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{[ Abstract

We consider the stochastic controllability problem for nonlinear infinite dimensional systems with time
variable delay in controls. Controllability problem for infinite dimensional systems has been studied by
numerous researchers. Most of the researchers have considered the linear or semilinear stochastic systems
with fixed time delay in control. Some of the researchers have studied controllability of deterministic
semilinear systems with fixed delay in control. In this article we have studied the controllability of stochastic
nonlinear infinite dimensional systems with time variable delay in control. We have illustreted the results
obtained in this article with some examples.
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1. Introduction

Let H, K and U be separable Hilbert spaces. Let (Q,F,[P) be a complete probability space
with a filtration {F;};»¢. A filtration {F;};»o is right continuous and F, contains all P-null sets.
E(-) denotes the expectation with respect to measure P. Consider the nonlinear system with

variable delay in control as follows:

dx(t) = (Ax(t) + Byu(t) + Bau(w(t)) + £ (&, x(t), u(t))dt 1
+9(t x(), u(t))dw(t), 0<t<T, (1)

with initial conditions

Xo = X9 € Ly(Q,Fy, H) and u(t) =0, t € [v(0),0]. (2)
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A:D(A) c H — H is a closed linear operator generating strongly continuous semigroup S(t),
Bi, B; € L(U,H) are bounded linear operators and {w(t):t > 0} is a given K -valued Wiener
process with a finite trace nuclear covariance operator @ > 0. Let L, (¥, H) be the space of all
Q -Hilbert-Schmidt operators g:[0,T] X H X U = Lo(K,H) with norm |||l defined as ||
g lo=Tr(gQg") and f:[0,T]XH xXU—>H. LY ([0,T] X H,H) is the space of all F,-
adapted, H -valued measurable square integrable processes with the norm [Ill3. v(t) =t —
h,(t) is continuously differentiable and strictly increasing function defined on [0,T], and
h,(t) > 0 is a time variable point delay. For convenience, consider the time leading function
r(t) = t + h(t), which is the inverse function for v(t). That is, we have r(v(t)) = t. Note that
for t € [0, v(T)] system (1) is in fact a system without delay. Hence, this point onwards we will
assume that v(T) > 0.

We find many results on exact controllability of infinite dimensional systems, which are
summarized by Balachandran and Dauer [1]. Controllability of infinite dimensional systems with
time variable delays in control is studied by Klamka [2]. Klamka studied controllability of linear
stochastic systems with fixed time delay in control in [3] and with time variable delay in control
in [4]. Shen and Sun [5] studied relative controllability of nonlinear stochastic systems with delay
in control. Controllability of deterministic semilinear systems with fixed delay in control is studied
by Kumar and Sukavanam [6]. This article is a part of Ph. D. Thesis [12].

In this article we will study the controllability of stochastic nonlinear infinite dimensional systems
with time variable delay in control. In section 2, some preliminaries are discussed. Controllability
of stochastic linear infinite dimension systems with variable delay control are studied in section 3,
and nonlinear systems in section 4. Finally in section 5, some examples are discussed.

II. Preliminaries

The mild solution of (1) is defined as
x(t) = S(t)xg+ fot S(t —s)(Byu(s) + f(s,x(s),u(s)))ds
+ fot S(t —s)Byu(v(s))ds + fot S(t—15)g(s,x(s),u(s))dw(s).

count the zero initial control for t € [v(0),0], the mild solution (3) can be written as

3)
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x(t) = S®xo+ [ (S(t = 5)By + S(t — (s))Byr'(s))u(s)ds

+ fvt(t) S(t — s)Byu(s)ds + fot St —s)f(s,x(s),u(s))ds 4)

+ fot S(t—95)g(s,x(s),u(s))dw(s).
Let Uyg = L;: £([0, T] x Q,U). Define the set of all reachable states as follows:

Ry (T; x0,u) = {x(T; x0, W|u(-) € Uga, X0 € L2(L,Fr, H)}.

Definition 1 The controlled stochastic system (1) is said to be relatively exactly controllable on
[0, T] if for every initial condition xo € L,(2,Fy, H), there is some control u € U,y such that
R(T; xo,u) = L,(2,Fr, H).
Definition 2 The controlled stochastic system (1) is said to be relatively approximately
controllable on [0, T] if for every initial condition xy € L,(0,Fy, H), there is some control u €
Ugg such that R(T; xg,u) = Ly(Q, Fr, ).
It T > 0 is arbitrarily small, then we say that system is small time relatively exactly controllable,
and small time relatively approximately controllable.

Define the linear bounded control operator Ly € L(Uyq, L,(, Fr,H)) as follows:

Lyu = [ (S(T = B, + ST — () Bor' (5))u(s)ds + f )

S(T — s)Byu(s)ds.
The adjoint L7: Ly (Q,Fr, H) = Ugq of Ly is

= (BiS"(T—t) + B;S*(T —v(E)r'(O)EL [Fe},  t€[0,v(D)],
Ly = BiS(T—0OE{|F},  te )Tl

We observe that

R(T;xg,u) = S(T)xg + ImLy + fOT S(T —3s)f(s,x(s),u(s))ds

+ [, S(T = $)g(s,x(s), u(s))dw(s).

The deterministic controllability operator is defined as
v(T)
pI = j (r'(&)S(T — r(t))B,B;S* (T — r(t)r'(t) + S(T — t)B,B;S*(T — t))dt
° T
+j S(T —t)B,B;S*(T — t)dt, s <v(T),
v(T)

Wl = ['S(T —t)BB;iS*(T - t)dt, s > v(T),

and linear controllability operator IJ € L(L,(Q, Fr, H), L,(Q, Fr, H)) associated with (1) is
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defined as
v(t)
ny = f (' (t)S(T —r(t))B,B;S* (T —r(t)r'(t) + S(T — t)B,B;S*(T — t))E{- |F;}dt
0
+f S(T — t)B,BiS*(T — t)E{- |F.}dt.
v(t)

We assume
Hypothesis 1
1. The functions f:[0,T]XH XU->H , g:[0,t] X H XU > Lo(K,H) satisfy the
Lipschitz condition. That is, there exists some positive constant L such that for all x;, x, €
H, uy, uy €U, t€[0,T]
I f(t 1, u) = (& X2, u2) 12 41 gt xq,up) — g (& X2, u2) 113
< Ll xg — x5 117 +1 uy — uy 112).
2. The functions f, g are continuous on [0,T] X H X U, and there exists some positive
constants L > 0 such thatforall x e H, u€ U, t € [0,T]
I £(tx,uw) 112 +1 g(t, x,u) IIéS LCL+I 2 1% 41w 01%).
3. f and g are bounded on [0,T] X H X U.
Under the hypothesis 1, for any u € U,, there existence the unique mild solution to an integral
equation (4) [7].
III.  Controllability of linear systems
In this section, we will consider the linearized system
dx(t) = Ax(t) + Byu(t) + Bou(v(t)) + g(t)dw(t), t €[0,T], (5)
with initial conditions
x(0) =x¢ € L(Q,Fy, H) and u(t) =0, t € [v(0),0]. (6)
Also, consider the infinite dimensional deterministic system with time-variable delay in control
given by
dy(t) = Ay(t) + Byw(t) + B,w(v(t)), te[0,T], (7)
with initial conditions
y(0) =y, € L,(Q,H) and w(t) =0, t € [v(0),0], (8)
where w € L,([0,T],U) is admissible control.
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Following theorem gives necessary and sufficient condition for the relative exact controllability of
linear stochastic system (5).
Theorem 1 The stochastic system (5) is relatively exactly controllable on [0,T] if and only if
any one of the following conditions holds.

1. 17 >yl

2. R(A, M) convergesas A » 0% in uniform operator topology.

3. AR(A, M) converges to the zero as A = 0% in uniform operator topology.
Proof. The proof is similar to the proof of Theorem 1 in [8].
Following theorem, similar to the Theorem 3.2 in [9] relates the relative exact controllability of
deterministic system (7) and stochastic system (5).
Theorem 2 The following conditions are equivalent:

1. The stochastic system (5) relatively exactly controllable on [0, T].

2. The deterministic system (7) is relatively exactly controllable on every [s,T], 0 < s < T.

3. The deterministic system (7) is small time relatively exactly controllable.

4. The stochastic system (5) is small time relatively exactly controllable.
Proof. (1)=(2). Assume that the stochastic system (5) is relatively exactly controllable on [0, T].
Then by Theorem 1,

E(IITx,x) = yE |l x|*> forsomey >0 andallx € 7.

Using Lemma 2.3 from [9], we have
ko .t k..
E(I%x,x) = E(WIEx + Z J WIgi(s)dw;(s), Ex + z J ¢, (s)dw;(s)
— Jo — Jo
Jj=1 j=1

T
= (YEx,Ex)+EYS; o Jo (PT;(s), p;(s))ds
>y (Il Ex 12+ EX, a5 f) 1l (s) 17 ds).
Now, if Ex = 0 and ¢(s) is such that
$1(s) = {
and ¢;(t) =0, j=23,--,k, T €[0,T], then

h ifs€[r,r+¢€)
0 otherwise

r+e

[T 1(5), pr())ds = [N o (s) 17 ds.
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Dividing through by €, and taking the limit as € » 07 we obtain
(WIh,h) =y Il h |I?, forsomey > 0.
That is, the deterministic system (7) is relatively exactly controllable on each [r,T].
(2)=(3). It is clear from definitions.
(3)=(4). Suppose the deterministic system (7) is small time relatively exactly controllable. Then

the operator W¢ is invertible and an operator

Apx = () TEx + [§ W) d(s)aw(s)

is the inverse of II§. The invertability of I1§ for all T > 0 implies small time controllability of
the stochastic system (5) .
(4)=(1). It is clear from definitions.
Following theorem gives necessary and sufficient condition for the relative approximate
controllability of linear stochastic system (5).
Theorem 3 The stochastic system (5) is relatively approximately controllable on [0,T] if and
only if any one of the following conditions holds.

1. 1f>o.

2. AR(A,TIT) converges to the zero as A — 0% in the strong operator topology.

3. AR(A, 1Y) converges to the zero as A —» 0% in the weak operator topology.
Proof. The proof is similar to the proof of Theorem 1 in [10].
Following theorem, similar to the Theorem 4.2 in [9] relates the relative approximate
controllability of deterministic system (7) and stochastic system (5).
Theorem 4 The following conditions are equivalent:

1. The stochastic system (5) relatively approximately controllable on [0, T].

2. The deterministic system (7) is relatively approximately controllable on every [s,T], 0 <
s<T.

3. The deterministic system (7) is small time relatively approximately controllable.

4. The stochastic system (5) is small time relatively approximately controllable.
Proof. (1)=(2). Let the system (5) be relatively approximately controllable on [0, T]. Then by
Theorem 3

E |l AR(ALTDx 1?0 asi - 0%,

From Lemma 2.3 in [9], we have
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E | AR(LTID)x 2= | AR(A, WT)Ex |I2 o
+EXS, a; [, Il AR(L¥D);(s) II? ds — 0.

So

EYX_, a; [] I AR(L,WD);(s) I7 ds > 0
for all ¢ € L3 (0,T; L,(R¥, H)). Hence, there is a subsequence {A,} such that for all h € 7,

Il R4, YR lI- 0, almosteverywhereon [0, T].
As R(4,¥T) is continuous, above property holds for all s € [0, T). Thus the deterministic system
(7) is relatively approximately controllable on every [s,T], 0 < s <T.
(2)=(3). It is clear from definitions.
(3)=(4). Suppose the deterministic system (7) is small time relatively approximately controllable
on every [s, t]. Then

Il AR(AL,Y¥YH) II-> 0 asd - 0F.
But
o1 @ 1 AR W ;(s) 1P< TE_; a; Il () I
So by Lebesgue dominated convergence theorem and (9), we have
E |l AR(ALTE) I?-> 0 asd— 0t.

Thus, the stochastic system (5) is small time approximately controllable.
(4)=(1). It is clear from definitions.
IV.  Controllability of nonlinear systems
We have the following representation theorem.
Lemma 1 ([9]) For any h € L,(Fr,H) there exists a unique ¢ € L ([0, T], Lo (K, H)) such
that

h=Eh+ [, ¢(s)dw(s). (10)
Lemma 2 For arbitrary f(s) € L3 ([0,T],3), g(s) € LI ([0,T], Ly(K,H)), h € L;(Fr, H)

the control
u(t) =B{S" (T —t)(a + ‘}’OT)‘l([Eh —S(T)xyp)

~BiS* (T =) [} (a +WI)S(T -
s)f(s)ds
—BiS* (T —0) [T (@ + W) [S(T — 5)g(s) — p(s)]aw(s), t €
[0, »(T)],
and
u(t) = (BiS*(T — t) + BiS*(T — r()r' () (a + W)~ (Eh

= S5(T)xo)
—(B;iS*(T — t) + B3S*(T — r(t)r'(t)) fvT(T) (a + WH7IS(T — r(s))f(s)ds
—(BiS*(T —t) + B3S*(T —r(Or' (1)) x
Copyright © 2023, Scholarly Research Journal for Interdisciplinary Studies



R. B. Sonawane | 434
(Pg.427-438)

Lyry (@+WDTUS(T = () g(s) = p(s)]dw(s), ¢ € [v(T), T}, (11)
transfers the system
x(t) = S®xo+ [ (S(t = 5)By + S(t — (s))Byr' (s))u(s)ds
+ fj(t) S(t — s)Byu(s)ds + [ S(t — s)f(s)ds + [ S(t — $)g(s)dw(s)
from x, € H to
x(T)= h—a(a+¥I) Y ER—-S(T)xy) — fOT (a + ¥YH™1S(t — s)f(s)ds
—a [ (a+¥D)S(t —5)g(s) — p(s)]dw(s)

at time T. Here ¢ comes from Lemma 1.
Proof. By substituting (11) and into (12) and using Fubini theorem we get (13) (see Lemma 4 in

[11]).

(12)

(13)

Define the operator @ ,: H X U,y = H X Uy, as follows:
(z%(£), B* (1)) = P (x, u)(0), (14)

where

z%(t) = S(t)x +]

0

t

(S(t—5s)B; + S(t —r(r))B,yr'(s))B*(s)ds + J S(t —s)B,L%(s)ds
v(t)

v(t)

t

+f St—=5)f(s,x(s),u(s))ds + f S(t—15)g(s,x(s),u(s))dw(s),
0 0

where
B* = BiS* (T — t)(a + W) "(Eh — S(T)x,)
~BiS* (T =) [T (a + WD) 1S(T -

$)f (s, x(s),u(s))ds ~B;S* (T =) [[" (a + W) [S(T -
$)9(s,x(s),u(s)) — ¢(s)ldw(s), t € [0,v(T)],

and

B = (BiS*(T — t) + BiS*(T — r()r'(t))(a + W)~ (Eh — S(T)x,)
— (B;S*(T—1t) + B;S*(T — r(t)r’(t))J (a
v(T)

+WHTIS(T = 7(s))f(s,x(s), u(s))ds
—(BiS*(T —t) + B;S*(T —r(t)r'(t))
X
[0 (@ + OIS =~ r(s)g (s 2(8)u(s)) — p()|dw(s), t €
[v(T), T], (15)

Existence of unique fixed point to the operator is proved in the following theorem.
Theorem 5 Assume that Hypothesis 1 is true. Then for any a > 0 the operator @, has a unique
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fixed point.
Proof. Proof is similar to the proof of Theorem 6 in [11].
Now, we prove relative approximate controllability of nonlinear stochastic system (1).
Theorem 6 Assume that Hypothesis 1 is true and linear stochastic system (5) is relatively
approximately controllable, then nonlinear stochastic system (1) is relatively approximately
controllable.
Proof. Proof is similar to the the proof of Theorem 7 in [11].
Corollary 1 Assume that Hypothesis 1 is true. If the semigroup S(t) is analytic and the
deterministic linear system (7) is relatively approximately controllable on [0,T] then nonlinear
stochastic system (1) is relatively approximately controllable on [0, T].
Proof. 1t is well known that, the semigroup S(t) is analytic and the linear stochastic system (5) is
relatively approximately controllable on [0, T] if and only if the deterministic linear system (7)
relatively approximately controllable on [0,T] (See [9], Theorem 4.3). Then by Theorem 6
nonlinear stochastic system is relatively approximately controllable.
Define the operator ®%: H X U,q = H X Uy as follows:

(z(), B()) = °(x, w)(t)

where

z(t) = S(t)x, + f

0

v(t) t

(S(t —s)B; + S(t —r(r)Byr'(s))B(s)ds + j S(t —s)B1L(s)ds
v(t)

+ f St—=35)(s,x(s),u(s))ds + f S(t—5)g(s,x(s),u(s))dw(s),
0 0

where
u(t) = BiS*(T - OE{I)'p(x)| F}, t €[0,v(T)],
where
p() = xp—S(Mixg — f; ST = 5)f (s5,2(5),u(s))ds
= [P S(T = $)g(s,%(5), u(s))dw(s),
and
u(t) = (BiS*(T —t) + B;S*(T —r(Or'(O)E{() 'p(x)|  Fb,  t€[v(),T],
where
T
p(x) = xr —S(T)xo — f( )S(T —1r(s))f (s, x(s),u(s))ds

_ j ST =TI uE)dw )

Now, we are ready to prove relative exact controllability of (1).
Theorem 7 Assume that Hypothesis 1 holds and the linear stochastic system (5) is relatively
exactly controllable. Then the operator ®° has a unique fixed point.
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Proof. Proof is similar to the proof of Theorem 5.

Theorem 8 Assume that Hypothesis 1 is true and the linear stochastic system (5) is relatively
exactly controllable on [0,T], then the nonlinear stochastic system (1) is relatively exactly
controllable.

Proof. By Theorem 7, there exists a unique fixed point of an operator ®°. Let (x°, u®)(-) be the
unique fixed point of an operator ®°. Then x? = x; for arbitrary x; € L,(Fr, H). Thus system
(1) is relatively exactly controllable on [0, T].

Corollary 2 Assume that Hypothesis 1 is true. If the deterministic linear system (7) is relatively

exactly controllable on all [0,t], t > 0, then nonlinear stochastic system (1) is relatively exactly
controllable on [0, T].

Proof. By Theorem 1, the linear stochastic system (5) is relatively exactly controllable on [0, T]
if and only if the deterministic linear system (7) small time relatively exactly controllable on
[0, T], that is, relatively exactly controllable on all [0,t], t > 0. Then by Theorem 7 nonlinear
stochastic system is relatively exactly controllable on [0, T].
V. Examples
Example 1 Consider the following parabolic stochastic partial differential equation:

dy(t,§) = [yee(t,$) + Biu(t, ) + Bu(v(t), §) + f (&, y(t, &), u(t, §))]dt

+9(t y(t, ), u(t, §))dw(s), t € [0,T], & € [0,m], (16)

y(t,0)= y(m)=0,t>0.
Let H = K = L,([0,7]). Define Ay = y"" with

D(A)={y€H| 1y, y areabsolutelycontinuous,y;; € #, y(0) =0, y(m) = 0},
then

Ay =Yoo, (1), en(M))en(m), ¥ € D(4)
with e,(n) =/2/msinnp, n=1, 2, 3, -+, eg = 1.
It is well know that A generates a strongly continuous semigroup S(t), t > 0.
Define an infinite dimensional space
U={u= 2;?:2 upe, with Z?f:z urzl < oo}
withnorm || u = Q=2 u,zl)% Define a linear continuous mapping B; from U to H as follows
Byu = 2uze; () + Xn=2 unen(n).

The system (16) can be written in abstract form given by (1) with B, = 1. Then relative
approximate controllability of linear system associated with (16) follows from Theorem 2. In
addition, if Hypothesis 1 is true. Then relative approximate controllability of (16) follows from
Theorem 6.
Example 2 Consider the following hyperbolic stochastic partial differential equation:
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d(0/00)y(t,§) = [yee(t,$) + Biu(t,§) + Bou(w(t), §) + f(, ¥ (¢, §) u(t, §))]dt

+9(ty (), u(t,§))dw(s), t €[0,T], § €[0,m], 17)
y(t,0) = y(t,1)=0,t>0,
y(0,$) = 1(€), (9/0t)y(0,$) = v($).
Let H = D(AY?) @ L,([0,1]), endowed with the inner product
w,0) = ([ ] [on]) = By (2> W en)en v2) + (W, en)en, v2))

where e,(n) = V2sinnmy, n =1, 2, 3, ---. Let

2= (ool 0 =[] =8 =[] o =[] =[]
Define Ayy = (d?/dé?)y and
2=, ol
with

D(Ap) ={y € L,([0,1])| y,ys are absolutely continuous,y;: € #,y(0) = 0,y(1) = 0}.
then system (17) can be written as

dz = (Az + Byu + Byu(v) + F(t, zw)dt + G(t, z,wdw, z0) =[] (18)
It is well know that A is the infinitesimal generator of a contraction semigroup S(t), t > 0.
It is well known that the linear stochastic system associated with (18) is relatively exactly
controllable [9]. In addition, if Hypothesis 1 is true. Then relative exact controllability (18) and
hence that of (17) follows from Theorem 8.
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