
Scholarly Research Journal for Interdisciplinary Studies 

Online ISSN 2278-8808, SJIF 2021 = 7.380,  

http://www.srjis.com/issues_data?issueId=213 

PEER REVIEWED & REFEREED JOURNAL, MAY-JUNE 2023, VOL- 11/77 
https://doi.org/10.5281/zenodo.8214247 

 

Copyright © 2023, Scholarly Research Journal for Interdisciplinary Studies 
 

 

STOCHASTIC CONTROLLABILITY OF NONLINEAR SYSTEMS WITH TIME  

VARIABLE DELAY IN CONTROL 

 

R. B. Sonawane 

Department of Mathematics and Statistics, Ness Wadia College of Commerce, Pune (M.S.),  

India – 411001. sonawaneramdas@gmail.com 

 

Paper Received On: 21 JUNE 2023  

Peer Reviewed On: 30 JUNE 2023  

Published On: 01 JULY 2023 

 

 

We consider the stochastic controllability problem for nonlinear infinite dimensional systems with time 

variable delay in controls. Controllability problem for infinite dimensional systems has been studied by 

numerous researchers. Most of the researchers have considered the linear or semilinear stochastic systems 

with fixed time delay in control. Some of the researchers have studied controllability of deterministic 

semilinear systems with fixed delay in control. In this article we have studied the controllability of stochastic 

nonlinear infinite dimensional systems with time variable delay in control. We have illustreted the results 

obtained in this article with some examples. 
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I. Introduction 

Let ℋ   𝒦  and 𝒰  be separable Hilbert spaces. Let (Ω, ℱ, ℙ)  be a complete probability space 

with a filtration {ℱ𝑡}𝑡≥0. A filtration {ℱ𝑡}𝑡≥0 is right continuous and ℱ0 contains all ℙ-null sets. 

𝔼(⋅)  denotes the expectation with respect to measure ℙ . oonsider the nonlinear system with 

variable delay in control as follows:  

 
𝑑𝑥(𝑡) = (𝐴𝑥(𝑡) + 𝐵1𝑢(𝑡) + 𝐵2𝑢(𝑣(𝑡)) + 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡

+𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑤(𝑡),    0 ≤ 𝑡 ≤ 𝑇,
 (1) 

 with initial conditions  

 𝑥0 = 𝑥0 ∈ ℒ2(Ω, ℱ0, ℋ)      and    𝑢(𝑡) = 0,    𝑡 ∈ [𝑣(0),0]. (2) 
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𝐴: 𝐷(𝐴) ⊂ ℋ → ℋ is a closed linear operator generating strongly continuous semigroup 𝑆(𝑡)  

𝐵1, 𝐵2 ∈ ℒ(𝒰, ℋ) are bounded linear operators and {𝑤(𝑡): 𝑡 > 0} is a given 𝒦-valued Wiener 

process with a finite trace nuclear covariance operator 𝑄 > 0. Let ℒ𝑄(𝒦, ℋ) be the space of all 

𝑄 -Hilbert-Schmidt operators 𝑔: [0, 𝑇] × ℋ × 𝒰 → ℒ𝑄(𝒦, ℋ)  with norm ∥⋅∥  defined as ∥

𝑔 ∥𝑄= 𝑇𝑟(𝑔𝑄𝑔𝑇)  and 𝑓: [0, 𝑇] × ℋ × 𝒰 → ℋ . ℒ2
ℱ([0, 𝑇] × ℋ, ℋ)  is the space of all ℱ𝑡 -

adapted  ℋ -valued measurable square integrable processes with the norm ∥⋅∥ℋ . 𝑣(𝑡) = 𝑡 −

ℎ1(𝑡)  is continuously differentiable and strictly increasing function defined on [0, 𝑇]   and 

ℎ1(𝑡) > 0  is a time variable point delay. For convenience  consider the time leading function 

𝑟(𝑡) = 𝑡 + ℎ(𝑡)  which is the inverse function for 𝑣(𝑡). That is  we have 𝑟(𝑣(𝑡)) = 𝑡. Note that 

for 𝑡 ∈ [0, 𝑣(𝑇)] system (1) is in fact a system without delay. Hence  this point onwards we will 

assume that 𝑣(𝑇) > 0. 

We find many results on exact controllability of infinite dimensional systems  which are 

summarized by Balachandran and Dauer [1]. oontrollability of infinite dimensional systems with 

time variable delays in control is studied by Klamka [2]. Klamka studied controllability of linear 

stochastic systems with fixed time delay in control in [3] and with time variable delay in control 

in [4]. Shen and Sun [5] studied relative controllability of nonlinear stochastic systems with delay 

in control. oontrollability of deterministic semilinear systems with fixed delay in control is studied 

by Kumar and Sukavanam [6]. This article is a part of Ph. D. Thesis [12]. 

In this article we will study the controllability of stochastic nonlinear infinite dimensional systems 

with time variable delay in control. In section 2  some preliminaries are discussed. oontrollability 

of stochastic linear infinite dimension systems with variable delay control are studied in section 3  

and nonlinear systems in section 4. Finally in section 5  some examples are discussed. 

II. Preliminaries 

The mild solution of (1) is defined as  

 
𝑥(𝑡) = 𝑆(𝑡)𝑥0 + ∫

𝑡

0
𝑆(𝑡 − 𝑠)(𝐵1𝑢(𝑠) + 𝑓(𝑠, 𝑥(𝑠), 𝑢(𝑠)))𝑑𝑠

+ ∫
𝑡

0
𝑆(𝑡 − 𝑠)𝐵2𝑢(𝑣(𝑠))𝑑𝑠 + ∫

𝑡

0
𝑆(𝑡 − 𝑠)𝑔(𝑠, 𝑥(𝑠), 𝑢(𝑠))𝑑𝑤(𝑠).

 (3) 

count the zero initial control for 𝑡 ∈ [𝑣(0),0]   the mild solution (3) can be written as 
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𝑥(𝑡) = 𝑆(𝑡)𝑥0 + ∫
𝑣(𝑡)

0
(𝑆(𝑡 − 𝑠)𝐵1 + 𝑆(𝑡 − 𝑟(𝑠))𝐵2𝑟′(𝑠))𝑢(𝑠)𝑑𝑠

+ ∫
𝑡

𝑣(𝑡)
𝑆(𝑡 − 𝑠)𝐵1𝑢(𝑠)𝑑𝑠 + ∫

𝑡

0
𝑆(𝑡 − 𝑠)𝑓(𝑠, 𝑥(𝑠), 𝑢(𝑠))𝑑𝑠

+ ∫
𝑡

0
𝑆(𝑡 − 𝑠)𝑔(𝑠, 𝑥(𝑠), 𝑢(𝑠))𝑑𝑤(𝑠).

 (4) 

Let 𝒰𝑎𝑑 = ℒ2
ℱ𝑡([0, 𝑇] × Ω, 𝒰). Define the set of all reachable states as follows:  

 𝑅𝑇(𝑇; 𝑥0, 𝑢) = {𝑥(𝑇; 𝑥0, 𝑢)|𝑢(⋅) ∈ 𝒰𝑎𝑑, 𝑥0 ∈ ℒ2(Ω, ℱ𝑇 , ℋ)}. 

Definition 1  The controlled stochastic system (1) is said to be relatively exactly controllable on 

[0, 𝑇] if for every initial condition 𝑥0 ∈ ℒ2(𝛺, ℱ0, 𝐻), there is some control 𝑢 ∈ 𝒰𝑎𝑑 such that 

𝑅(𝑇; 𝑥0, 𝑢) = ℒ2(𝛺, ℱ𝑇 , ℋ).  

Definition 2  The controlled stochastic system (1) is said to be relatively approximately 

controllable on [0, 𝑇] if for every initial condition 𝑥0 ∈ ℒ2(𝛺, ℱ0, 𝐻), there is some control 𝑢 ∈

𝒰𝑎𝑑 such that 𝑅(𝑇; 𝑥0, 𝑢) = ℒ2(𝛺, ℱ𝑇 , ℋ).  

It 𝑇 > 0 is arbitrarily small  then we say that system is small time relatively exactly controllable  

and small time relatively approximately controllable. 

Define the linear bounded control operator 𝐿𝑇 ∈ ℒ(𝒰𝑎𝑑, ℒ2(Ω, ℱ𝑇 , ℋ)) as follows:  

𝐿𝑇𝑢 = ∫
𝑣(𝑇)

0
(𝑆(𝑇 − 𝑡)𝐵1 + 𝑆(𝑇 − 𝑟(𝑠))𝐵2𝑟′(𝑠))𝑢(𝑠)𝑑𝑠 + ∫

𝑇

𝑣(𝑇)
𝑆(𝑇 − 𝑠)𝐵1𝑢(𝑠)𝑑𝑠. 

The adjoint 𝐿𝑇
∗ : ℒ2(Ω, ℱ𝑇 , ℋ) → 𝒰𝑎𝑑 of 𝐿𝑇 is  

 
𝐿𝑇

∗ = (𝐵1
∗𝑆∗(𝑇 − 𝑡) + 𝐵2

∗𝑆∗(𝑇 − 𝑣(𝑡))𝑟′(𝑡))𝔼{⋅ |ℱ𝑡},    𝑡 ∈ [0, 𝑣(𝑇)],
𝐿𝑇

∗ = 𝐵1
∗𝑆∗(𝑇 − 𝑡)𝔼{⋅ |ℱ𝑡},    𝑡 ∈ (𝑣(𝑇), 𝑇].

 

 We observe that  

 𝑅(𝑇; 𝑥0, 𝑢) = 𝑆(𝑇)𝑥0 + Im𝐿𝑇 + ∫
𝑇

0
𝑆(𝑇 − 𝑠)𝑓(𝑠, 𝑥(𝑠), 𝑢(𝑠))𝑑𝑠 

 + ∫
𝑇

0
𝑆(𝑇 − 𝑠)𝑔(𝑠, 𝑥(𝑠), 𝑢(𝑠))𝑑𝑤(𝑠). 

The deterministic controllability operator is defined as  

Ψ𝑠
𝑇 = ∫

𝑣(𝑇)

𝑠

(𝑟′(𝑡)𝑆(𝑇 − 𝑟(𝑡))𝐵2𝐵2
∗𝑆∗(𝑇 − 𝑟(𝑡)𝑟′(𝑡) + 𝑆(𝑇 − 𝑡)𝐵1𝐵1

∗𝑆∗(𝑇 − 𝑡))𝑑𝑡

+ ∫
𝑇

𝑣(𝑇)

𝑆(𝑇 − 𝑡)𝐵1𝐵1
∗𝑆∗(𝑇 − 𝑡)𝑑𝑡, 𝑠 < 𝑣(𝑇),

 

  Ψ𝑠
𝑇 = ∫

𝑇

𝑠
𝑆(𝑇 − 𝑡)𝐵1𝐵1

∗𝑆∗(𝑇 − 𝑡)𝑑𝑡, 𝑠 ≥ 𝑣(𝑇), 

and linear controllability operator Π0
𝑇 ∈ ℒ(ℒ2(Ω, ℱ𝑇 , ℋ), ℒ2(Ω, ℱ𝑇 , ℋ))  associated with (1) is 
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defined as  

Π0
𝑇 = ∫

𝑣(𝑡)

0

(𝑟′(𝑡)𝑆(𝑇 − 𝑟(𝑡))𝐵2𝐵2
∗𝑆∗(𝑇 − 𝑟(𝑡)𝑟′(𝑡) + 𝑆(𝑇 − 𝑡)𝐵1𝐵1

∗𝑆∗(𝑇 − 𝑡))𝔼{⋅ |ℱ𝑡}𝑑𝑡

+ ∫
𝑇

𝑣(𝑡)

𝑆(𝑇 − 𝑡)𝐵1𝐵1
∗𝑆∗(𝑇 − 𝑡)𝔼{⋅ |ℱ𝑡}𝑑𝑡.

 

 We assume  

Hypothesis 1  

1. The functions 𝑓: [0, 𝑇] × ℋ × 𝒰 → ℋ   𝑔: [0, 𝑡] × ℋ × 𝒰 → ℒ𝑄(𝒦, ℋ)  satisfy the 

Lipschitz condition. That is  there exists some positive constant 𝐿 such that for all 𝑥1, 𝑥2 ∈

ℋ, 𝑢1, 𝑢1 ∈ 𝒰, 𝑡 ∈ [0, 𝑇]  

 ∥ 𝑓(𝑡, 𝑥1, 𝑢1) − 𝑓(𝑡, 𝑥2, 𝑢2) ∥2 +∥ 𝑔(𝑡, 𝑥1, 𝑢1) − 𝑔(𝑡, 𝑥2, 𝑢2) ∥𝑄
2  

≤ 𝐿(∥ 𝑥1 − 𝑥2 ∥2 +∥ 𝑢1 − 𝑢2 ∥2). 

2. The functions 𝑓   𝑔  are continuous on [0, 𝑇] × ℋ × 𝒰   and there exists some positive 

constants 𝐿 > 0 such that for all 𝑥 ∈ ℋ, 𝑢 ∈ 𝒰, 𝑡 ∈ [0, 𝑇]  

 ∥ 𝑓(𝑡, 𝑥, 𝑢) ∥2 +∥ 𝑔(𝑡, 𝑥, 𝑢) ∥𝑄
2 ≤ 𝐿(1+∥ 𝑥 ∥2 +∥ 𝑢 ∥2). 

3. 𝑓 and 𝑔 are bounded on [0, 𝑇] × ℋ × 𝒰.  

Under the hypothesis 1  for any 𝑢 ∈ 𝒰𝑎𝑑 there existence the unique mild solution to an integral 

equation (4) [7]. 

III. Controllability of linear systems 

In this section  we will consider the linearized system  

 𝑑𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑢(𝑡) + 𝐵2𝑢(𝑣(𝑡)) + 𝑔(𝑡)𝑑𝑤(𝑡),    𝑡 ∈ [0, 𝑇], (5) 

with initial conditions  

 𝑥(0) = 𝑥0 ∈ ℒ2(Ω, ℱ0, ℋ)      and    𝑢(𝑡) = 0,    𝑡 ∈ [𝑣(0),0]. (6) 

Also  consider the infinite dimensional deterministic system with time-variable delay in control 

given by  

 𝑑𝑦(𝑡) = 𝐴𝑦(𝑡) + 𝐵1𝑤(𝑡) + 𝐵2𝑤(𝑣(𝑡)),    𝑡 ∈ [0, 𝑇], (7) 

with initial conditions  

 𝑦(0) = 𝑦0 ∈ ℒ2(Ω, ℋ)      and    𝑤(𝑡) = 0,    𝑡 ∈ [𝑣(0),0], (8) 

where 𝑤 ∈ 𝐿2([0, 𝑇], 𝒰) is admissible control. 
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Following theorem gives necessary and sufficient condition for the relative exact controllability of 

linear stochastic system (5).  

Theorem 1  The stochastic system (5) is relatively exactly controllable on [0, 𝑇] if and only if 

any one of the following conditions holds. 

1. Π0
𝑇 ≥ 𝛾𝐼.  

2. 𝑅(𝜆, Π0
𝑇) converges as 𝜆 → 0+ in uniform operator topology.  

3. 𝜆𝑅(𝜆, Π0
𝑇) converges to the zero as 𝜆 → 0+ in uniform operator topology.  

Proof. The proof is similar to the proof of Theorem 1 in [8].  

Following theorem  similar to the Theorem 3.2 in [9] relates the relative exact controllability of 

deterministic system (7) and stochastic system (5). 

Theorem 2  The following conditions are equivalent: 

1. The stochastic system (5) relatively exactly controllable on [0, 𝑇].  

2. The deterministic system (7) is relatively exactly controllable on every [𝑠, 𝑇]  0 ≤ 𝑠 ≤ 𝑇.  

3. The deterministic system (7) is small time relatively exactly controllable.  

4. The stochastic system (5) is small time relatively exactly controllable.  

Proof. (1)⇒(2). Assume that the stochastic system (5) is relatively exactly controllable on [0, 𝑇]. 

Then by Theorem 1   

𝔼〈Π0
𝑇𝑥, 𝑥〉 ≥ 𝛾𝔼 ∥ 𝑥|2  forsome𝛾 > 0  andall𝑥 ∈ ℋ. 

Using Lemma 2.3 from [9]  we have  

𝔼〈Π0
𝑇𝑥, 𝑥〉 = 𝔼 ⟨Ψ0

𝑇𝔼𝑥 + ∑

𝑘

𝑗=1

∫
𝑇

0

Ψ𝑠
𝑇𝜙𝑗(𝑠)𝑑𝑤𝑗(𝑠), 𝔼𝑥 + ∑

𝑘

𝑗=1

∫
𝑇

0

𝜙𝑗(𝑠)𝑑𝑤𝑗(𝑠)⟩ 

  
= ⟨Ψ0

𝑇𝔼𝑥, 𝔼𝑥⟩ + 𝔼 ∑𝑘
𝑗=1 𝛼𝑗 ∫

𝑇

0
⟨Ψ𝑠

𝑇𝜙𝑗(𝑠), 𝜙𝑗(𝑠)⟩𝑑𝑠

≥ 𝛾 (∥ 𝔼𝑥 ∥2+ 𝔼 ∑𝑘
𝑗=1 𝛼𝑗 ∫

𝑇

0
∥ 𝜙𝑗(𝑠) ∥2 𝑑𝑠) .

 

Now  if 𝔼𝑥 = 0 and 𝜙(𝑠) is such that  

 𝜙1(𝑠) = {
ℎ if𝑠 ∈ [𝑟, 𝑟 + 𝜖)
0 otherwise

 

and 𝜙𝑗(𝜏) = 0  𝑗 = 2,3, ⋯ , 𝑘  𝜏 ∈ [0, 𝑇]  then  

 ∫
𝑟+𝜖

𝑟
⟨Ψ𝑠

𝑇𝜙1(𝑠), 𝜙1(𝑠)⟩𝑑𝑠 ≥ ∫
𝑟+𝜖

𝑟
∥ 𝜙1(𝑠) ∥2 𝑑𝑠. 
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Dividing through by 𝜖  and taking the limit as 𝜖 → 0+ we obtain  

 〈Ψ𝑟
𝑇ℎ, ℎ〉 ≥ 𝛾 ∥ ℎ ∥2, forsome𝛾 > 0. 

That is  the deterministic system (7) is relatively exactly controllable on each [𝑟, 𝑇]. 

(2)⇒(3). It is clear from definitions. 

(3)⇒(4). Suppose the deterministic system (7) is small time relatively exactly controllable. Then 

the operator Ψ𝑠
𝑟 is invertible and an operator  

 ∧0
𝜏 𝑥 = (Ψ0

𝑟)−1𝔼𝑥 + ∫
𝜏

0
(𝜓𝑠

𝑟)−1𝜙(𝑠)𝑑𝑤(𝑠) 

is the inverse of Π0
𝜏. The invertability of Π0

𝜏 for all 𝜏 > 0 implies small time controllability of 

the stochastic system (5) . 

(4)⇒(1). It is clear from definitions.  

Following theorem gives necessary and sufficient condition for the relative approximate 

controllability of linear stochastic system (5).  

Theorem 3  The stochastic system (5) is relatively approximately controllable on [0, 𝑇] if and 

only if any one of the following conditions holds. 

1. Π0
𝑇 > 0.  

2. 𝜆𝑅(𝜆, Π0
𝑇) converges to the zero as 𝜆 → 0+ in the strong operator topology.  

3. 𝜆𝑅(𝜆, Π0
𝑇) converges to the zero as 𝜆 → 0+ in the weak operator topology.  

Proof. The proof is similar to the proof of Theorem 1 in [10].  

Following theorem  similar to the Theorem 4.2 in [9] relates the relative approximate 

controllability of deterministic system (7) and stochastic system (5). 

Theorem 4  The following conditions are equivalent: 

1. The stochastic system (5) relatively approximately controllable on [0, 𝑇].  

2. The deterministic system (7) is relatively approximately controllable on every [𝑠, 𝑇]  0 ≤

𝑠 ≤ 𝑇.  

3. The deterministic system (7) is small time relatively approximately controllable.  

4. The stochastic system (5) is small time relatively approximately controllable.  

Proof. (1)⇒(2). Let the system (5) be relatively approximately controllable on [0, 𝑇]. Then by 

Theorem 3  

 𝔼 ∥ 𝜆𝑅(𝜆, Π0
𝑇)𝑥 ∥2→ 0  as𝜆 → 0+. 

From Lemma 2.3 in [9]  we have  
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𝔼 ∥ 𝜆𝑅(𝜆, Π0

𝑇)𝑥 ∥2= ∥ 𝜆𝑅(𝜆, Ψ0
𝑇)𝔼𝑥 ∥2

+𝔼 ∑𝑘
𝑗=1 𝛼𝑗 ∫

𝑇

0
∥ 𝜆𝑅(𝜆, Ψ𝑠

𝑇)𝜙𝑗(𝑠) ∥2 𝑑𝑠 → 0.
 (9) 

So  

 𝔼 ∑𝑘
𝑗=1 𝛼𝑗 ∫

𝑇

0
∥ 𝜆𝑅(𝜆, Ψ𝑠

𝑇)𝜙𝑗(𝑠) ∥2 𝑑𝑠 → 0 

for all 𝜙 ∈ ℒ2
ℱ(0, 𝑇; ℒ2(ℝ𝑘, ℋ)). Hence  there is a subsequence {𝜆𝑘} such that for all ℎ ∈ ℋ   

 ∥ 𝜆𝑘𝑅(𝜆𝑘 , Ψ𝑠
𝑇)ℎ ∥→ 0, almosteverywhereon  [0, 𝑇]. 

As 𝑅(𝜆, Ψ𝑠
𝑇) is continuous  above property holds for all 𝑠 ∈ [0, 𝑇). Thus the deterministic system 

(7) is relatively approximately controllable on every [𝑠, 𝑇], 0 ≤ 𝑠 < 𝑇. 

(2)⇒(3). It is clear from definitions. 

(3)⇒(4). Suppose the deterministic system (7) is small time relatively approximately controllable 

on every [𝑠, 𝜏]. Then  

 ∥ 𝜆𝑅(𝜆, Ψ𝑠
𝜏) ∥→ 0  as𝜆 → 0+. 

But  

 ∑𝑘
𝑗=1 𝛼𝑗 ∥ 𝜆𝑅(𝜆, Ψ𝑠

𝜏)𝜙𝑗(𝑠) ∥2≤ ∑𝑘
𝑗=1 𝛼𝑗 ∥ 𝜙𝑗(𝑠) ∥2. 

So by Lebesgue dominated convergence theorem and (9)  we have  

 𝔼 ∥ 𝜆𝑅(𝜆, Π0
𝜏) ∥2→ 0  as𝜆 → 0+. 

Thus  the stochastic system (5) is small time approximately controllable. 

(4)⇒(1). It is clear from definitions.  

IV. Controllability of nonlinear systems 

We have the following representation theorem.  

Lemma 1 ([9])  For any ℎ ∈ ℒ2(ℱ𝑇 , ℋ) there exists a unique 𝜙 ∈ ℒ2
ℱ([0, 𝑇], ℒ𝑄(𝒦, ℋ)) such 

that  

 ℎ = 𝔼ℎ + ∫
𝑇

0
𝜙(𝑠)𝑑𝑤(𝑠). (10) 

Lemma 2  For arbitrary 𝑓(𝑠) ∈ ℒ2
ℱ([0, 𝑇], ℋ), 𝑔(𝑠) ∈ ℒ2

ℱ([0, 𝑇], ℒ𝑄(𝒦, ℋ)), ℎ ∈ ℒ2(ℱ𝑇 , ℋ) 

the control  

 𝑢(𝑡) = 𝐵1
∗𝑆∗(𝑇 − 𝑡)(𝛼 + Ψ0

𝑇)−1(𝔼ℎ − 𝑆(𝑇)𝑥0) 

 −𝐵1
∗𝑆∗(𝑇 − 𝑡) ∫

𝑣(𝑇)

0
(𝛼 + Ψ𝑠

𝑇)−1𝑆(𝑇 −

𝑠)𝑓(𝑠)𝑑𝑠                                                 

            −𝐵1
∗𝑆∗(𝑇 − 𝑡) ∫

𝑣(𝑇)

0
(𝛼 + Ψ𝑠

𝑇)−1[𝑆(𝑇 − 𝑠)𝑔(𝑠) − 𝜙(𝑠)]𝑑𝑤(𝑠), 𝑡 ∈

[0, 𝑣(𝑇)], 

and                                                                                                                                                                                                       

𝑢(𝑡) = (𝐵1
∗𝑆∗(𝑇 − 𝑡) + 𝐵2

∗𝑆∗(𝑇 − 𝑟(𝑡)𝑟′(𝑡))(𝛼 + Ψ0
𝑇)−1(𝔼ℎ

− 𝑆(𝑇)𝑥0)                                            

−(𝐵1
∗𝑆∗(𝑇 − 𝑡) + 𝐵2

∗𝑆∗(𝑇 − 𝑟(𝑡)𝑟′(𝑡)) ∫
𝑇

𝑣(𝑇)
(𝛼 + Ψ𝑠

𝑇)−1𝑆(𝑇 − 𝑟(𝑠))𝑓(𝑠)𝑑𝑠                            

       −(𝐵1
∗𝑆∗(𝑇 − 𝑡) + 𝐵2

∗𝑆∗(𝑇 − 𝑟(𝑡)𝑟′(𝑡)) ×   
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        ∫
𝑇

𝑣(𝑇)
(𝛼 + Ψ𝑠

𝑇)−1[𝑆(𝑇 − 𝑟(𝑠))𝑔(𝑠) − 𝜙(𝑠)]𝑑𝑤(𝑠), 𝑡 ∈ [𝑣(𝑇), 𝑇], (11) 

 transfers the system  

𝑥(𝑡) = 𝑆(𝑡)𝑥0 + ∫
𝑣(𝑡)

0
(𝑆(𝑡 − 𝑠)𝐵1 + 𝑆(𝑡 − 𝑟(𝑠))𝐵2𝑟′(𝑠))𝑢(𝑠)𝑑𝑠

+ ∫
𝑡

𝑣(𝑡)
𝑆(𝑡 − 𝑠)𝐵1𝑢(𝑠)𝑑𝑠 + ∫

𝑡

0
𝑆(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠 + ∫

𝑡

0
𝑆(𝑡 − 𝑠)𝑔(𝑠)𝑑𝑤(𝑠)

 (12) 

 from 𝑥0 ∈ ℋ to  

𝑥(𝑇) = ℎ − 𝛼(𝛼 + Ψ0
𝑇)−1(𝔼ℎ − 𝑆(𝑇)𝑥0) − 𝛼 ∫

𝑇

0
(𝛼 + Ψ𝑠

𝑇)−1𝑆(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠

−𝛼 ∫
𝑇

0
(𝛼 + Ψ𝑠

𝑇)−1[𝑆(𝑡 − 𝑠)𝑔(𝑠) − 𝜙(𝑠)]𝑑𝑤(𝑠)
     (13) 

 at time 𝑇. Here 𝜙 comes from Lemma 1.  

Proof. By substituting (11) and into (12) and using Fubini theorem we get (13) (see Lemma 4 in 

[11]).  

Define the operator Φ𝛼: ℋ × 𝒰𝑎𝑑 → ℋ × 𝒰𝑎𝑑 as follows:  

 (𝑧𝛼(𝑡), 𝛽𝛼(𝑡)) = Φ𝛼(𝑥, 𝑢)(𝑡), (14) 

 where  

𝑧𝛼(𝑡) = 𝑆(𝑡)𝑥0 + ∫
𝑣(𝑡)

0

(𝑆(𝑡 − 𝑠)𝐵1 + 𝑆(𝑡 − 𝑟(𝑟))𝐵2𝑟′(𝑠))𝛽𝛼(𝑠)𝑑𝑠 + ∫
𝑡

𝑣(𝑡)

𝑆(𝑡 − 𝑠)𝐵1𝛽𝛼(𝑠)𝑑𝑠

+ ∫
𝑡

0

𝑆(𝑡 − 𝑠)𝑓(𝑠, 𝑥(𝑠), 𝑢(𝑠))𝑑𝑠 + ∫
𝑡

0

𝑆(𝑡 − 𝑠)𝑔(𝑠, 𝑥(𝑠), 𝑢(𝑠))𝑑𝑤(𝑠),

 

 where  

 𝛽𝛼 = 𝐵1
∗𝑆∗(𝑇 − 𝑡)(𝛼 + Ψ0

𝑇)−1(𝔼ℎ − 𝑆(𝑇)𝑥0)    

     −𝐵1
∗𝑆∗(𝑇 − 𝑡) ∫

𝑣(𝑇)

0
(𝛼 + Ψ𝑠

𝑇)−1𝑆(𝑇 −

𝑠)𝑓(𝑠, 𝑥(𝑠), 𝑢(𝑠))𝑑𝑠            −𝐵1
∗𝑆∗(𝑇 − 𝑡) ∫

𝑣(𝑇)

0
(𝛼 + Ψ𝑠

𝑇)−1[𝑆(𝑇 −

𝑠)𝑔(𝑠, 𝑥(𝑠), 𝑢(𝑠)) − 𝜙(𝑠)]𝑑𝑤(𝑠), 𝑡 ∈ [0, 𝑣(𝑇)], 

 and  

𝛽𝛼 = (𝐵1
∗𝑆∗(𝑇 − 𝑡) + 𝐵2

∗𝑆∗(𝑇 − 𝑟(𝑡)𝑟′(𝑡))(𝛼 + Ψ0
𝑇)−1(𝔼ℎ − 𝑆(𝑇)𝑥0)

− (𝐵1
∗𝑆∗(𝑇 − 𝑡)                + 𝐵2

∗𝑆∗(𝑇 − 𝑟(𝑡)𝑟′(𝑡)) ∫
𝑇

𝑣(𝑇)

(𝛼

+ Ψ𝑠
𝑇)−1𝑆(𝑇 −  𝑟(𝑠))𝑓(𝑠, 𝑥(𝑠), 𝑢(𝑠))𝑑𝑠                 

−(𝐵1
∗𝑆∗(𝑇 − 𝑡) + 𝐵2

∗𝑆∗(𝑇 − 𝑟(𝑡)𝑟′(𝑡))

×                                                         

             ∫
𝑇

𝑣(𝑇)
(𝛼 + Ψ𝑠

𝑇)−1[𝑆(𝑇 − 𝑟(𝑠))𝑔(𝑠, 𝑥(𝑠), 𝑢(𝑠)) − 𝜙(𝑠)]𝑑𝑤(𝑠), 𝑡 ∈

[𝑣(𝑇), 𝑇], (15) 

Existence of unique fixed point to the operator is proved in the following theorem. 

Theorem 5  Assume that Hypothesis 1 is true. Then for any 𝛼 > 0 the operator 𝛷𝛼 has a unique 
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fixed point.  

Proof. Proof is similar to the proof of Theorem 6 in [11].  

Now  we prove relative approximate controllability of nonlinear stochastic system (1). 

Theorem 6  Assume that Hypothesis 1 is true and linear stochastic system (5) is relatively 

approximately controllable, then nonlinear stochastic system (1) is relatively approximately 

controllable.  

Proof. Proof is similar to the the proof of Theorem 7 in [11].  

Corollary 1  Assume that Hypothesis 1 is true. If the semigroup S(t) is analytic and the 

deterministic linear system (7) is relatively approximately controllable on [0, 𝑇] then nonlinear 

stochastic system (1) is relatively approximately controllable on [0, 𝑇].  

Proof. It is well known that  the semigroup 𝑆(𝑡) is analytic and the linear stochastic system (5) is 

relatively approximately controllable on [0, 𝑇] if and only if the deterministic linear system (7) 

relatively approximately controllable on [0, 𝑇]  (See [9]  Theorem 4.3). Then by Theorem 6 

nonlinear stochastic system is relatively approximately controllable.  

Define the operator Φ0: ℋ × 𝒰𝑎𝑑 → ℋ × 𝒰𝑎𝑑 as follows:  

 (𝑧(𝑡), 𝛽(𝑡)) = Φ0(𝑥, 𝑢)(𝑡) 

where  

𝑧(𝑡) = 𝑆(𝑡)𝑥0 + ∫
𝑣(𝑡)

0

(𝑆(𝑡 − 𝑠)𝐵1 + 𝑆(𝑡 − 𝑟(𝑟))𝐵2𝑟′(𝑠))𝛽(𝑠)𝑑𝑠 + ∫
𝑡

𝑣(𝑡)

𝑆(𝑡 − 𝑠)𝐵1𝛽(𝑠)𝑑𝑠

+ ∫
𝑡

0

𝑆(𝑡 − 𝑠)𝑓(𝑠, 𝑥(𝑠), 𝑢(𝑠))𝑑𝑠 + ∫
𝑡

0

𝑆(𝑡 − 𝑠)𝑔(𝑠, 𝑥(𝑠), 𝑢(𝑠))𝑑𝑤(𝑠),

 

 where  

 

𝑢(𝑡) = 𝐵1
∗𝑆∗(𝑇 − 𝑡)𝔼{(Π0

𝑇)−1𝑝(𝑥)|  ℱ𝑡}, 𝑡 ∈ [0, 𝑣(𝑇)],

where

𝑝(𝑥) = 𝑥𝑇 − 𝑆(𝑇)𝑥0 − ∫
𝑣(𝑇)

0
𝑆(𝑇 − 𝑠)𝑓(𝑠, 𝑥(𝑠), 𝑢(𝑠))𝑑𝑠

− ∫
𝑣(𝑇)

0
𝑆(𝑇 − 𝑠)𝑔(𝑠, 𝑥(𝑠), 𝑢(𝑠))𝑑𝑤(𝑠),

 

 and  

𝑢(𝑡) = (𝐵1
∗𝑆∗(𝑇 − 𝑡) + 𝐵2

∗𝑆∗(𝑇 − 𝑟(𝑡)𝑟′(𝑡))𝔼{(Π0
𝑇)−1𝑝(𝑥)|  ℱ𝑡}, 𝑡 ∈ [𝑣(𝑇), 𝑇],

where

𝑝(𝑥) = 𝑥𝑇 − 𝑆(𝑇)𝑥0 − ∫
𝑇

𝑣(𝑇)

𝑆(𝑇 − 𝑟(𝑠))𝑓(𝑠, 𝑥(𝑠), 𝑢(𝑠))𝑑𝑠

− ∫
𝑇

𝑣(𝑇)

𝑆(𝑇 − 𝑟(𝑠))𝑔(𝑠, 𝑥(𝑠), 𝑢(𝑠))𝑑𝑤(𝑠).

 

Now  we are ready to prove relative exact controllability of (1).  

Theorem 7  Assume that Hypothesis 1 holds and the linear stochastic system (5) is relatively 

exactly controllable. Then the operator 𝛷0 has a unique fixed point.  
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Proof. Proof is similar to the proof of Theorem 5.  

Theorem 8  Assume that Hypothesis 1 is true and the linear stochastic system (5) is relatively 

exactly controllable on [0, 𝑇] , then the nonlinear stochastic system (1) is relatively exactly 

controllable.  

Proof. By Theorem 7  there exists a unique fixed point of an operator Φ0. Let (𝑥0, 𝑢0)(⋅) be the 

unique fixed point of an operator Φ0. Then 𝑥𝑇
0 = 𝑥𝑇 for arbitrary 𝑥𝑇 ∈ ℒ2(ℱ𝑇 , ℋ). Thus system 

(1) is relatively exactly controllable on [0, 𝑇].  

Corollary 2  Assume that Hypothesis 1 is true. If the deterministic linear system (7) is relatively 

exactly controllable on all [0, 𝑡], 𝑡 > 0, then nonlinear stochastic system (1) is relatively exactly 

controllable on [0, 𝑇].  

Proof. By Theorem 1  the linear stochastic system (5) is relatively exactly controllable on [0, 𝑇] 

if and only if the deterministic linear system (7) small time relatively exactly controllable on 

[0, 𝑇]  that is  relatively exactly controllable on all [0, 𝑡]  𝑡 > 0. Then by Theorem 7 nonlinear 

stochastic system is relatively exactly controllable on [0, 𝑇].  

V. Examples 

 Example 1  Consider the following parabolic stochastic partial differential equation:  

𝑑𝑦(𝑡, 𝜉) = [𝑦𝜉𝜉(𝑡, 𝜉) + 𝐵1𝑢(𝑡, 𝜉) + 𝐵2𝑢(𝑣(𝑡), 𝜉) + 𝑓(𝑡, 𝑦(𝑡, 𝜉), 𝑢(𝑡, 𝜉))]𝑑𝑡

+𝑔(𝑡, 𝑦(𝑡, 𝜉), 𝑢(𝑡, 𝜉))𝑑𝑤(𝑠), 𝑡 ∈ [0, 𝑇], 𝜉 ∈ [0, 𝜋],

𝑦(𝑡, 0) = 𝑦(𝑡, 𝜋) = 0, 𝑡 > 0.

 (16) 

Let ℋ = 𝒦 = 𝐿2([0, 𝜋]). Define 𝐴𝑦 = 𝑦′′ with  

𝐷(𝐴) = {𝑦 ∈ ℋ|  𝑦, 𝑦𝜉   areabsolutelycontinuous, 𝑦𝜉𝜉 ∈ ℋ, 𝑦(0) = 0, 𝑦(𝜋) = 0}, 

then  

 𝐴𝑦 = ∑∞
𝑛=1 (−𝑛2)(𝑦, 𝑒𝑛(𝜂))𝑒𝑛(𝜂), 𝑦 ∈ 𝐷(𝐴) 

with 𝑒𝑛(𝜂) = √2/𝜋sin𝑛𝜂  𝑛 = 1, 2, 3, ⋯  𝑒0 = 1. 

It is well know that 𝐴 generates a strongly continuous semigroup 𝑆(𝑡)  𝑡 > 0. 

Define an infinite dimensional space  

 𝒰 = {𝑢 = ∑∞
𝑛=2 𝑢𝑛𝑒𝑛  with ∑∞

𝑛=2 𝑢𝑛
2 < ∞} 

with norm ∥ 𝑢 ∥= (∑∞
𝑛=2 𝑢𝑛

2)
1

2. Define a linear continuous mapping 𝐵1 from 𝒰 to ℋ as follows  

 𝐵1𝑢 = 2𝑢2𝑒1(𝜂) + ∑∞
𝑛=2 𝑢𝑛𝑒𝑛(𝜂). 

The system (16) can be written in abstract form given by (1) with 𝐵2 = 𝐼 . Then relative 

approximate controllability of linear system associated with (16) follows from Theorem 2. In 

addition  if Hypothesis 1 is true. Then relative approximate controllability of (16) follows from 

Theorem 6.  

Example 2  Consider the following hyperbolic stochastic partial differential equation:  
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𝑑(𝜕/𝜕𝑡)𝑦(𝑡, 𝜉) = [𝑦𝜉𝜉(𝑡, 𝜉) + 𝐵1𝑢(𝑡, 𝜉) + 𝐵2𝑢(𝑣(𝑡), 𝜉) + 𝑓(𝑡, 𝑦(𝑡, 𝜉), 𝑢(𝑡, 𝜉))]𝑑𝑡

+𝑔(𝑡, 𝑦(𝑡, 𝜉), 𝑢(𝑡, 𝜉))𝑑𝑤(𝑠), 𝑡 ∈ [0, 𝑇], 𝜉 ∈ [0, 𝜋],
𝑦(𝑡, 0) = 𝑦(𝑡, 1) = 0, 𝑡 > 0,
𝑦(0, 𝜉) = 𝜇(𝜉), (𝜕/𝜕𝑡)𝑦(0, 𝜉) = 𝜈(𝜉).

 (17) 

Let ℋ = 𝐷(𝐴1/2) ⊕ 𝐿2([0,1])  endowed with the inner product  

 〈𝑤, 𝑣〉 = ⟨[
𝑤1

𝑤2
] , [

𝑣1

𝑣2
]⟩ = ∑∞

𝑛=1 {𝑛2𝜋2〈𝑤1, 𝑒𝑛〉〈𝑒𝑛, 𝑣1〉 + 〈𝑤2, 𝑒𝑛〉〈𝑒𝑛, 𝑣2〉}. 

where 𝑒𝑛(𝜂) = √2sin𝑛𝜋𝜂  𝑛 = 1, 2, 3, ⋯. Let  

 𝑧 = [
𝑦
(𝜕/𝜕𝑡)𝑦] , 𝑧(0) = [

𝜇
𝜈

] , 𝐵1 = 𝐵2 = [
0
𝐼

] , 𝐺 = [
0
𝑔

] , 𝐹 = [
0
𝑓

]. 

Define 𝐴0𝑦 = (𝑑2/𝑑𝜉2)𝑦 and  

 𝐴 = [
0 𝐼
−𝐴0 0

], 

with  

𝐷(𝐴0) = {𝑦 ∈ 𝐿2([0,1])| 𝑦, 𝑦𝜉   are absolutely continuous, 𝑦𝜉𝜉 ∈ ℋ, 𝑦(0) = 0, 𝑦(1) = 0}. 

then system (17) can be written as  

 𝑑𝑧 = (𝐴𝑧 + 𝐵1𝑢 + 𝐵2𝑢(𝑣) + 𝐹(𝑡, 𝑧, 𝑢))𝑑𝑡 + 𝐺(𝑡, 𝑧, 𝑢)𝑑𝑤, 𝑧(0) = [
𝜇
𝜈

]. (18) 

It is well know that 𝐴 is the infinitesimal generator of a contraction semigroup 𝑆(𝑡)  𝑡 > 0. 

It is well known that the linear stochastic system associated with (18) is relatively exactly 

controllable [9]. In addition  if Hypothesis 1 is true. Then relative exact controllability (18) and 

hence that of (17) follows from Theorem 8.  
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