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ABSTRACT
This review explores tissue engineering as a potential solution for 

reproductive health issues in women caused by genetic or acquired 

diseases, such as premature ovarian failure or oophorectomy. The 

loss of ovarian function can lead to infertility, osteoporosis, and 

cardiovascular disease. Hormone replacement therapy is a common 

treatment, but it has limitations and risks. The review focuses on 

two main approaches in tissue engineering: scaffold-based (3D 

printing, electrospinning, decellularization) and scaffold-free (stem 

cell transplantation, organoid cultivation). Both approaches show 

promise in preclinical studies for creating functional ovarian tissue. 

Challenges include vascularization, innervation, long-term function, 

and safety. Despite these challenges, tissue engineering offers a 

potential avenue for restoring fertility and hormone balance in 

women with ovarian dysfunction.

KEYWORDS: Female gonads; Tissue engineering; Estrogen; 

Reproductive system

1. Introduction

  The female reproductive system is tasked with the production 

of gametes, referred to as eggs or ova, the synthesis of specific 

sex hormones, and the nurturing of fertilized eggs during their 

maturation process in preparation for delivery. Within this context, 

the ovary plays a pivotal role, as it serves as the site where the 

production of eggs takes place, with the ultimate potential for these 

eggs to undergo fertilization upon encountering male gametes, 

commonly known as sperm[1].

  Ovarian dysfunction can manifest due to various etiological 

factors, encompassing genetic anomalies such as the suppression of 

α-Klotho expression within ovarian granulosa cells[2], chromosomal 

aberrations such as Turner syndrome (X-chromosome monosomy)[3], 

autoimmune conditions including autoimmune polyendocrine 

syndrome type 栺 (also known as APECED, autoimmune 

polyendocrinopathy-candidiasis-ectodermal dystrophy) associated 

with 21st chromosome autoimmunity[4], cancer treatments[5], 

autoimmune disorders like lymphocytic oophoritis, anti-

oocyte antibodies, antibodies to steroid-producing cells, thyroid 

autoimmunity, and adrenal gland autoimmunity[6], as well as 

surgical interventions such as oophorectomy[7]. Diagnosis hinges 

upon the identification of amenorrhea occurring before the age 

of 40, coupled with elevated follicle-stimulating hormone (FSH) 

levels within the menopausal range[8]. Elevated FSH is a marker of 

decreased ovarian function, as the ovaries are less responsive to its 

regulatory effects.

  Insufficient production of female sex hormones manifests as 

menstrual irregularities, infertility, an increased incidence of 
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Alzheimer's disease, urogenital atrophy, cardiovascular disease, 

decreased bone density, and reduced quality of life[9,10]. Hormone 

replacement therapy (HRT) is the primary treatment for female 

gonadal insufficiency[9]. Although existing hormone regimens are 

effective in suppressing menopausal symptoms, they are inadequate 

for achieving normal uterine volume, endometrial thickness, and 

uterine blood flow. This is because physiological replacement of 

estrogen and progesterone is necessary[11]. Moreover, the dose 

required to treat vasomotor symptoms may differ from the dose 

needed to protect the cardiovascular system, bones[12], or muscles[13]. 

Additionally, long-term use of hormone replacement therapy drugs 

is linked to a high risk of breast and endometrial cancer[14].

  Regenerative medicine and tissue engineering are potential 

alternative treatments for premature ovarian failure[15]. Tissue 

engineering offers a promising option by creating functional ovarian 

tissue that can produce hormones in response to endogenous signals. 

Tissue engineering involves combining cells, biomaterials, and 

signaling factors to create functional tissues or organs in vitro or in 
vivo[16]. In the last decade, researchers have conducted extensive 

research on creating the artificial ovary[17] using various techniques 

to restore female reproductive gonad function (Table 1)[18,19]. The 

goal of ovarian tissue engineering is to generate a 3D structure that 

mimics the native tissue architecture and function, including the 

ability to produce estrogen and progesterone[20].

  In recent years, several techniques have been developed to 

engineer ovarian tissue, including scaffold-based[21] and scaffold-

free[22] approaches. Scaffold-based strategies involve using natural 

or synthetic scaffolds to support the growth and differentiation of 

ovarian cells[23], while scaffold-free methods rely on the formation 

of multicellular aggregates or organoids[24]. Both approaches have 

shown promising results in preclinical studies, such as the successful 

transplantation of tissue-engineered ovaries into mice and the 

restoration of fertility[24]. The choice between scaffold-based and 

scaffold-free methods depends on the specific tissue's requirements. 

Scaffold-based approaches offer structural support, mimicking the 

native extracellular matrix, suitable for complex tissues but may 

raise concerns about scaffold material[25]. Scaffold-free techniques 

rely on natural cell interactions, preserving the microenvironment, 

yet may struggle with structural integrity[26]. 

  However, several challenges still need to be addressed before 

ovarian tissue engineering can become a clinical reality. These 

challenges include the need for vascularization and innervation of 

the engineered tissue, ensuring its long-term function and safety, and 

regulatory approval[27]. Vascularization and innervation play critical 

roles in the growth and maturation of ovarian follicles, as they 

provide oxygen, nutrients, and signaling molecules necessary for 

follicular development and function, as well as regulate the release 

of hormones and neurotransmitters from the follicles[28,29]. Imaging 

techniques that can non-invasively assess the vascularization and 

innervation of developing follicles in the human ovary, such as 

Doppler ultrasound and magnetic resonance imaging (MRI), can 

aid in the design and optimization of tissue engineering strategies 

for the ovary by enabling the monitoring of tissue perfusion and 

neurovascular integration[30].

  This review aims to summarize the available techniques for tissue 

engineering of the ovary, including their advantages and limitations. 

The review focused on the current state of the field, recent 

advances, and future directions for ovarian tissue engineering for 

the replacement of sex hormones and the restoration of fertility in 

women with ovarian dysfunction.

2. Methods

  We conducted a search of four electronic databases, Scopus, 

PubMed, Web of Science and ClinicalTrial.gov to identify scientific 

publications related to tissue engineering techniques for replicating 

female sex hormones. We used the following MeSH terms: ovary, 

tissue engineering, female gonads, tissue engineering, stem cell, 

estrogen, and their combinations using Boolean operators (AND, 

OR).

  The eligibility criteria for including articles in this review were as 

follows: 1) primarily focus on tissue engineering techniques related 

to replicating female sex hormones or addressing female gonad 

Table 1. Pros and cons of current clinical techniques used to restore female reproductive gonad function.

         Methods                            Pros                                   Cons      References
Replacement hormone therapy Suppresses the symptoms of menopause. Negative effects on liver tissue.

Dose does not protect the cardiovascular system or 
maximize bone mass. 
Fails to achieve normal uterine volume, endometrial 
thickness and uterine blood flow.
Risk of developing breast cancer, endometrium, and 
thrombophlebitis.
Not recommended for women with a history of breast or 
ovarian cancer, or for women after age 50.

       [18]

Cryopreservation 
and transplantation
of ovarian tissue 

Able to restore hormone production.
Restores fertility.
Provides natural delivery of hormones. 

Risk of reimplantation of malignant cells.
Cytotoxic effect.
Difficulties with engraftment.
Immune response.
Experimental method. 

      [19]
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insufficiency; 2) the search included only full-text research articles; 

3) all articles should have been published from January 2018 to June 

2023 and 4) English published papers and theses were included. The 

exclusion criteria for including articles in this review were reviews 

and articles that: 1) were duplicated previously; 2) had irrelevant 

publication types and 3) had irrelevant intervention.

  We screened the titles of the articles for relevance, followed by 

the analysis of abstracts. Next, we evaluated the full-text articles 

that met the search criteria. Additionally, we examined and added 

references from the selected articles that matched the research topic. 

We included studies published in peer-reviewed journals that met 

the following inclusion criteria: a) studies concerning regenerative 

medicine techniques for female gonad insufficiency, and b) both 

animal and human studies. Two authors, AZh and GK, performed 

a thorough analysis of the titles, abstracts, and full-texts of all 

identified articles to determine their eligibility in accordance with 

the inclusion criteria. Instances of divergent opinions were resolved 

through deliberative discussions guided by an AT.

  We analyzed the resulting research articles using VOSviewer 

software (v.1.6.8, 2018)[31], which can analyze the semantic contents 

of publication titles, keywords, and abstracts, and then relate them 

to citation count data. The software produced a bubble map that 

revealed the most frequent compounds that have been studied for 

replicating female sex hormones, thus allowing us to identify key 

topics and areas of research focus within the field.

3. Scaffold-free ovarian tissue engineering

3.1. Stem cells transplantation

  Studies investigating the effects of stem cells on the function of 

female reproductive glands are primarily conducted using animal 

models. For these experiments, stem cells that are capable of 

self-renewal and multilineage differentiation are utilized[32]. It is 

believed that stem cells migrating to the damaged ovary have anti-

inflammatory effects, participate in immunoregulation, and secrete 

important cytokines that contribute to anti-apoptosis and antifibrosis, 

ultimately leading to improved ovarian function[33-35]. Furthermore, 

research suggests that stem cell therapy leads to an increase in the 

total number of follicles, which in turn increases the levels of sex 

hormones to physiological levels[36].

  Ovarian mass and index are significantly increased, the regular 

estrus cycle is restored, and fertility is resumed following stem 

cell transplantation[37]. Moreover, stem cell therapy increases 

angiogenesis, thereby improving the microenvironment of ovarian 

tissue[38]. A pilot human clinical trial was conducted for bone 

marrow-derived mesenchymal stem cell transplantation[39]. The 

results indicated that patients experienced reduced menopausal 

symptoms, resumed estrogen production, and resumed menstruation 

seven months after mesenchymal stem cell engraftment[39]. There is 

a list of clinical trials that used stem cells for the treatment of ovarian 

diseases (Table 2).

3.2. Ovarian tissue organoids

  Ovarian tissue organoids represent a promising approach to model 

the complex physiology of the human ovary and to develop tissue 

engineering strategies for ovarian dysfunction[24]. Organoids are 

three-dimensional (3D) structures consisting of self-organizing 

cells that recapitulate the architecture and function of a specific 

tissue or organ[40]. Ovarian tissue organoids can be generated from 

pluripotent stem cells, adult stem cells, or primary cells derived from 

ovarian tissue[41]. They can contain multiple cell types, including 

granulosa cells, theca cells, and oocytes, and exhibit follicle-like 

structures with functional hormone production[22]. Organoids have 

several advantages, such as the ability to study ovarian development 

and disease in vitro, perform drug screening and toxicity assays, and 

potentially generate patient-specific tissue for transplantation[24,42,43]. 

Researchers have generated an ovarian organoid model derived from 

female germline stem cells (FGSCs) of transgenic mice using a 3D 

culture system. The resulting ovarian organoids contained follicles 

and secreted hormones, and healthy offspring were obtained from 

mature cells via in vitro fertilization[24]. Ovarian cancer organoids 

taken from patients can be used to study the pathogenic mechanisms 

of DNA isolation and histological analysis, as well as their response 

to various drugs, which could aid in the treatment of malignant 

ovarian diseases[44]. However, challenges associated with organoid 

technology include the reproducibility and scalability of the cultures, 

the need for defined culture conditions and media, and the lack 

of vascularization and innervation, which can limit the size and 

function of the organoids.

Table 2. Clinical trials for stem cell therapy of ovarian diseases.

Diseases NCT number Type of stem cell Status Country Start date Phase
Polycystic ovary syndrome NCT05279768 HUC-MSCs Recruiting Indonesia 2022 1&2
Ovarian cancer NCT05401162 HSC Recruiting China 2022 NA

NCT05095558 PB-HSCs Recruiting China 2021 1&2
NCT03691376 HSCs Active United States 2018 1

Premature ovarian failure NCT05308342 HUC-MSCs Unknown Spain 2022 NA
NCT05138367 UCA-PSCs Completed China 2021 1
NCT03877471 MSCs Active China 2019 1
NCT03033277 HUC-MSCs Unknown China 2017 1&2

HUC-MSCs: human umbilical cord-derived mesenchymal stromal/stem cells; HSCs: hematopoietic stem cells; NA: not applicable; PB-HSCs: peripheral 
blood hematopoietic stem cells; UCA-PSCs: umbilical cord artery perivascular stem cells.
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4. Scaffold-based ovarian tissue engineering

4.1. Ovarian follicles in hydrogels

  Ovarian follicles embedded in hydrogels offer a promising 

approach for developing tissue engineering strategies to treat ovarian 

dysfunction[45]. Hydrogels are hydrophilic polymer networks 

that mimic the extracellular matrix of a particular tissue or organ, 

providing mechanical support and allowing for the diffusion of 

nutrients and oxygen[46]. Encapsulating ovarian follicles in hydrogels 

can support their growth and maturation in vitro, potentially leading 

to the development of functional ovarian tissue[47]. The use of 

hydrogels has several advantages, such as the ability to tune the 

mechanical properties and bioactivity of the hydrogel, promote 

the survival and proliferation of the follicles, and create a 3D 

microenvironment that mimics the native ovarian tissue[47].

  In recent years, researchers have been developing a framework for 

packaging oocytes and follicles to create a favorable environment 

for maintaining cell viability and to increase transplant survival by 

reducing the damage caused by ischemia and oxidative stress. In 

2012, researchers conducted the first experiment on transplanting a 

biodegradable framework made of alginate hydrogel with isolated 

follicles and ovarian cells[34]. Recovery rates in experiments 

involving human follicles were found to be proportional to the 

percentage of alginate used. Samples without the addition of alginate 

had no follicles, in contrast to samples with high alginate content[48]. 

Subsequent studies focused on the development of scaffold matrices 

created using the decellularization method. These scaffolds consist 

of tissue-specific extracellular matrix (ECM) and can maintain the 

microarchitecture and biological signals of the original tissue[49].

  However, challenges associated with this approach include the need 

for appropriate selection of the hydrogel material and crosslinking 

density, ensuring sufficient oxygen and nutrient diffusion, and 

adequate vascularization and innervation to promote follicle growth 

and maturation.

4.2. Reconstruction of ovarian scaffold by 3D printer

  Reconstruction of ovarian scaffolds using 3D printing technology 

is a promising approach for developing tissue engineering 

strategies to treat ovarian dysfunction[50]. 3D printing allows 

for the creation of customized structures with precise geometry, 

porosity, and mechanical properties, making it an ideal approach for 

reconstructing ovarian scaffolds. The use of 3D printing has several 

advantages, such as the ability to create complex structures that 

can mimic native ovarian tissue, control the porosity and surface 

area of the scaffold, and create a suitable microenvironment for the 

growth and differentiation of ovarian cells[51]. The scaffold can be 

made from a variety of biocompatible materials, including natural 

polymers such as collagen and fibrin, and synthetic polymers such as 

polycaprolactone (PCL) and poly lactic-co-glycolic acid (PLGA)[17]. 

Natural[49,50-64] and synthetic[65-74] biomaterials which are available 

for this purpose are categorized (Figure 1).

  In an experiment, the survival and proliferation ability of Chinese 

hamster ovary cells through the nozzles of a thermal inkjet was 

successfully demonstrated. Soy agar and collagen gel were used 

as biopaper[57]. The viability of cells printed by the thermal 

inkjet printer was 89%, with only 3.5% apoptotic cells observed 

after printing. The ability of cells to restore transient pores in the 

cell membrane was observed within 2 hours after printing[75]. 

However, the challenges associated with this approach include 

the need to optimize printing parameters and materials to ensure 

biocompatibility and scaffold stability, the need to promote cell 

infiltration and vascularization of the scaffold, and the need to ensure 

proper innervation for follicular maturation.

  Establishing functional vascular networks within engineered tissues 

demands biomimetic innovations[76], precise scaffold design[77], and 

growth factor strategies[78] to ensure metabolic support. Innervation 

requires a deep understanding of neurobiology and the promotion of 

neural connectivity, while maintaining long-term tissue functionality 

necessitates the careful selection of biocompatible materials[79] and 

rigorous safety testing. However, the potential of tissue engineering 

to overcome these challenges is substantial, with cutting-edge 

technologies like 3D bio-printing and stem cell therapies offering 

transformative solutions. As researchers continue to bridge these 

gaps through interdisciplinary collaboration, tissue engineering's 

significance in healthcare advancement becomes increasingly 

evident, promising lasting benefits for patients globally.

Figure 1. Biomaterials have capabilities to be used as bio-inks for ovarian tissue reconstruction.
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4.3.  Reconstruction of  ovarian microenvironment by 
electrospinning

  Electrospinning is  a  promising approach for  developing 

ovarian microenvironments that can support follicle growth and 

maturation[17,80]. Electrospinning is a technique that uses an electric 

field to generate nanofibers from a polymer solution or melt, creating 

a 3D microenvironment that can mimic the extracellular matrix of a 

particular tissue or organ. Ovarian microenvironments can be created 

by electrospinning fibers from biocompatible polymers, such as poly 

(lactic acid) (PLA) or poly (lactic-co-glycolic acid) (PLGA), which can 

be functionalized with extracellular matrix proteins, growth factors, and 

other bioactive molecules to promote cell adhesion, proliferation, and 

differentiation[81,82]. The use of electrospinning has several advantages, 

such as the ability to create scaffolds with high surface area-to-

volume ratios and controllable porosity, to promote cell infiltration and 

vascularization of the scaffold, and to create a suitable microenvironment 

for the growth and differentiation of ovarian cells. However, the 

challenges associated with this approach include the need to optimize the 

electrospinning parameters and materials to ensure biocompatibility and 

scaffold stability, the need to promote appropriate vascularization and 

innervation for follicular maturation, and the need to ensure the proper 

spatial distribution of cells within the scaffold. Nonetheless, ongoing 

research is focused on addressing these challenges and improving the 

use of electrospun ovarian microenvironments for the development of 

functional ovarian tissue in vitro and potentially for transplantation in vivo.

4.4.  Reconstruction of  ovarian microenvironment by 
decellularization

  Various techniques have been proposed for tissue decellularization, with 

the main goal being the removal of intracellular components and nuclear 

material. This is typically achieved through chemical treatments[7], and in 

some studies, a combination of physical and chemical methods has been 

used[83]. During the seeding of the biocage, there was rapid migration 

and colonization of the extracellular matrix within 24 hours, followed 

by further formation of cluster-like structures that maintained stability 

for up to 7 days[49]. Additionally, an increase in the amount of DNA 

in the cultured medium was observed throughout the duration of the 

experiments[83].

  To improve the engraftment of the transplant and suppress the immune 

system, researchers have encapsulated decellularized ovarian tissues 

within a hydrogel-based capsule. This hydrogel serves as a protective 

layer and restricts the invasion of immune cells[83,84]. Primary ovarian 

cells isolated from 8-week-old female rats retain their viability and 

biological activity. These cells were able to reconstruct primordial or 

primary follicle-like structures within decellularized human ovarian 

skeletons after transplantation. Immunostaining also demonstrated 

the presence of cells capable of expressing steroid hormone receptors. 

Additionally, mesenchymal stem cells seeded on decellularized 

scaffolds showed a higher proliferation rate than in the two-dimensional 

conventional culturing system. However, the presence of host cells and Ta
bl
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lack of neovascularization may indicate that further optimization of 

the transplant strategy is necessary to improve its effectiveness[21].

  Advancements in the decellularization process primarily revolve 

around optimizing techniques to effectively eliminate DNA and 

intracellular constituents from ovarian tissue while concurrently 

augmenting the structural integrity of the remaining extracellular 

matrix within the ovarian framework[21,85,86].

5. What method is more promising for replacement of 
sex hormones?

  In Table 3, the overall evaluation has been adjusted to reflect the 

relative advantages and disadvantages of each method as explained 

above. Based on the information provided, stem cell transplantation 

and reconstruction of the ovarian scaffold by 3D printing appear 

to be the most promising methods, followed by ovarian tissue 

organoids, ovarian follicles in hydrogels, and reconstruction of 

the ovarian microenvironment by electrospinning. Reconstruction 

of the ovarian microenvironment by decellularization appears to 

have the lowest overall score, although it still shows promise and 

may be developed further with more research. It should be noted 

that the follicular vascular structure[29] and the ovarian innervation 

network[28] play an important role in its reproductive activity and are 

one of the important challenges of ovarian tissue engineering. It is 

important to keep in mind that these rankings may change as more 

information becomes available through ongoing research and clinical 

trials.

6. Conclusions and future prospect

  Tissue engineering approaches offer a promising avenue for 

restoring ovarian function in patients with ovarian insufficiency. 

While current treatments have limitations and drawbacks, 

experimental techniques such as stem cell transplantation, ovarian 

tissue organoids, and various methods of reconstructing the ovarian 

microenvironment have shown potential for improving outcomes. 

Although further research and clinical trials are necessary to establish 

safety and efficacy, these approaches represent an exciting area of 

investigation for scientists and clinicians. Tissue engineering offers 

the potential for more personalized, effective, and minimally invasive 

treatments, ultimately improving the quality of life for women with 

ovarian insufficiency. With continued development and refinement, 

tissue engineering approaches may offer a more physiological and 

sustainable solution for ovarian replacement therapy.
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