so 

the agent should trace the location based on the 

limited information in the most effective way. In 

swarm intelligence, there is interaction, i.e., 

information sharing among agents so that the 

objective can be achieved faster. Many stochastic 

approaches can be explored in the exploration and 

exploitation strategy carried out in any metaheuristic. 

Many metaheuristics utilize uniform distribution 

while other metaheuristics use normal distribution 

[20], Brownian movement [16], Levy movement [16], 

sinusoid distribution, and so on. Many metaheuristics 

utilize the best solution or some best solutions as a 

reference for their guided search. Meanwhile, some 

metaheuristics choose random selected solutions as 

the reference for their guided search. Some swarm 

intelligence-based metaheuristics consists of only 

single phase that combines the guided search and the 

random search. On the other hand, some other 

metaheuristics separates the guided search and 

random search so that there are multiple phases 

carried out by every agent in every iteration.  

Guided search is a searching mechanism carried 

out by an agent with a reference representing the 

target. Some metaheuristic implements single 

possible direction while some others implement two 

possible directions. In the single-direction approach, 

the agent moves toward the reference. This approach 

is usually implemented in metaheuristics where the 

reference is the best solution, local best solution, or 

several best solutions. It can be seen in metaheuristics, 

such as GWO [32], BOA [23], and GSO [31]. In the 

two possible direction approach, the agent may move 

closer to the reference or move away from the 

reference. This approach is usually implemented in 

metaheuristics where the reference is a randomly 

selected agent or some randomly selected agents. It 

can be seen in metaheuristics, such as POA [27], NGO 

[22], and ASBO [30]. If the reference is better than the 

agent, then the agent moves toward the reference. 

Otherwise, the agent moves away from the reference. 

Below are the shortcoming metaheuristics including 

the basic concept and the practical problems used in 

their first introduction. 

Table 1 indicates that there are many strategies can 

be taken to propose a new metaheuristic. The first part 

is determining the reference for the guided search. The 
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second part is determining the number of phases taken 

by each agent in every iteration. Besides, two more 

methods can be used in proposing a new metaheuristic. 

The first one is determining the random number 

calculation used in the proposed metaheuristic, 

whether it follows a uniform distribution, normal 

distribution, Brownian movement, and so on. The 

second one is determining the formulae in the 

interaction between the corresponding agent with its 

reference and in the mechanism carried out in the local 

search. Moreover, almost all metaheuristics 

implement single movement in the guided search. It 

means that proposing a new metaheuristic where an 

agent carries out multiple movements during the 

guided search is interesting. 

Table 1 also indicates that the practical problems 

used in many existing studies proposing new 

metaheuristics are mechanical engineering problems. 

Most of them are pressure vessels, welded beams, and 

springs. All these problems are floating point-based 

problems. Ironically, studies proposing a new 

metaheuristic that use operational research problem, 

such as the order allocation problem is rare to find. 

Meanwhile, many problems in the operational 

research are presented in the integer-based parameters. 

On the other hand, many metaheuristics were not 

tested to solve practical problems in their first 

introduction although the existence of practical 

problem tests is important. Based on this circumstance, 

proposing a new metaheuristic that uses the order 

allocation problem as the practical problem becomes 

a novel contribution. 

3. Model 

MIO consists of several agents that represent the 

solutions. These agents search autonomously within 

the search space to find the optimal solution. Each 

agent carries out two phases in every iteration. The 

first iteration is the guided search while the second 

phase is the local search. The guided search is 

designed to improve the current solution while the 

local search is designed to tackle the local optimal 

problem. MIO adopts a strict acceptance-rejection 

approach. This approach is implemented in both 

guided search and local search. 

The novel mechanism of MIO is that each agent 

interacts with multiple other agents in the population 

in the first phase. These other agents can be called 

partners. These partners are selected randomly among 

the population. There is a possibility that an agent 

selects the same partner more than once in a single 

iteration because the selection is carried out randomly 

and there is no checking activity. Each time an agent  

 

 
(a) 

 
(b) 

Figure. 1 Guided search: (a) movement toward the 

partner, and (b) movement toward the agent 

 

interacts with a partner, the agent carries out a guided 

search or movement. The number of interactions in 

every iteration is set manually before the optimization 

runs. This mechanism means that the number of 

guided searches is linear to the number of interactions. 

It is different from many other metaheuristics which 

consider multiple agents but conduct a single search. 

There are two possible directions regarding this 

guided search. Each search generates a candidate. If 

the agent is better than its partner, then the search is 

carried out by the movement from the agent toward or 

surpasses its partner. On the other hand, if the agent is 

not better than its partner, then the search is carried 

out by the partner toward or surpasses the agent. This 

movement is illustrated in Fig. 1.  

Fig. 1 (a) represents the movement toward the 

partner while Fig. 1 (b) represents the movement 

toward the agent. This strategy reasons that the 

candidate is designed to improve the current solution. 

When the partner is better than the agent then the 

probability that the better solution is near the partner 

is higher than near the agent. Surpassing the partner 

is designed to find a better solution than the partner. 

The same reason is also applied when the agent is 

better than its partner. 

In MIO, each agent carries out two phases in every 

iteration. The first phase is the guided search 

presented previously. The second phase is the local 

search. In the local search, an agent searches for a  
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algorithm 1: multiple interaction optimizer 

1 determine ni using (1) 

2 for s in S 

3   initiate s using (2) 

4   update sbest using (3) 

5 end for 

6 for t=1 to tmax 

7   for s in S 

8     for i=1 to ni 

9       find st using (4) 

10       conduct guided search using (5) and 

(6) 

11       update sbest using (3) 

12     end for 

13     conduct local search using (7) and (8) 

14     update sbest using (3) 

15   end for 

16 end for 

17 return sbest 

 

bl lower boundary 

bu upper boundary 

f fitness function 

n set size 

ni number of interactions 

ri interaction ratio 

r1 uniform real random number between 0 

and 1 

r2 uniform integer random number between 

1 and 2 

r3 uniform real random number between -1 

and 1 

s solution 

S set of solution 

sbest best solution 

sg guided search-based solution 

sl local search-based solution 

st selected solution 

t iteration 

tmax maximum iteration 

U uniform random 

 

new solution within its local search space. In the 

beginning, the local search space width is twice as big 

as half of the search space. Then, this local search 

space width declines linearly due to the increase in 

iteration. At the end of the iteration, the local search 

space width is zero. The wide local search space in 

the early iteration is to accommodate more 

exploration and find the area of the global optimal 

solution as early as possible. 

The formalization of MIO is presented in 

Algorithm 1. The annotations used in this work can 

be seen below. 

The explanation of algorithm 1 is as follows. MIO 

can be divided into two parts: the initialization and 

iteration. Lines 2 to 5 represent the initialization. 

Meanwhile, lines 6 to 16 represent the iteration. The 

best solution becomes the final solution. The 

initialization consists of single loop. Meanwhile, the 

iteration consists of three loops. The outer loop 

represents the iteration from the first iteration to the 

maximum iteration. The middle loop represents the 

searching carried out by every agent. The inner loop 

represents the number of iterations carried out by 

every agent. Lines 8 to 12 represent the guided search 

while lines 13 and 14 represent the local search. The 

mathematical model used in MIO can be seen in Eq. 

(1) to Eq. (8). 
 

𝑛𝑖 = 𝑓. 𝑛(𝑆)    (1) 

 

𝑠 = 𝑈(𝑏𝑙 , 𝑏𝑢)   (2) 

 

𝑠𝑏𝑒𝑠𝑡
′ = {

𝑠, 𝑓(𝑠) < 𝑓(𝑠𝑏𝑒𝑠𝑡)

𝑠𝑏𝑒𝑠𝑡 , 𝑒𝑙𝑠𝑒
   (3) 

 

𝑠𝑡 = 𝑈(𝑆)     (4) 

 

𝑠𝑔 = {
𝑠 + 𝑟1(𝑠𝑡 − 𝑟2. 𝑠), 𝑓(𝑠𝑡) < 𝑓(𝑠)

𝑠𝑡 + 𝑟1(𝑠 − 𝑟2. 𝑠𝑡), 𝑒𝑙𝑠𝑒
 (5) 

 

𝑠′ = {
𝑠𝑔 , 𝑓(𝑠𝑔) < 𝑓(𝑠)

𝑠, 𝑒𝑙𝑠𝑒
   (6) 

 

𝑠𝑙 = 𝑠 + (1 −
𝑡

𝑡𝑚
) (

𝑟3(𝑏𝑢−𝑏𝑙)

2
)   (7) 

 

𝑠′ = {
𝑠𝑙 , 𝑓(𝑠𝑙) < 𝑓(𝑠)

𝑠, 𝑒𝑙𝑠𝑒
   (8) 

 

The explanation of Eq. (1) to Eq. (8) is as follows. 

Eq. (1) is used to determine the number of iterations 

carried out by each agent and it is the fraction of the 

population. Eq. (2) states that the initial solution is 

generated uniformly within the solution space. Eq. (3) 

states that the current solution replaces the best 

solution only if it is better than the best solution. Eq. 

(4) states that the partner is selected uniformly among 

the population. Eq. (5) states that the direction of the 

guided search depends on the quality of the agent 

compared to its partner. Eq. (6) states that the guided 

search candidate replaces the current solution only if 

it is better than the current solution. Eq. (7) states that 

the local search solution is randomly selected within 

the local search space and the local search space width 

declines linearly due to the iteration. Eq. (8) states that 

the local search candidate replaces the current solution 

only if it is better than the current solution. Eq. (6) and 
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Eq. (8) represent the strict acceptance-rejection 

strategy. 

4. Simulation and result 

The proposed MIO is tested to solve both the 

theoretical problem and the practical problem. The 23 

functions represent the theoretical optimization 

problem. These functions can be clustered into three 

groups: (1) seven high-dimension unimodal functions, 

(2) six high-dimension multimodal functions, and (3) 

fixed-dimension multimodal functions. Meanwhile, 

the order allocation problem represents the practical 

problem. The 23 functions are popular due to their 

coverage of any problems in the optimization work. 

They cover problems from a very narrow space to a 

very large. They also cover problems from the easiest 

ones to very difficult ones to solve. Some functions 

are very smooth and non-ambiguous so that the area 

of the global optimal is easy to find. Meanwhile, some 

functions are wavy or flat with a very narrow area of 

the global optimal. It makes many metaheuristics 

reach their convergence without finding the area of 

the global optimal. The detail description of the 23 

functions can be seen in Table 2. 

In this test, MIO is benchmarked with five 

metaheuristics: PSO, MPA, GWO, SMA, and GSO. 

PSO is the early version of swarm intelligence-based 

metaheuristic [34]. It is proven to be used in many 

studies solving the optimization problem in the 

manufacturing system. GWO represents a new well-

known metaheuristic. GWO is also implemented in 

many works in the manufacturing system. MPA and 

SMA are new metaheuristics developed in recent 

years. GSO is the newest metaheuristic among these 

benchmark metaheuristics. 

The parameter setup in this test is as follows. The 

population size is 10 and the maximum iteration is 50. 

This setup makes challenges for the metaheuristics to 

solve the problems in the low iteration and low 

population. This setup is implemented in all 

metaheuristics. The dimension for the high-dimension 

functions is set to 30. In PSO, the weights are 0.1. In 

MPA, the fishing aggregate devices are set to 0.1. In 

MIO, the interaction ratio is 0.5. The result is 

presented in Table 3, Table 4, and Table 5. These 

tables present the average case, best case, and worst 

case respectively. The best result in the average case 

is written in bold font. Meanwhile, the superiority 

comparison in every function group is presented in 

Table 6. 

Table 3 indicates that MIO performs well in 

solving the 23 functions. It can find the global optimal 

of F9 and F11. Moreover, MIO is superior to other 

metaheuristics by creating the best result in 15 

functions. Among these 15 functions, six functions 

are high-dimension unimodal functions, five 

functions are high-dimension multimodal functions, 

and four functions are fixed-dimension multimodal 

functions. This result indicates that MIO is almost 

superior in solving the high dimension functions. On 

the other hand, MIO is not so superior in solving the 

fixed-dimension multimodal functions. 

Table 4 indicates that in general, these six 

metaheuristics can find the global optimal solution at 

its best case. It means that all these metaheuristics are 

good. The problem is in the average case and the worst 

case. In many runs, these metaheuristics create final 

solution that is too far from the acceptable solution. 

This condition makes the average cases of these 

metaheuristics, especially the benchmark 

metaheuristics are not so good so that these 

benchmark metaheuristics are outperformed by the 

proposed MIO. 

Table 6 strengthens the superiority of MIO among 

the benchmark metaheuristics. MIO is almost superior 

to PSO, MPA, and GWO by outperforming these 

three metaheuristics in almost all functions. The 

superiority of MIO to PSO, MPA, and GWO occurs 

in all groups of functions. On the other hand, MIO is 

very superior to SMA and GSO in the first and second 

groups and still superior in the third groups although 

its superiority is not so high as in the first and second 

groups. 

The second test is performed to investigate the 

hyper parameter of the proposed MIO. This test is 

aimed to evaluate which parameters have significant 

influence on the performance of MIO. In this test, the 

proposed MIO is also challenged to solve the 23 

functions as in the first test. There are three 

parameters includes the maximum iteration, 

population size, and interaction ratio. All these 

parameters are positive proportional to the 

complexity. In the first evaluation, there are two 

values of population size: 20 and 40. In the second 

evaluation, there are two values of maximum 

iteration: 40 and 80. In the third evaluation, there are 

two values of interaction ratio: 40 and 80. The result 

is presented Table 7, Table 8, and Table 9. 
Result in Table 7 indicates that only five functions 

where the quality of the solution can be improved 

significantly by the increasing of population size from 20 

to 40. Among these five functions, four functions are the 

high dimension unimodal functions, and one function is 

fixed dimension multimodal functions. Meanwhile there is 

not any high dimension multimodal function in which its 

solution is improved significantly by increasing the 

population size from 20 to 40. But there are six multimodal 

functions where their solution is not improved because the  

 

 



Received:  January 23, 2023.     Revised: February 8, 2023.                                                                                             446 

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023           DOI: 10.22266/ijies2023.0430.35 

 

Table 2. Detail description of 23 benchmark functions 

No Function Model Dim Space Target 

1 Sphere ∑ 𝑥𝑖
2𝑑

𝑖=1   30 [-100, 100] 0 

2 
Schwefel 

2.22 
∑ |𝑥𝑖|

𝑑
𝑖=1 + ∏ |𝑥𝑖|

𝑑
𝑖=1   

30 
[-100, 100] 0 

3 
Schwefel 

1.2 
∑ (∑ 𝑥𝑗

𝑖
𝑗=1 )

2𝑑
𝑖=1   

30 
[-100, 100] 0 

4 
Schwefel 

2.21 
max{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑑}  

30 
[-100, 100] 0 

5 Rosenbrock ∑ (100(𝑥𝑖+1 + 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2)𝑑−1

𝑖=1   30 [-30, 30] 0 

6 Step ∑ (𝑥𝑖 + 0.5)2𝑑−1
𝑖=1   30 [-100, 100] 0 

7 Quartic ∑ 𝑖𝑑
𝑖=1 𝑥𝑖

4 + 𝑟𝑎𝑛𝑑𝑜𝑚 [0,1]  30 [-1.28, 1.28] 0 

8 Schwefel ∑ −𝑥𝑖 sin(√|𝑥𝑖|)𝑑
𝑖=1   30 [-500, 500] -1.2569x104 

9 Ratsrigin 10𝑑 + ∑ (𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖))𝑑

𝑖=1   30 [-5.12, 5.12] 0 

10 Ackley 
−20 ⋅ 𝑒𝑥𝑝 (−0.2 ⋅ √

1

𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1 ) −

𝑒𝑥𝑝 (
1

𝑑
∑ cos 2𝜋𝑥𝑖

𝑑
𝑖=1 ) + 20 + 𝑒𝑥𝑝(1)  

30 

[-32, 32] 0 

11 Griewank 
1

4000
∑ 𝑥𝑖

2𝑑
𝑖=1 − ∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝑑

𝑖=1 +1 30 [-600, 600] 0 

12 Penalized 

𝜋

𝑑
{10 sin(𝜋𝑦1) + ∑ ((𝑦𝑖 − 1)2(1 +𝑑−1

𝑖=1

10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1))) + (𝑦𝑑 − 1)2} + ∑ 𝑢(𝑥𝑖 , 10,100,4)𝑑
𝑖=1   

30 

[-50, 50] 0 

13 Penalized 2 

0.1 {𝑠𝑖𝑛2(3𝜋𝑥1) + ∑ ((𝑥𝑖 − 1)2(1 +𝑑−1
𝑖=1

𝑠𝑖𝑛2(3𝜋𝑥𝑖+1))) + (𝑥𝑑 − 1)2(1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑑))} +

∑ 𝑢(𝑥𝑖 , 5,100,4)𝑑
𝑖=1   

30 

[-50, 50] 0 

14 
Shekel 

Foxholes 
(

1

500
+ ∑

1

𝑗+∑ (𝑥𝑖−𝑎𝑖𝑗)
62

𝑖=1

25
𝑗=1 )

−1

  2 [-65, 65] 1 

15 Kowalik ∑ (𝑎𝑖 −
𝑥1(𝑏𝑖

2+𝑏𝑖𝑥2)

𝑏𝑖
2+𝑏𝑖𝑥3+𝑥4

)
2

11
𝑖=1   4 [-5, 5] 0.0003 

16 
Six Hump 

Camel 
4𝑥1

2 − 2.1𝑥1
4 +

1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4  2 [-5, 5] -1.0316 

17 Branin 
(𝑥2 −

5.1

4𝜋2 𝑥1
2 +

5

𝜋
𝑥1 − 6)

2

+ 10 (1 −
1

8𝜋
) cos(𝑥1) +

10  
2 [-5, 5] 0.398 

18 
Goldstein-

Price 

(1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 +

6𝑥1𝑥2 + 3𝑥2
2)). (30 + (2𝑥1 − 3𝑥2)2(18 − 32𝑥1 +

12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2

2))  

2 [-2, 2] 3 

19 Hartman 3 − ∑ (𝑐𝑖𝑒𝑥𝑝 (− ∑ (𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

)𝑑
𝑗=1 ))4

𝑖=1   3 [1, 3] -3.86 

20 Hartman 6 − ∑ (𝑐𝑖𝑒𝑥𝑝 (− ∑ (𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

)𝑑
𝑗=1 ))4

𝑖=1   
6 

[0, 1] -3.32 

21 Shekel 5 − ∑ (∑ (𝑥𝑗 − 𝑐𝑗𝑖)
2

+ 𝛽𝑖
𝑑
𝑗=1 )

−1
5
𝑖=1   

4 [0, 10] -10.1532 

22 Shekel 7 − ∑ (∑ (𝑥𝑗 − 𝑐𝑗𝑖)
2

+ 𝛽𝑖
𝑑
𝑗=1 )

−1
7
𝑖=1   

4 [0, 10] -10.4028 

23 Shekel 10 − ∑ (∑ (𝑥𝑗 − 𝑐𝑗𝑖)
2

+ 𝛽𝑖
𝑑
𝑗=1 )

−1
10
𝑖=1    

4 [0, 10] -10.5363 

final solution is the global optimal solution or very 

close to the global optimal solution. This 

circumstance means that in general, high population 

size scenario does not improve the quality of the 

solution for multimodal functions. 

Result in Table 8 indicates that only five functions 

where the quality of the solution can be improved 

significantly by the increasing of maximum iteration 

from 40 to 80. All these five functions are high 

dimension unimodal functions. Meanwhile, there is 

not any multimodal functions where their solution is 

improved due to the increasing of maximum iteration 

from 40 to 80. Like in the previous test, there are six 

multimodal functions where the final solution is the  
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Table 3. Average case comparison in solving 23 functions 
Function Average Fitness Score 

PSO [34] MPA [16] GWO [32] SMA [17] GSO [31] MIO 

1 1.065x104 2.890x101 6.235x102 1.449x103 8.733x103 3.188x10-44 

2 0.0000 2.457x10-36 0.000 0.000 1.823x1037 6.110x10-259 

3 4.416x104 5.242x102 3.098x103 1.161x104 2.064x104 2.087x10-14 

4 3.961x101 3.948 1.744x101 1.323x101 3.260x101 2.805x10-19 

5 7.680x106 4.391x102 5.123x103 1.534x106 6.445x106 2.891x101 

6 9.795x103 2.866x101 4.904x102 1.391x103 8.909x103 5.466 

7 3.451 4.418x10-2 2.029 1.441x102 3.223 3.932x10-3 

8 -2.246x103 -2.896x103 -3.717x101 -6.722x103 -3.735x103 -2.536x103 

9 2.628x102 1.766x101 1.648 2.136x101 1.766x102 0.000 

10 1.492x101 1.313 1.114x101 6.437 1.785x101 3.997x10-15 

11 9.077x101 1.121 9.772x10-1 9.519 7.964x101 0.000 

12 2.153x106 1.913 1.219x105 2.845x104 1.307x106 6.882x10-1 

13 1.427x107 5.113 6.094x104 1.461x106 1.307x107 2.952 

14 9.555 9.131 2.513x101 4.306 9.222 5.341 

15 8.840x10-2 1.194x10-2 2.149x10-1 1.176x10-1 1.373x10-2 6.500x10-4 

16 -4.784x10-2 -9.824x10-1 -1.779x10-4 -3.935x10-2 -1.032 -1.030 

17 5.560x101 2.080 5.575x101 6.376x10-1 3.981x10-1 3.998x10-1 

18 5.995x102 1.990x101 5.776x102 1.550x101 3.001 3.009 

19 -1.258x10-3 -3.490 -2.350x10-3 -4.954x10-2 -4.474x10-2 -4.954x10-2 

20 -5.089x10-3 -1.583 -5.089x10-3 -1.163 -2.977 -3.168 

21 -2.731x10-1 -1.100 -2.731x10-1 -4.612 -5.483 -5.309 

22 -2.936x10-1 -1.072 -2.936x10-1 -5.304 -5.518 -5.587 

23 -3.217x10-1 -1.142 -3.217x10-1 -4.289 -4.900 -5.128 

 

 
Table 4. Best case comparison in solving 23 functions 

Function Best Fitness Score 

PSO [34] MPA [16] GWO [32] SMA [17] GSO [31] MIO 

1 7.061x103 2.699x10-1 2.395x10-4 8.665 3.000x103 4.402x10-48 

2 0.0000 0.000 0.000 0.000 0.000 0.000 

3 1.922x104 1.618x101 1.040x10-2 2.242x103 6.899x103 1.017x10-20 

4 2.987x101 3.045x10-1 2.823x10-2 0.000 2.449x101 2.018x10-20 

5 3.016x106 3.012x101 2.892x101 2.282x103 1.128x106 2.881x101 

6 5.162x103 7.640 6.509 1.325x101 4.172x103 4.979 

7 1.177 2.074x10-3 1.070x10-2 3.128x101 7.366x10-1 1.937x10-5 

8 -3.277x103 -3.734x103 -3.803x102 -8.008x103 -5.171x103 -3.277x103 

9 2.085x102 2.683x10-1 9.104 2.000 8.667x101 0.000 

10 1.324x101 3.690x10-1 2.544x10-3 3.082 1.304x101 3.997x10-15 

11 4.772x101 2.789x10-2 1.193x10-6 0.000 4.447x101 0.000 

12 2.739x105 1.116 1.108 2.479x10-1 1.375x102 4.332x10-1 

13 1.394x106 3.234 2.974 1.172x101 1.698x106 2.546 

14 2.012 3.806 1.267x101 9.980x10-1 1.992 0.998 

15 1.678x10-3 1.722x10-3 8.912x10-2 4.375x10-2 9.944x10-4 3.128x10-4 

16 -9.853x10-1 -1.030 -6.420x10-3 -5.740x10-1 -1.032 -1.032 

17 5.560x101 5.531x10-1 5.542x101 5.070x10-1 3.981x10-1 3.981x10-1 

18 5.918x102 3.448 4.338x101 3.000 3.000 3.000 

19 -1.617x10-2 -3.925 -1.997x10-2 -4.954x10-2 -4.954x10-2 -4.954x10-2 

20 -5.089x10-3 -2.584 -5.089x10-3 -2.714 -3.314 -3.310 

21 -2.731x10-1 -4.180 -2.731x10-1 -1.015x101 -1.014x101 -9.866 

22 -2.936x10-1 -1.807 -2.936x10-1 -1.040x101 -1.040x101 -9.220 

23 -3.217x10-1 -2.508 -3.217x10-1 -1.054x101 -1.054x101 -9.521 
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Table 5. Worst case comparison in solving 23 functions 
Function Worst Fitness Score 

PSO [34] MPA [16] GWO [32] SMA [17] GSO [31] MIO 

1 1.447x104 1.911x102 2.651x103 3.823x103 1.631x104 5.121x10-44 

2 0.0000 5.406x10-35 0.000 0.000 2.323x1038 1.939x10-172 

3 1.172x105 1.955x103 5.162x103 3.919x104 3.659x104 1.391x10-13 

4 5.611x101 1.034x101 1.000x102 3.700x101 4.230x101 1.122x10-18 

5 1.873x107 2.503x103 5.380x104 7.750x106 3.316x107 2.894x101 

6 1.455x104 1.061x102 3.294x103 4.237x103 1.640x104 5.905 

7 6.826 1.161x10-1 3.502x101 2.107x102 7.233 1.768x10-2 

8 -1.276x103 -2.237x103 2.658x101 5.700x101 -2.411x103 -1.820x103 

9 2.923x102 4.662x101 4.506x101 9.561 2.283x102 0.000 

10 1.672x101 3.902 8.930 3.606x101 2.004x101 3.997x10-15 

11 1.340x102 4.804 6.310 3.107x105 2.023x102 0.000 

12 1.319x107 3.216 2.538x106 2.845x104 1.434x107 9.303x10-1 

13 5.444x107 8.271 1.309x106 9.058x106 4.410x107 3.116 

14 3.591x101 1.267x101 2.867x102 1.267x101 1.645x101 9.234 

15 6.369x10-1 3.407x10-2 1.699 1.484x10-1 4.961x10-2 2.437x10-3 

16 7.380x10-5 -7.362x10-1 2.485x10-3 0.000 -1.032 -1.022 

17 5.568x101 6.078 5.773x101 6.438x10-1 3.981x10-1 4.045x10-1 

18 6.015x102 5.894x101 6.525x102 2.780x102 3.015 3.139 

19 -2.821x10-15 -2.659 -9.346x10-21 -4.954x10-2 -6.072x10-3 -4.954x10-2 

20 -5.089x10-3 -4.839x10-1 -5.089x10-3 -3.066x10--1 -2.289 -3.003 

21 -2.731x10-1 -4.533x10-1 -2.731x10-1 -8.809x10-1 -2.453 -1.860 

22 -2.936x10-1 -5.383x10-1 -2.936x10-1 -9.097x10-1 -2.723 -3.537 

23 -3.217x10-1 -6.899x10-1 -3.217x10-1 -9.487x10-1 -2.334 -2.444 

 
Table 6. Superiority of MIO based on the cluster of 

functions 
Cluster Number of functions where MIO is 

superior 

PSO 

[34] 

MPA 

[16] 

GWO 

[32] 

SMA 

[17] 

GSO 

[31] 

1 6 7 6 6 7 

2 6 5 6 5 5 

3 10 9 10 8 6 

Total 22 21 22 19 18 

 

global optimal solution or very close to the global 

optimal solution. 

Result in Table 9 indicates that only eight 

functions where the quality of the solution can be 

improved significantly by the increasing of interaction 

ratio from 0.2 (low interaction ratio) to 0.8 (high 

interaction ratio). Among these eight functions, five 

functions are high dimension unimodal functions, two 

functions are high dimension multimodal functions, 

and one function is fixed dimension multimodal 

function. Like in the previous test, there are six 

multimodal functions where the final solution is the 

global optimal solution or very close to the global 

optimal solution. 

In the third test, MIO is challenged to solve the 

order allocation problem. The scenario adopted from 

[2] represents a single customer, multiple vendors, 

and a single product. A manufacturer should make an  

 

Table 7. Relation between population size and average 

fitness score 
Function Average Fitness Score Significantly 

Improved? n(S) = 20 n(S) = 40 

1 8.014x10-77 3.349x10-132 yes 

2 0.000 0.000 no 

3 4.784x10-29 1.010x10-53 yes 

4 1.062x10-32 2.989x10-57 yes 

5 2.888x101 2.885x101 no 

6 4.823 4.365 no 

7 2.202x10-3 1.010x10-3 yes 

8 -2.682x103 -2.526x103 no 

9 0.000 0.000 no 

10 3.997x10-15 3.997x10-15 no 

11 0.000 0.000 no 

12 5.193x10-1 4.334x10-1 no 

13 2.838 2.695 no 

14 2.257 1.092 yes 

15 4.034x10-4 3.216x10-4 no 

16 -1.031 -1.031 no 

17 3.985x10-1 3.981x10-1 no 

18 3.003 3.000 no 

19 -4.954x10-2 -4.954x10-2 no 

20 -3.238 -3.275 no 

21 -5.075 -5.774 no 

22 -6.375 -6.505 no 

23 -5.695 -5.677 no 
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Table 8. Relation between maximum iteration and average 

fitness score 

Function 
Average Fitness Score Significantly 

Improved? tmax = 40 tmax = 80 

1 1.527x10-34 3.171x10-74 yes 

2 6.146x10-

168 

0.000 yes 

3 1.754x10-9 6.952x10-24 yes 

4 5.733x10-15 1.243x10-31 yes 

5 2.892x101 2.890x101 no 

6 5.289 5.310 no 

7 8.101x10-3 2.633x10-3 yes 

8 -2.376x103 -2.742x103 no 

9 0.000 0.000 no 

10 3.997x10-15 3.997x10-15 no 

11 0.000 0.000 no 

12 7.173x10-1 6.324x10-1 no 

13 2.976 2.892 no 

14 5.187 3.019 no 

15 5.437x10-4 4.541x10-4 no 

16 -1.030 -1.031 no 

17 3.996x10-1 3.991x10-1 no 

18 3.014 3.004 no 

19 -4.954x10-2 -4.954x10-2 no 

20 -3.105 -3.218 no 

21 -4.274 -5.760 no 

22 -5.065 -6.659 no 

23 -4.827 -5.596 no 

 

 

Table 9. Relation between interaction ratio and average 

fitness score 

Function 
Average Fitness Score Significantly 

Improved? ri = 0.2 ri = 0.8 

1 2.028x10-18 9.689x10-67 yes 

2 4.531x10-69 0.000 yes 

3 7.355x10-3 2.824x10-24 yes 

4 2.924x10-8 2.973x10-28 yes 

5 2.893x101 2.891x101 no 

6 5.533 5.090 no 

7 1.210x10-2 3.348x10-3 yes 

8 -2.551x103 -2.819x103 no 

9 0.000 0.000 no 

10 1.803x10-12 3.997x10-15 yes 

11 1.734x10-7 0.000 yes 

12 7.418x10-1 6.583x10-1 no 

13 3.059 2.856 no 

14 6.292 3.864 no 

15 2.143x10-3 5.444x10-4 yes 

16 -1.029 -1.030 no 

17 3.992x10-1 3.986x10-1 no 

18 3.023 3.006 no 

19 -4.954x10-2 -4.954x10-2 no 

20 -3.160 -3.189 no 

21 -4.028 -4.850 no 

22 -4.435 -5.215 no 

23 -4.079 -4.877 no 

 

Table 10. Performance of MIO in solving order allocation 

problem 

Metaheuristic 
Total 

Cost 

Total 

Late 
Total Defect 

PSO [34] 195.9 101.6 71.9 

MPA [16] 194.8 97.9 69.5 

GWO [32] 201.5 125.3 80.5 

SMA [17] 191.9 90.4 64.8 

GSO [31] 193.6 91.8 65.1 

MIO 191.7 90.2 64.1 

 

 

order of 2,000 components from six vendors. Each 

vendor has a minimum and maximum order quantity. 

It means that orders to a certain vendor should not 

below the minimum quantity but also should not 

surpass the minimum quantity. If the order is below 

the minimum quantity, then the corresponding 

vendor will reject it. On the other hand, if the order is 

above the maximum quantity, then the vendor will 

fail to fulfil it. Each vendor has its own cost which is 

different from others. Meanwhile, each vendor has its 

own defect ratio and late ratio.  

This third test consists of three subtests that 

represent different objectives. The objective of the 

first sub-test is to minimize the total cost. The 

objective of the second sub-test is to minimize the 

total number of products that come late. The 

objective of the third sub-test is to minimize the total 

number of defective products. This test can be seen 

as an integer-based optimization problem because the 

product quantity and cost are discrete and presented 

in integers. It is different from the first test where the 

solution space is presented in a floating-point number. 

The result is presented in Table 10. 

Table 10 indicates that MIO is superior to all 

benchmark metaheuristics in solving the order 

allocation problem. On the other hand, GWO 

becomes metaheuristic with poorest performance. 

Comparing between MIO and GWO, MIO creates 

4.8%, 2.8%, and 20.4% lower than GWO in total cost, 

total lateness, and total defect consecutively. 

Meanwhile, the gap between MIO and SMA is very 

near although MIO is still better. MIO creates 0.1%, 

0.2%, and 1.1% lower than SMA in total cost, total 

lateness, and total defect. 

5. Discussion 

In general, the test result indicates that MIO 

performs well and is competitive as a swarm 

intelligence-based metaheuristic. This statement is 

supported by several test results. First, MIO can find 

an acceptable solution in both 23 functions and the 

order allocation problem. Moreover, MIO can find 

the global optimal solution of F9 and F11. MIO is 
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superior to all benchmark metaheuristics by 

outperforming PSO, MPA, GWO, SMA, and GSO in 

22, 21, 22, 19, and 18 functions consecutively. 

Meanwhile, MIO becomes the best metaheuristic for 

solving the order allocation problem. MIO is superior 

to PSO, MPA, and GWO in all groups of functions. 

Meanwhile, MIO is superior to SMA and GWO in the 

first and second groups. This proposed MIO also 

performs well in the low population size and low 

maximum iteration as it is presented in Table 7 and 

Table 8. 

The in-depth analysis can be drawn back to the 

main concept of the two-phase strategy adopted by 

MIO. The multiple interaction strategy carried out in 

the first phase performs well in achieving excellent 

results in solving functions in the first and second 

groups. Multiple interactions followed by multiple 

guided searches in MIO make the improvement faster 

than single or limited interaction carried out in the 

guided search as in PSO and MPA. The result also 

shows that multiple interaction strategy is more 

powerful than the use of a leader or the best solution 

in the guided search. All these benchmark 

metaheuristics utilize the best solution for the 

guidance, whether it is the global best solution as in 

SMA [17], the local best solution as in MPA, the 

combination of global best and local best as in PSO 

[34], or several best solutions as in GWO [32]. The 

approach of getting closer to the better solution and 

avoiding the worse solution is more relevant as it is 

adopted in many shortcoming metaheuristics, such as 

in KMA [18], MLO [28], DTBO [24], HLBO [27], 

and many more. The random search in the second 

phase is proven important to tackle the local optimal 

problem. The guided search is proven enough to 

solve the basic multimodal problems as in the second 

group. Meanwhile, the random search as in the 

second phase plays important role in finding the 

global optimal solution where the global optimal 

solution is in a very narrow area, or this area is 

ambiguous as in the third group. This circumstance 

makes many shortcoming metaheuristics deploy 

multiple strategies whether it is implemented into 

multiple phase strategy as in NGO [22] or ASBO [30], 

or multiple role strategy as in KMA [18]. 

The result in Table 3 and Table 8 strengthens the 

argument that any metaheuristic should be tested not 

only by using theoretical or mathematical functions 

but also by the practical problem. It is presented that 

making improvements in solving practical problems 

is more difficult rather than solving theoretical 

functions. The improvement created by MIO is much 

more significant than PSO where the gap is very wide. 

Meanwhile, Table 8 shows that making more than 10 

percent improvement is very difficult. The main 

problem comes from the type of number used in the 

practical problem. Many operations research problem, 

such as the order allocation problem, is developed 

based on the integer number. It is because the 

quantity of any goods, whether they are products, 

components, or vehicles, cannot be split into floating 

point numbers. On the other hand, high advancement 

in solving theoretical problems comes from the high 

precision floating point number. Meanwhile, high-

precision floating point number is not common in 

many engineering optimization problems because it 

is not practical. 

The complexity of MIO can be presented as 

O(tmax.ni.n(S)). It means the complexity of MIO is 

linear to the maximum iteration, several interactions, 

and population size. In general, the complexity of all 

metaheuristics is linear to the maximum iteration 

because of the nature of metaheuristics that improves 

the solution by iterating the searching process. The 

linearity of population size and complexity is also 

common in all population-based metaheuristics, 

especially swarm intelligence-based metaheuristics. 

This argument comes from the nature of the swarm 

intelligence-based metaheuristic where all agent 

search for improvement in every iteration. 

Meanwhile, the complexity of MIO is higher than the 

basic swarm intelligence-based metaheuristic, such 

as PSO or MPA, where the interaction of every agent 

is limited. Meanwhile, the complexity of MIO is 

comparable to other swarm intelligence-based 

metaheuristics where each agent generates several 

candidates in every iteration. When the number of 

interactions is equal to the number of candidates, then 

the complexity of MIO is equal to this metaheuristic. 

On the other hand, the complexity of MIO is lower 

than metaheuristics that implement sorting 

mechanism in the beginning of every iteration, for 

example in GWO [32], dart game optimizer (DGO) 

[33], or MLO [28]. 

There are several limitations regarding this work 

and the proposed metaheuristic. The scenario in the 

order allocation problem used in this work is simple. 

Its simplicity comes from the single-product scenario. 

Meanwhile, the need is known in advance. The more 

complicated scenario can be implemented in future 

studies by implementing the multi-product scenario 

where there is not any vendor that can provide all 

products. The complicated scenario can also be 

conducted based on the objective. In this work, the 

objective in every optimization process is only one, 

whether it is minimizing the total cost, total lateness, 

or total defect. This single objective can be 

transformed into a multi-objective optimization 

problem. Moreover, the considered parameters can 

be increased, for example, the limited storage 
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capacity, manufacturing capacity, or perishable 

products. In this work, the use case is the order 

allocation problem. Meanwhile, there is broader use 

case in the optimization related to manufacturing 

systems, for example, the scheduling process during 

production, whether it can be flow-shop, job-shop, 

assembly line, and so on. The use case can be moved 

forward to the logistic and transportation problem, for 

example by implementing MIO to solve warehouse, 

fleet, and routing problems. This explanation means 

that future studies regarding this current study are still 

available and challenging. 

6. Conclusion 

This study has presented the excellent 

performance of the proposed metaheuristic, the 

multiple interaction optimizer (MIO). Its excellence 

comes from the two-phase strategy adopted by MIO. 

The multiple interaction strategy conducted in the first 

phase contributes to achieving the highest 

improvement. Meanwhile, the local search carried out 

in the second phase contributes to overcoming the 

local optimal problem. Moreover, the strict 

acceptance-rejection strategy contributes to avoiding 

the optimization process from the worsening 

circumstance. The test result indicates that MIO can 

find an acceptable solution in solving 23 functions and 

order allocation problems. MIO outperforms PSO, 

MPA, GWO, SMA, and GSO in 22, 21, 22, 19, and 

18 functions. Moreover, MIO outperforms these five 

metaheuristics by creating minimum total cost, 

minimum lateness, and minimum total defect in 

solving the order allocation problem. The result also 

indicates that achieving significant improvement in 

solving the integer-based optimization problem as in 

the order allocation problem is more difficult than in 

the floating point-based optimization problem as in 

the 23 functions. 

This study can become the baseline for future 

studies in two directions. The first direction is the 

improvement of the proposed metaheuristic. Future 

studies regarding the modification or hybridization of 

MIO are necessary to improve its performance. The 

modification of MIO can also be carried out by 

transforming the original form of MIO into a new 

form suitable to solve a combinatorial optimization 

problem. Besides, implementing MIO in many 

optimization problems in the manufacturing system is 

also important. The second direction is related to the 

order allocation problem, for example in the multiple 

product or multiple objective order allocation 

problems. 

Conflicts of interest 

The authors declare no conflict of interest. 

Author contributions 

Conceptualization, Kusuma; methodology, 

Kusuma; software, Kusuma, validation, Kusuma and 

Novianty; formal analysis: Kusuma and Novianty; 

writing-original paper draft, Kusuma; writing-review 

and editing: Novianty; visualization, Kusuma; 

project administration, Kusuma; funding acquisition, 

Kusuma. 

Acknowledgments 

This work is funded and supported by Telkom 

University, Indonesia. 

References 

[1] A. A. Reyes, E. Cuevas, A. Rodriguez, A. 

Mendoza, and E. O. Benitez, “An Improved 

Grey Wolf Optimizer for a Supplier Selection 

and Order Quantity Allocation Problem”, 

Mathematics, Vol. 8, p. 1457, 2020. 

[2] I. Ahmad, Y. Liu, D. Javeed, and S. Ahmad, “A 

Decision-Making Technique for Solving Order 

Allocation Problem Using a Genetic Algorithm”, 

IOP Conference Series: Materials Science and 

Engineering, Vol. 853, p. 012054, 2020. 

[3] E. Demiralay and T. Paksoy, “Strategy 

Development for Supplier Selection Process 

with Smart and Sustainable Criteria in Fuzzy 

Environment”, Cleaner Logistics and Supply 

Chain, Vol. 5, p. 100076, 2022,  

[4] Z. Zhang, C. Guo, W. Ruan, W. Wang, and P. 

Zhou, “An Intelligent Stochastic Optimization 

Approach for Stochastic Order Allocation 

Problems with High-Dimensional Order 

Uncertainties”, Computers & Industrial 

Engineering, Vol. 167, p. 108008, 2022.  

[5] Y. Sun, S. C. Guo, and X. Li, “An Order-

Splitting Model for Supplier Selection and Order 

Allocation in a Multi-Echelon Supply Chain”, 

Computers & Operations Research, Vol. 137, p. 

105515, 2022. 

[6] A. Mohammed, I. Harris, A. Soroka, M. Naim, 

T. Ramjaun, and M. Yazdani, “Gresilient 

Supplier Assessment and Order Allocation 

Planning”, Annals of Operations Research, Vol. 

296, No. 1, pp. 335-362, 2020. 

[7] V. G. Venkatesh, A. Zhang, E. Deakins, S. 

Luthra, and S. Mangla, “A Fuzzy AHP-TOPSIS 

Approach to Supply Partner Selection in 

Continuous Aid Humanitarian Supply Chains”, 



Received:  January 23, 2023.     Revised: February 8, 2023.                                                                                             452 

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023           DOI: 10.22266/ijies2023.0430.35 

 

Annals of Operations Research, Vol. 283, pp. 

1517-1550, 2019. 

[8] T. T. Tham, N. T. T. Duc, T. T. M. Dung, and T. 

H. P. Nguyen, “An Integrated Approach of ISM 

and Fuzzy TOPSIS for Supplier Selection”, 

International Journal of Procurement 

Management, Vol. 13, No. 5, pp. 701-735, 2020. 

[9] G. Pishchulov, A. Trautrims, T. Chesney, S. 

Gold, and L. Schwab, “The Voting Analytic 

Hierarchy Process Revisited: A Revised Method 

with Application to Sustainable Supplier 

Selection”, International Journal of Production 

Economics, Vol. 211, pp. 166-179, 2019.  

[10] N. Janatyan, M. Zandieh, A. A. Tabriz, and M. 

Rabieh, “A Rapid Method for Sustainable 

Supplier Selection in Pharmaceutical 

Distribution Companies Under Uncertainty 

Circumstance”, International Journal of 

Procurement Management, Vol. 12, No. 5, pp. 

572-591, 2019.  

[11] M. T. Ahmad and S. Mondal, “Dynamic 

Supplier Selection Approach for Mining 

Equipment Company”, Journal of Modelling in 

Management, Vol. 14, No. 1, pp. 77-105, 2019.  

[12] T. Niranjan, B. Singaravel, and S. S. Raju, 

“Integrated Fuzzy Criteria Evaluation with 

Metaheuristic Optimization for Green Supplier 

and Order Allocation”, IOP Conference Series: 

Materials Science and Engineering, Vol. 1057, 

p. 012074, 2021.  

[13] J. Swan, S. Adriaensen, A. E. I. Brownlee, K. 

Hammond, C. G. Johnson, A. Kheiri, F. Krawiec, 

J. J. Merelo, L. L. Minku, E. Ozcan, G. L. Pappa, 

P. G. Sanchez, K. Sorensen, S. Vob, M. Wagner, 

and D. R. White, “Metaheuristics in the Large”, 

European Journal of Operational Research, Vol. 

297, pp. 393-406, 2022, doi: 

10.1016/J.Ejor.2021.05.042. 

[14] H. Aydilek, A. Aydilek, M. Allahverdi, and A. 

Allahverdi, “More Effective Heuristics for a 

Two-Machine No-Wait Flowshop to Minimize 

Maximum Lateness”, International Journal of 

Industrial Engineering and Computations, Vol. 

13, No. 4, pp. 543-556, 2022.  

[15] Y. Chen, Z. Guan, C. Wang, F. D. Chou, and L. 

Yue, “Bi-Objective Optimization of Identical 

Parallel Machine Scheduling with Flexible 

Maintenance and Job Release Times”, 

International Journal of Industrial Engineering 

and Computations, Vol. 13, No. 4, pp. 457-472, 

2022. 

[16] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and 

A. H. Gandomi, “Marine Predators Algorithm: 

A Nature-Inspired Metaheuristic”, Expert 

System with Applications, Vol. 152, p. 113377, 

2020. 

[17] S. Li, H. Chen, M. Wang, A. A. Heidari, and S. 

Mirjalili, “Slime Mould Algorithm: A New 

Method for Stochastic Optimization”, Future 

Generation Computer Systems, Vol. 111, pp. 

300-323, 2020. 

[18] S. Suyanto, A. A. Ariyanto, And A. F. Ariyanto, 

“Komodo Mlipir Algorithm”, Applied Soft 

Computing, Vol. 114, p. 108043, 2022. 

[19] A. M. F. Fard, M. H. Keshteli, and R. T. 

Moghaddam, “Red Deer Algorithm (RDA): A 

New Nature-Inspired Meta-Heuristic”, Soft 

Computing, Vol. 24, No. 19, pp. 14637–14665, 

2020.  

[20] P. D. Kusuma and M. Kallista, “Stochastic 

Komodo Algorithm”, International Journal of 

Intelligent Engineering and Systems, Vol. 15, 

No. 4, pp. 156-166, 2022, doi: 

10.22266/ijies2022.0831.15. 

[21] P. Trojovský and M. Dehghani, “Pelican 

Optimization Algorithm: A Novel Nature-

Inspired Algorithm for Engineering 

Applications”, Sensors, Vol. 22, p. 855, 2022.  

[22] M. Dehghani, S. Hubalovsky, and P. Trojovsky, 

“Northern Goshawk Optimization: A New 

Swarm-Based Algorithm for Solving 

Optimization Problems”, IEEE Access, Vol. 9, 

pp. 162059–162080, 2021. 

[23] S. Arora and S. Singh, “Butterfly Optimization 

Algorithm: A Novel Approach for Global 

Optimization”, Soft Computing, Vol. 23, pp. 

715-734, 2019. 

[24] M. Dehghani, E. Trojovská, and P. Trojovský, 

“A New Human-Based Metaheuristic Algorithm 

for Solving Optimization Problems on the Base 

of Simulation of Driving Training Process”, 

Scientific Reports, Vol. 12, p. 9924, 2022. 

[25] P. D. Kusuma and D. Adiputra, “Modified 

Social Forces Algorithm: From Pedestrian 

Dynamic to Metaheuristic Optimization”, 

International Journal of Intelligent Engineering 

and Systems, Vol. 15, No. 3, pp. 294–303, 2022, 

doi: 10.22266/ijies2022.0630.25. 

[26] E. Trojovska and M. Dehghani, “A New 

Human-based Metaheuristic Optimization 

Method based on Mimicking Cooking Training”, 

Scientific Reports, Vol. 12, p. 14861, 2022. 

[27] M. Dehghani and P. Trojovský, “Hybrid Leader 

Based Optimization: A New Stochastic 

Optimization Algorithm for Solving 

Optimization Applications”, Scientific Reports, 

Vol. 12, p. 5549, 2022.  

[28] M. Dehghani, Z. Montazeri, A. Dehghani, R. A. 

R. Mendoza, H. Samet, J. M. Guerrero, and G. 



Received:  January 23, 2023.     Revised: February 8, 2023.                                                                                             453 

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023           DOI: 10.22266/ijies2023.0430.35 

 

Dhiman, “MLO: Multi Leader Optimizer”, 

International Journal of Intelligent Engineering 

and Systems, Vol. 13, No. 6, pp. 364–373, 2020, 

doi: 10.22266/ijies2020.1231.32. 

[29] F. Zeidabadi, S. Doumari, M. Dehghani, and O. 

P. M., Malik, “MLBO: Mixed Leader Based 

Optimizer for Solving Optimization Problems”, 

International Journal of Intelligent Engineering 

and Systems, Vol. 14, No. 4, pp. 472–479, 2021, 

doi: 10.22266/ijies2021.0831.41. 

[30] M. Dehghani, S. Hubalovsky, and P. Trojovsky, 

“A New Optimization Algorithm Based on 

Average and Subtraction of The Best and Worst 

Members of The Population for Solving Various 

Optimization Problems”, Peerj Computer 

Science, Vol. 8, p. e910, 2022.  

[31] M. Noroozi, H. Mohammadi, E. Efatinasab, A, 

Lashgari, M. Eslami, and B. Khan, “Golden 

Search Optimization Algorithm”, IEEE Access, 

Vol. 10, pp. 37515-37532, 2022.  

[32] H. Faris, I. Aljarah, M. A. A. Betar, and S. 

Mirjalili, “Grey Wolf Optimizer: A Review of 

Recent Variants and Applications”, Neural 

Computing and Applications, Vol. 30, pp. 413-

435, 2018.  

[33] M. Dehghani, Z. Montazeri, H. Givi, J. M. 

Guerrero, and G. Dhiman, “Darts Game 

Optimizer: A New Optimization Technique 

Based on Darts Game”, International Journal of 

Intelligent Engineering and Systems, Vol. 13, 

No. 5, pp. 286-294, 2020, doi: 

10.22266/ijies2020.1031.26. 

[34] A. G. Gad, “Particle Swarm Optimization 

Algorithm and Its Applications: A Systematic 

Review”, Archives of Computational Methods in 

Engineering, Vol. 29, pp. 2531-2561, 2022. 

 


