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ABSTRACT

Since the late 2010s, Artificial Intelligence (Al) including
machine learning, boosted through deep learning, has
boomed as a vital tool to leverage computer vision, natural
language processing and speech recognition in
revolutionizing zoological research. This review provides
an overview of the primary tasks, core models, datasets,
and applications of Al in zoological research, including
animal classification, resource conservation, behavior,
development, genetics and evolution, breeding and health,
disease models, and paleontology. Additionally, we
explore the challenges and future directions of integrating
Al into this field. Based on numerous case studies, this
review outlines various avenues for incorporating Al into
zoological research and underscores its potential to
enhance our understanding of the intricate relationships
that exist within the animal kingdom. As we build a bridge
between beast and byte realms, this review serves as a
resource for envisioning novel Al applications in zoological
research that have not yet been explored.
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INTRODUCTION

Artificial intelligence (Al) stands at the forefront of modern
scientific innovation (Wang etal,, 2023a). Its research
applications range from medical diagnostics (Moor etal.,
2023) to climate tracking (Gore, 2022), with the scope of Al
research expanding continuously. Of note, Al is making
particularly significant strides in zoological research (Romero-
Ferrero et al., 2019).

One challenge of zoological research, a discipline focused
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on animal classification, behavior, physiology, development,
genetics and evolution, disease modeling, and paleozoology,
is the management and interpretation of extensive and
complex datasets. The rapid emergence of advanced Al
techniques, such as machine learning (Jordan & Mitchell,
2015) and, in particular, deep learning (Hinton et al., 2006), as
well as the emergence of big data, has marked the beginning
of an era of intelligent data-centric zoological research.

Although Al has been popular for some time, its
incorporation into zoological research has not kept pace with
its application in other biological fields (Figure 1A, B;
Supplementary Table S1). Thus, the question arises as to why
Al technologies have not been promptly adopted in animal
research. A possible factor for the lack of application may be
the inefficiency of computational resources and scarcity of
expansive zoological datasets. Additionally, zoologists may
lack the foundational knowledge required to understand and
implement these approaches, creating uncertainty regarding
the selection of models suitable for their objectives. Moreover,
the rapid and continuous evolution of complex Al model
architectures, like Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019), make it challenging
for zoological researchers to stay current. As access to
advanced computational tools and comprehensive zoological
datasets expands, it may pave the way for broader adoption of
these algorithms in mainstream research. Nevertheless,
unfamiliarity with these techniques persists among many
zoologists, necessitating a foundational understanding of
when, why, and how to employ these methods, as well as
what type of data is suitable for their application.

In this review, we present an introduction to Al and its
primary tasks, elucidating the key models, datasets, and
challenges faced. We also explore the intersection where
beasts meet bytes, examining how Al applications are
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A: Timeline of various Al models and their applications in biological and zoological research. B: Word cloud charts displaying counts
(Supplementary Table S1) of different Al models used in biological and zoological research, represented after log, transformation. C: Branches of
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Language Processing; NN: Neural Network; PCA: Principal Component Analysis; PPO: Proximal Policy Optimization; ResNet: Residual Neural
Network; RF: Random Forest; RNN: Recurrent Neural Network; SOM: Self-Organizing Map; SVM: Support Vector Machine; t-SNE: t-distributed

Stochastic Neighbor Embedding; XGBoost: Extreme Gradient Boosting.

revolutionizing diverse areas of zoological research. By
analyzing real-world case studies and predicting future
directions, we offer a comprehensive overview of the role of Al
in deepening our understanding of the animal kingdom and
the potential fields it may unlock in the coming years.

ARTIFICIAL INTELLIGENCE

Al and its primary tasks

Al was first defined by Stanford Professor John McCarthy in
1955 as a “the science and engineering of making intelligent
machines” (Shabbir & Anwer, 2018). Machine learning, a
fundamental branch of Al, is characterized by the capability of
systems to autonomously learn from large datasets (de Souza
Filho etal.,, 2020). Machine learning attempts to utilize
experience, usually in the form of data, to improve model
performance and the process of learning (Sarker, 2021).
Therefore, machine learning research primarily focuses on the
development of algorithms that generate models from data,
termed “learning algorithms”. In the field of zoology, machine
learning is helping to shed light on tasks such as species
classification, behavior identification, animal population size
prediction, bird sound recognition, and nonhuman animal
language learning (Layton etal., 2021; Norouzzadeh et al.,
2018). These specific tasks are broadly categorized into three
types of machine learning, differentiated by their respective
data training approaches: supervised, unsupervised, and
reinforcement learning (D6nmez, 2013) (Figure 1C).
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Supervised learning, one of the most widely used machine
learning methods, relies on explicit datasets labeled by
experts (Jiang et al., 2020). Supervised learning algorithms
build models to identify relationships within a set of feature-
label pairs, utilizing the label, also known as the target, for
training the system (Li, 2017c). These algorithms fall into two
main categories: classification (discrete modeling) and
regression (continuous modeling). Both categories are
predictive modeling techniques, differing only in their target
(response) variables. In classification, the target variable is
discrete and takes the form of categories (class labels). For
example, animal species identification (Binta Islam etal.,
2023), i.e., species classification, relies on learning from
diverse data types, such as images, footprints, sounds, and
videos, collected from various animals. More importantly,
these data are manually annotated with labels indicating the
species to which each sample belongs, with the labels
corresponding to a predefined list of species. In this task, a
model is trained to predict the species name when presented
with new input data, such as animal photos. In contrast, in
regression tasks, the target variable is continuous rather than
discrete. For example, predicting the weight of cultivated cattle
constitutes a continuous regression analysis, as the target
variable, weight, is continuous.

Unsupervised learning (Li, 2017a) analyzes and clusters
unlabeled datasets. Unlike in supervised learning, the inputs in
this approach are usually raw data without available labels.
These algorithms uncover hidden patterns in data without



requiring human intervention, thus termed “unsupervised”.
Unsupervised learning models are used for three main tasks:
clustering algorithms, which aim to discover unknown
subgroups in unlabeled data based on their similarities or
differences; dimensionality reduction techniques, which aim to
minimize the dimensionality of data by discarding redundant or
non-task-relevant information; and anomaly detection, which
aims to identify observations that may have originated from
different data generation processes. For example, application
of the clustering task has enabled researchers to uncover the
social structures within jackdaw populations by analyzing
unlabeled data of visitation times of each individual (Valletta
etal., 2017).

Reinforcement learning (Li, 2017c) involves a family of
algorithms that typically operate sequentially. These
algorithms are trained through interactions between agents
and the (virtual) environment and applied to tasks where
learning depends on executed actions and resulting
consequences. A notable success is the AlphaGo computer
program (Wang etal., 2016), which outperformed human
players based on its integration of deep neural networks and
reinforcement learning techniques. Frankenhuis et al. (2019)
have advocated for the broader application of reinforcement
learning methods in behavioral ecology to address the
challenge of inferring the unknown reward functions of agents
and to explore how biological mechanisms tackle
developmental and learning problems.

In addition, Al tasks can also be classified based on the
type of input data they process. The three typical subfields
include computer vision (CV), natural language processing
(NLP), and multi-modal learning. In the field of CV, the primary
types of input data include images (e.g., grayscale, color, and
binary images) and three-dimensional (3D) representations
(e.g., point clouds (Liao et al., 2021)). In the field of NLP, the
main data types include text data, speech data (e.g., voice
and sound recordings), and time-series data (e.g., motion
trajectories captured over time). In contrast, multi-modal
learning (Lahat etal.,, 2015) integrates information from
various data sources, ranging from CV to NLP and including
images, text, and voice recordings. This integrative approach
affords a richer data representation and more effectively
captures relationships, thereby enabling a more complex and
comprehensive analytical understanding.

CV seeks to automate tasks that the human visual system
can perform and is concerned with the automatic extraction,
analysis, and understanding of useful information from a
single image or a sequence of images (e.g., videos). CV
involves the development of a theoretical and algorithmic
basis to achieve automatic visual understanding (Farahbakhsh
etal., 2020). In this field, typical tasks (Chai etal., 2021)
include image classification, retrieval, object detection,
semantic segmentation, instance segmentation, object
localization, action recognition, and object tracking, among
other more specific tasks. Image classification (Lorente et al.,
2021) is a fundamental task in CV that aims to categorize an
image as a whole under a specific label. When the
classification becomes highly detailed or reaches instance-
level, it is often referred to as image retrieval (Chen etal.,
2023b), which also involves the identification of similar images
within a large database. Object detection (Zou et al., 2023)
aims to detect and locate objects of interest within an image or
video. Object localization focuses on locating an instance of a
particular object category in an image, typically by specifying a

tightly cropped bounding box centered on the instance. In the
literature, “object localization” refers to locating one instance
of an object category, whereas “object detection” focuses on
locating all instances of a category in a given image (Chai
et al., 2021). Semantic segmentation aims to categorize each
pixel in an image into a class or object, producing a dense
pixel-wise segmentation map where each pixel is assigned to
a specific class or object. Instance segmentation involves
identifying and separating individual objects within an image,
including detecting the boundaries of each distinct object of
interest and assigning a unique label to each one. CV is
skilled at handling various scenes related to images and
videos.

NLP enables a computer system to automatically process
and analyze sequence data, even extracting latent information
by understanding the syntax in sequences, which is natural for
humans (Young et al., 2018). Notably, NLP can capture dense
vector representations, known as feature embeddings, from
raw sequence data (Pilehvar & Camacho-Collados, 2021).
Based on these feature representations, various language
models have been created for downstream NLP tasks (Young
et al., 2018). Within the context of zoological research, several
closely related NLP tasks are commonly applied, including
tokenization (Sodhar et al., 2020) for text data processing, text
classification for video recognition (Xu etal., 2016), and
language modeling for text or gene sequences. With
advancements in deep learning models, NLP has the potential
to revolutionize research in the zoological domain.

Core models of Al

This subsection provides an overview of deep learning from
various perspectives, including main concepts, architectures,
and computational tools. The aim is to highlight the most
important aspects of deep learning and serve as an instructive
guideline for zoologists seeking to utilize this tool.

Due to its extraordinary learning capabilities, deep learning
technology, which originated from artificial neural networks,
has become a hot topic in the context of Al, with wide
application in various areas such as CV, NLP, and speech
recognition. Notably, between 2018 and 2021, the number of
publications on neural network algorithms has shown a five-
fold increase (Shine & Murphy, 2022).

Al models are broadly categorized into shallow or deep
learning models based on the number of linear or non-linear
transformations the input data undergo before yielding an
output (Ahmad et al., 2018). Shallow models typically convert
inputs once or twice before transmitting outputs, while deep
models, derived from conventional neural networks, commonly
convert inputs multiple times (Meir et al., 2023). As a result,
deep models can learn more complex patterns, thereby
facilitating end-to-end learning without the need for manual
feature engineering and exhibit robust performance in CV and
sequential data analysis tasks. The introduction of
backpropagation (BP) algorithms for artificial neural networks
(commonly referred to as neural networks) in the 1980s
ushered in an era of machine learning dominated by statistical
models (Janiesch et al., 2021), which continues to this day. In
the 1990s, challenges such as overfitting and slow training
speed in artificial neural networks led to the proposition of
various other shallow machine learning models, including
support vector machines (SVM), boosting techniques, and
maximum entropy methods (e.g., logistic regression) (Xu
etal., 2021). SVM and boosting are examples of hidden nodes
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rather than models (e.g., logistic regression) that utilize hidden
nodes. Geoffrey Hinton, along with Yoshua Bengio and Yann
LeCun, has been a persistent advocate for the advancement
of neural networks, playing a significant role in the
development of a practical and feasible deep learning
framework (Wang & Duan, 2021).

The effectiveness of machine learning algorithms is highly
dependent on the integrity of the input data representation.
Therefore, feature engineering has long been an important
research area in machine learning, aiming to extract features
from raw data with considerable human investment. In
contrast, deep learning algorithms automate the feature
extraction process, thus reducing reliance on extensive human
labor and domain expertise to extract salient features. These
algorithms possess a multi-layer data representation
architecture, with the first layer extracting low-level features
and the last layer extracting high-level features (Wang &
Duan, 2021). Due to its considerable success, deep learning
has emerged as a prominent research trend. In this context,
convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and pretrained foundation models (PFMs)
have been increasingly employed in zoological research.

Within the field of deep learning, CNNs are the most
commonly used algorithms, with extensive application in
image recognition, speech recognition, and NLP. The three
principal advantages of CNN are equivariant representation,
sparse interaction, and parameter sharing. Unlike traditional
fully connected networks, CNNs leverage shared weights and
localized connections to fully exploit two-dimensional (2D)
input data structures, such as those found in image data. This
operation employs a very small number of parameters, which
simplifies the training process and accelerates network speed.
This concept mirrors the functioning of cells in the visual
cortex, as elucidated by Alzubaidi et al. ( 2021), where each
unit is responsive to only a subset of the visual field, thereby
capturing spatial localities within the input similar to the
application of localized filters. A common type of CNN, akin to
a multi-layer perceptron, features numerous convolutional
layers preceding the subsampling (pooling) layer and
concluding with a fully connected layer (Figure 2).

The high performance achieved by CNN architectures in
challenging benchmark task competitions indicates that
innovative architectural concepts and parameter optimization
can improve CNN performance in various visually related
tasks (Khan et al., 2020). The exploration of grid topology data
(image and time-series data) by LeCun et al. (1989) marked
the initial recognition of the capabilities of CNNs. Since 2012,
different innovations have been proposed regarding CNN
architecture. The performance improvements in CNNs can
primarily be attributed to the reconstruction of processing units
and design of new modules. With the introduction of AlexNet
(Krizhevsky et al., 2017) and its exceptional performance on
ImageNet datasets, the application of CNNs has become
increasingly popular. The development of the Inception
module by the Google team, characterized by its split-
transform-merge strategy, marked a substantial advancement
in CNN architectures. Its novel introduction of intra-layer
branching facilitated feature extraction across varying spatial
dimensions. In 2015, ResNet revolutionized CNN training by
introducing residual connections (He et al., 2015), a concept
incorporated in many subsequent networks, including
Inception ResNet, wide residual networks, and ResNext.
Similarly, certain architectures, including wide residual
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networks, Pyramid Nets, and Xception, have introduced multi-
layer transformations, implemented through additional
cardinality and increased width.

Typical deep CNN models, in addition to a fully connected
layer (sometimes not included because of Global Average
Pooling), also include convolutional and pooling layers, used
to extract meaningful features from locally associated data
sources and reduce the number of parameters, respectively
(Khan et al., 2020) (Figure 2). Compared to other methods,
the minimal preprocessing requirements of CNNs have
solidified their status as the de-facto standard computation
framework in CV. The achievements of CNNs have garnered
widespread attention, both inside and outside academia,
leading to the proliferation of diverse CNN models. For
instance, the partialS/HIC model (Xue et al., 2021), which is
based on a CNN for image processing, addresses the
increasing demand for scanning tools capable of tracking in-
progress evolutionary dynamics. Similarly, the DeepBehavior
toolbox (Arac et al., 2019), which integrates many different
CNNs, can automatically analyze animal behavior from both
video and 3D image data. The landscape of CNN-based
frameworks includes ResNet, MobileNet, DenseNet,
ShuffleNet, EfficientNet, R-CNN, and YOLO (Zhu & Zhang,
2018). Among them, YOLO is an advanced algorithm for
object detection, and includes different versions such as
YOLOv2, YOLOv3, YOLOv4 (Bochkovskiy et al., 2020), and
YOLOR (Wang etal.,, 2021). Each algorithm designed for
object detection has the capability to identify objects both in
real-time and with high accuracy.

RNNs, designed to handle sequential data (e.g., text,
speech, and time series data), are commonly employed in the
field of deep learning (Figure 2), including speech processing
and NLP (Lipton et al., 2015). RNNs learn the features of time
series data by memorizing previous inputs in the internal state
of NNs. They can also predict future information based on
past and present data but struggle to learn long sequences
structures due to the vanishing or exploding gradient issue.
Long short-term memory (LSTM) (Staudemeyer & Rothstein
Morris, 2019) networks and their variants, such as the gated
recurrent unit (GRU) networks (Chung etal.,, 2014), have
resolved the gradient issue using various gates that control
how information flows. These algorithms can be used in fields
requiring the analysis of sequential data and the prediction of
future events based on present data. Research in NLP
frequently addresses time series data, analogous to that
encountered in zoology, such as text, sound recordings, and
sequence data. To capture the positional dependencies
inherent in sequential data and retain abundance information
from raw data, several deep learning-based models have
been developed. RNN-based models (like RNN (Rumelhart
et al., 1986), LSTM (Hochreiter & Schmidhuber, 1997)) and
transformer-based models (Vaswani et al., 2017) (like BERT)
have proven effective in automatically modeling sequential
data and conducting downstream task prediction and analysis.

Transformer-based models are fundamentally structured
around the attention mechanism and its derived framework,
multi-head attention (Choi & Lee, 2023). Leveraging this core
architecture, transformer-based models can overcome the
limitations of RNN models, which cannot parallelize input
processing across all time steps, while still effectively
capturing the positional dependencies inherent in sequential
data in tasks such as language translation, text
summarization, image captioning, and speech recognition.
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Figure 2 Concise architectures of three deep learning models

Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Pretrained Foundation Models (PFM).

The transformer includes encoder and decoder structures for
processing sequence inputs and generating corresponding
outputs, respectively (Choi & Lee, 2023). The architectural
variant BERT, which only incorporates the encoder structure,
employs random sequence masking during its pre-training
tasks, leading to superior outcomes in protein 3D structure
prediction (Lin et al., 2022b) and single-cell annotation (Yang
et al., 2022).

Pretrained foundation models (Zhou etal., 2023) are
essential and significant components of Al in the era of big
data. These models demonstrate enhanced proficiency in
multi-task learning with large-scale datasets and exhibit
increased efficiency during fine-tuning for targeted, smaller-
scale tasks, resulting in rapid data handling capabilities
(Bommasani etal.,, 2021) (Figure 2). The most famous
application among them is ChatGPT, a conversational model
derived from the generative pre-trained transformer
architecture developed by OpenAl (Gozalo-Brizuela &
Garrido-Merchan, 2023). ChatGPT applies reinforcement
learning from human feedback (RLHF) (Bai etal., 2022), a
promising approach for aligning large language models with
human intent, i.e., pretrained language models (Wulff et al.,
2023). Many open-source pretrained language models are
currently available, operable on individual computing systems
and trainable on private datasets, including Llama, Alpaca,
Vicuna, and Falcon models (Zhang et al., 2023). Given their
success (Wang et al., 2023b) in various general-domain NLP
tasks, these open-source large language models exhibit
significant potential for application when fine-tuned using
knowledge-based instruction data.

Inspired by the success of pretrained language models in
NLP, pre-trained visual models in the field of CV have also
achieved great success. These models are pre-trained on
massive image datasets and can analyze image content and
extract rich semantic information. Furthermore, multi-modal
visual models like CLIP (Radford etal.,, 2021) and ALIGN
(Cohen, 1997; Lahat et al., 2015) use contrastive learning to

align textual and visual information. This alignment allows the
pre-trained models to apply learned semantic information to
the visual domain, thereby facilitating efficient generalization in
downstream tasks, including zoological applications.

Generative models and contrastive learning are two other
important types of models. Generative models gained
popularity after the introduction of generative adversarial
networks (GANs) in 2014, which formed the foundation for
many subsequent architectures, including CycleGAN (Zhu
etal., 2017), StyleGAN (Karras et al., 2019), and DiscoGAN
(Kim etal., 2017). Unlike generative models, contrastive
learning is a discriminative approach that aims to group similar
samples closer together and diverse samples farther apart
(Jaiswal etal., 2021). To achieve this, a similarity metric is
used to measure the closeness of two embeddings. Self-
supervised learning, a type of unsupervised learning (Wang,
2022), integrates both generative and contrastive approaches.
Notably, it utilizes unlabeled data to learn underlying
representations, thereby avoiding the labor-intensive task of
data labeling. Thus, this approach offers the potential for
better utilization of unlabeled data in zoological research.

Given that deep learning has proven more effective in data
extraction, feature representation, and prediction than non-
deep learning models, our emphasis is on discussing deep
learning models used in zoological research and explaining
why they are more effective compared to non-deep learning
models, especially when dealing with unstructured data such
as images, text, videos, and sequence data. Furthermore,
while supervised task is frequently discussed in this review
due to their relevance to species classification and
identification (fundamental concerns in Zoology), we also
address unsupervised and reinforcement learning.

Datasets in zoological research

A variety of datasets are available for research in zoology,
each tailored to specific tasks, as summarized in
Supplementary Table S2. These datasets primarily
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encompass text and image data. Text data can be processed
using a range of models, such as RNN, transformer, and
pretrained foundation models, depending on the specific task
requirements. Image data, including videos, are compatible
with models developed for CV tasks. Among these datasets,
the Paleobiology Database, maintained by an international
consortium of non-governmental paleontologists, is a publicly
accessible repository of paleontological data (Alroy etal.,
2008). The AP-10K dataset (Yu et al., 2021) represents the
first comprehensive resource for general animal pose
estimation, featuring 10 015 images from 23 animal families
and 54 species, with high-quality keypoint annotations. This
highly versatile dataset is suitable for supervised, self-
supervised, semi-supervised, and cross-domain transfer
learning, as well as intra- and inter-family domain analyses,
with annotation files provided in Common Objects in Context
(COCO) format. The KaoKore dataset, established by the
ROIS-DS Center for Open Data in the Humanities, comprises
a curated collection of facial expressions and has been
publicly accessible since 2018 (Tian et al., 2020).

Complex unstructured data in zoological research, including
images, videos, sounds, and text, present considerable
challenges for Al application. Addressing these challenges
often requires expert selection of appropriate models and
significant data preprocessing efforts. The following sections
provide detailed discussion on Al models tailored for different
data types and tasks (Supplementary Table S3), as well as
their specific processing procedures. This information should
help researchers in selecting models best suited for their
specific data and research goals.

Al IN ANIMAL CLASSIFICATION AND RESOURCE
PROTECTION

The rapid identification and classification of wild animals is
critical for the categorization and protection of biological
resources. However, such tasks typically require extensive
labor and time investment from experts to process data (Vélez
etal.,, 2022) and manually extract information from field-
captured photographs (Kulkarni et al., 2020). To handle these
challenges, Al algorithms, especially deep learning models
effective in graphic identification studies, have been
increasingly applied for the automatic identification of wildlife
(Figure 3A). Previous research using deep neural networks
(DNNs) to automatically identify, count, and describe wild
animals in images captured by motion-sensor cameras not
only reduced human labor costs but achieved a high
identification accuracy of 96.6%, exceeding that of expert
identification (Norouzzadeh etal., 2018). Moreover, such
innovative approaches demonstrate that deep learning
techniques, in contrast with traditional methodologies for
single-species classification, have marked advancements in
the classification of multiple species, enhancing the versatility
available to researchers in the field of animal resource studies.
CNN algorithms have also been used to identify endangered
animals in images captured by unmanned aerial vehicles,
enabling  non-invasive  surveillance and  protection
(Kellenberger etal., 2018). Similar studies have likewise
demonstrated success (Fergus etal.,, 2023; Tabak etal.,
2019), highlighting the potential for Al to accelerate
advancements in wildlife classification, re-identification, and
biodiversity monitoring (Thalor et al., 2023).

The conflict between human activity and wildlife is becoming
ever more pronounced, manifesting in the extinction of
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species and degradation of natural habitats. To alleviate these
issues, there is an urgent need for effective management and
monitoring of wildlife ecological preserves to reduce negative
human-animal encounters. The development of DeepVerge, a
CNN-based approach, represents a significant advance is this
regard, enabling judicious planning of road construction and
environmental management by governments. Notably,
DeepVerge has shown a mean accuracy of 88% in the
identification of positive indicator species in grassland
ecosystems, a traditionally challenging task in wildlife resource
surveys (Perrett etal.,, 2022). Nandutu etal. (2022) also
employed CNN technology to analyze images captured from
unmanned aerial vehicles for the detection of wildlife fences
along roadsides, thereby reducing the frequency of human-
animal encounters and enhancing the protection of wildlife
from traffic-related hazards.

Furthermore, Al models have the ability to collect wildlife
images from social media platforms to expand biodiversity
preservation efforts, thereby compensating for the scarcity of
corresponding data from traditional wildlife monitoring
techniques (Foglio etal., 2019). In addition, automatic Al-
assisted analysis of aerial images can facilitate accurate
counting of various species, such as elephants and dolphins
(Singh etal.,, 2023). These models generally outperform
conventional analytical methods, primarily due to their superior
capacity for extracting features from images, as well as their
regularization and denoising capabilities. These strengths
facilitate their application across distinct categories of images,
including both wildlife and aerial photographs, irrespective of
apparent disparities in image type.

Insect taxa are numerous and characterized by fine-grained
distribution patterns. (Hgye etal., 2021). Traditional insect
detection methods face challenges in performance,
particularly when identifying small pests, due to a lack of
adequate learning samples and models. To address this,
Xiang et al. (2023) developed Yolo-Pest, a CNN-based model
optimized for the effective detection of small target pests,
which showed significant improvement in performance
compared to existing methods when tested on the Teddy Cup
pest dataset. Tsetse flies serve as important vectors of human
disease in Africa. Geldenhuys et al. (2023) developed a CNN-
based method for classifying tsetse fly images and precisely
predicting wing landmarks to facilitate vector identification and
control. Additionally, Lee etal. (2023) developed a deep
learning-based automated object detection technique to
identify mosquito species from image data, thereby reducing
manual labor in the field.

However, it is important to note that the application of Al in
the classification and protection of animal resource is still in its
early stages. Although advanced DNN and CNN models have
yielded good results in analyzing wildlife pictures, the
adaptability and robustness of Al algorithms in dealing with
variations in image quality and lighting conditions still require
improvement. Classification accuracy typically diminishes
when species are recorded live within their natural
environments (Van Horn etal, 2017; Wu etal., 2019).
Consequently, future work should focus on these issues and
refine Al models for application in diverse natural
environments. Moreover, wildlife data covers not only images
but also an abundance of text and voiceprint data, which are
inherently sequential and more amenable for analysis using
transformer-based frameworks, such as BERT (Khan etal.,
2022). Although the use of CNNs for classifying bird species
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based on raw sound waveforms has achieved suboptimal
accuracy (Bravo Sanchez etal., 2021), the application of
transformer-based approaches, though presently limited
(Supplementary Table S3), holds considerable promise for
future research.

Al IN ANIMAL BEHAVIOR

Animal behavior and neuroscience

Animal behavior is critically related to neural activity,
neurological function, and cognitive states. Research has
uncovered the mechanisms that govern a variety of complex
animal behaviors, including those related to feeding
(Shafiullah et al.,, 2019), anxiety, and mating (Moulin et al.,
2021), as well as the analysis of daily behaviors (Liu et al.,
2022) and recognition of behaviors based on facial
expressions (Liu et al., 2023). However, the core problem lies
in the extraction of meaningful information from the wealth of
data on animal behavior within the context of neuroscience,
propelled by advancements in experimental techniques (Bath
et al., 2014; Scaplen et al., 2019; Svensson et al., 2018). Such
data are often presented as high-dimensional time series
(Scaplen et al., 2019), video recordings (Liu et al., 2022), still
images, and 3D image data. These data types are complex,
high-dimensional, and sometimes unstructured, rendering
them unsuitable for analysis using traditional methods
(Figure 3B).

In comparison, deep learning-based models are effective in
extracting features and representations from unstructured
data. For instance, DeeplLabCut, using deep learning transfer
techniques, presents a novel approach for estimating the
gestures of unlabeled objects, and has produced outstanding
results with minimal training data (Mathis et al., 2018). The
CNN-based DeepBehavior toolbox enables the automatic
analysis of animal behavior data, including both video and 3D
image data and has proven effective in neuroscientific
investigations of five distinct mouse behaviors (Arac et al,,
2019). Coffey et al. (2019) recently developed DeepSqueak,
an automatic vocalization analytical framework trained and
validated using a comprehensive dataset of mouse and rat
vocalizations, which revealed that the grammatical structure of
these vocalizations was related to social behaviors, especially
mating behaviors. Similarly, Graving et al. (2019) developed
DeepPoseKit, a deep learning model adept at the rapid and
accurate analysis of animal poses, a critical component for
behavioral estimation with important implications in
neuroscience research. Sainburg and Gentner (2021)
developed CNN and RNN-based computational
neurobehavioral models to elucidate the physiological
characteristics of animals, especially in the context of acoustic
communication. In addition to deep learning techniques,
Klibaite etal. (2017) also established a machine learning-
based Gaussian mixture model to automatically extract
information from animal behavior video recordings, supporting
studies in the field of neuroscience

The study of animal behavior, informed by neural activity
and complex interactions, can guide the design and
construction of deep network models (Richards et al., 2019).
This research draws connections between animal neurology
and behavior and the foundational principles inherent to
reinforcement learning, highlighting the parallels in strategic
optimization, task resolution, and reward allocation within
these domains.
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Animal feeding behavior monitoring

Feeding behavior is a key concern in animal behavior and a
crucial factor for health and survival. Achour et al. (2020) used
four CNNs to analyze the feeding behavior of cows. Their
analytical framework was designed to recognize individual
cows and distinguish whether they were eating or standing in
a feedlot area, as well as whether there were different food
categories in the feedlot. In addition, Chen etal. (2020)
developed a video-based deep learning method to identify
piglet feeding behavior and calculate feeding durations based
on multiple one-second feeding and non-feeding events
obtained from video footage. The CNN architecture was used
to extract spatial features, which were then fed into a LSTM
framework to extract temporal features. These features were
then propagated through a fully connected layer, and a
Softmax classifier was applied to categorize the one-second
segments into feeding or non-feeding events, demonstrating
excellent sensitivity (98.8%), specificity (98.3%), and accuracy
(95.9%) in identifying feeding behavior.

Data generated in animal husbandry, including feeding data,
physical characteristics, and health conditions, can be used to
predict other animal characteristics, such as weight and
growth trajectories. He et al. (2021) used LASSO regression
and two machine learning algorithms, random forest and
LSTM network, to predict the weight of pigs aged 159 to 166
days. The predictions were made in four scenarios: individual-
specific  prediction, individual and population-specific
prediction, breed-specific individual and population-specific
prediction, and population-specific prediction. For each
scenario, four models were developed, and their predictive
performance was evaluated using the Pearson correlation
coefficient, root mean square error, and binary diagnostic
tests. Notably, they successfully predicted pig weights based
on feeding conditions and yielding favorable outcomes,
confirming the feasibility of using predictive methods to
determine later-stage characteristics of animals. Taylor et al.
(2023) used machine learning to estimate the growth
trajectories of individual pigs based on their weight,
subsequently validating trajectory predictions using root-
mean-square deviation scores. The findings revealed that, on
average, the random forest model exhibited the most accurate
predictions, achieving the best score of 2.00 kg per pig and
the worst score of 2.45 kg per pig, outperforming traditional
approaches and showing considerable prediction potential.

Using Al models, it is also possible to predict feed supply
stages and initiate adjustments to avoid feed shortages, as
well as to predict delivery behavior to reduce the mortality
rate. Shafiullah et al. (Shafiullah et al., 2019) assessed various
machine learning algorithms, including SVM, random forest,
XGBoost, and neural networks, to predict shortages in spring
forage by analyzing changes in cow feeding behavior
indicative of potential feed insufficiency. Turner et al. (2023)
developed deep learning models to identify the behavior of
ewes during childbirth and postpartum licking, using data
obtained from accelerometer sensors located on the neck of
the sheep. Behavior labels derived from video recordings and
an LSTM model were then used to classify different behaviors.
The model achieved an accuracy of 84.8% and a weighted F1
score of 0.85 in identifying birthing and licking actions,
effectively differentiating between parturition behaviors. This
provides a critical framework for prompt intervention during
challenging births, potentially decreasing neonatal lamb
mortality.



Although Al models have been successfully utilized in
feeding behavior monitoring, capable of processing different
forms of data, it is important to note that CNNs and their
variants play dominant roles in this realm (Supplementary
Table S3). Given their sequential nature, time series and video
recording data may be better processed using transformer-
based architectures. The pre-trained large language models
underpinning BERT (homologous transformer architecture)
have already set new benchmarks in sequence-dependent
bioresearch (Khan etal., 2022; Lin et al., 2022). Hence, we
propose that future studies, particularly those involving time-
series analyses of continuous data from animal vocalizations,
locomotion positions, and text data, may benefit from the
utilization of language models, rather than solely relying on
CNNs.

Al IN ANIMAL DEVELOPMENT

Advancements in Al within developmental biology
predominantly center on the application of CV and machine
learning algorithms for the automated processing of images,
particularly embryonic images (Figure 3C). Assessment of
embryo quality is crucial for improving pregnancy rates
following in vitro transfer. Although morphological analysis
remains the standard for evaluating embryo quality, it is
subject to variation based on the expertise of the evaluator
(Rocha etal., 2017). In contrast, Al methods enable
systematic and automatic embryo quality evaluations,
demonstrating  enhanced robustness  compared to
conventional assessments. Researchers initially developed a
computational model using dynamic Bayesian networks and
machine learning to understand the regulatory networks
governing cell differentiation processes in multicellular
organisms, with a focus on Caenorhabditis elegans, and
reported significant enhancements in inferential accuracy
through the integration of interaction data from various species
(Sun & Hong, 2009). Following this, the automated DevStaR
system was developed, employing CV and SVM to provide
rapid and accurate measurements of embryonic viability and
high-throughput quantification of developmental stages in C.
elegans, a principal model organism in developmental and
behavioral studies (White et al., 2013).

Fish embryo models are commonly used for assessing the
efficacy and toxicity of chemicals. Genest etal. (2019)
automated this process by classifying fish embryos based on
the presence or absence of spinal malformations using 2D
images, feature extraction based on mathematical morphology
operators, decision trees, and random forest classifiers.
Quantitative analysis of cerebral vasculature is crucial for
understanding vascular development. Chen etal. (2023a)
developed a deep learning method to analyze cerebral
vasculature in transgenic zebrafish embryos. Using 3D light-
sheet imaging and FE-Unet to enhance 3D structures, they
transformed incomplete vascular structures into continuous
forms, allowing for the accurate extraction of eight key
topological parameters. Polarization of mammalian embryos at
the correct time is crucial for development. Shen et al. (2022a)
developed an automated stain-free detection method for
detecting embryo polarization using a deep CNN binary
classification model, achieving an accuracy of 85% and
significantly outperforming human volunteers trained on the
same data (61% accuracy). In addition, Qiu etal. (2021)
introduced a deep learning pipeline for automating the
segmentation and classification of high-frequency ultrasound

images of mouse embryo brain ventricles and bodies based
on a volumetric CNN classifier, thus providing a powerful tool
for developmental biologists.

In the industrial sector, integrating Al and animal
development can facilitate the generation of offspring with
ideal characteristics or improved performance to meet human
needs. A critical component of this process involves the
identification of parents exhibiting superior phenotypes for
reproduction. Robson et al. (2021) implemented an automated
system combining generative adversarial networks with a CV
pipeline to extract phenotypic data from ovine medical images,
achieving an accuracy of 98% and faster speed (0.11 s vs.
30 min), thereby greatly reducing processing time. The
phenotypes identified using this approach can provide
valuable insights to guide genetic and genomic breeding
programs and benefit animal breeding. Furthermore, Rocha
et al. (2017) developed a novel method for embryo analysis by
combining a genetic algorithm and artificial neural network,
which was applied to test features extracted from 482 bovine
embryo images, achieving an accuracy of 76.4% compared
with evaluations conducted by embryologists.

Al IN ANIMAL GENETICS AND EVOLUTION

Recent advances in third-generation high-throughput
sequencing and assembly technologies (Mao etal., 2021)
have streamlined the acquisition of genomic, transcriptomic,
and expression profiles in animals (Zhang etal.,, 2018).
However, the challenge of processing huge multiomics data
has created an urgent need for the application of Al
technologies. This has significantly enhanced the efficiency of
data analysis and elucidated previously difficult to observe
biological phenomena (Badia et al., 2023; Gomes & Ashley,
2023). Notably, various machine learning techniques, such as
random forest and gradient boosting, as well as deep learning
approaches, such as CNN, DNN, and RNN, have been widely
employed (Figure 3D) to study genetic variation,
transcriptional modification, and evolutionary issues, primarily
based on genomic and proteomic data.

Genetic variation
Traditional genetic variation analyses (Durward-Akhurst et al.,
2021; Mashayekhi & Sedaghat, 2023) often struggle to handle
large-scale genomic data. In contrast, Al can rapidly and
effectively process these vast datasets (Kaushik et al., 2021),
offering greater precision in identifying meaningful mutation
sites and expediting the inference of biological functions.
Next-generation sequencing has revolutionized genetic
testing but has also produced considerable amounts of noisy
data, necessitating extensive bioinformatics analysis for
meaningful interpretation. The Genome Analysis Toolkit
(GATK) has stood as the gold standard for reliable genotype
calling and variant detection (Brouard et al., 2019; Lin et al.,
2022a). However, the development of cutting-edge deep
neural networks, such as DeepVariant, has shown exceptional
accuracy in identifying genomic variations, from single
nucleotide polymorphisms (SNPs) to indels (Yun et al., 2020).
In comparison to GATK, DeepVariant showed a 2% reduction
in data errors, highlighting its potential in the ever-evolving
field of genomics (Lin et al., 2022). In addition, Babayan et al.
(2018) employed a gradient boosting machine algorithm to
extract sequence data from over 500 single-stranded RNA
viruses and analyzed the evolutionary signals within them,
resulting in the rapid identification of pathogens and their
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potential hosts and vectors, thus providing new avenues for
disease control and prevention. Furthermore, Layton et al.
(2021) integrated genomic diversity with environmental
relevance and a random forest model to identify vulnerable
populations of Arctic migratory fish (migratory charr) and
reconstruct population sizes and climate-related declines
throughout the 20" century. This innovative approach
revealed the impacts of climate change on species survival,
providing important scientific support for the conservation and
genetic breeding of Arctic ecosystems.

Deep learning models, including CNNs and RNNs, have
been recently applied in animal omics analyses. Researchers
have addressed challenges such as the detection of selective
sweeps within mosquito populations (Xue etal., 2021) and
identification of short viral sequences within metagenomes
(Lee etal., 2021). Xue etal. (2021) devised partialS/HIC, a
deep learning approach based on CNNSs, to analyze the
African mosquito genome, enabling detection of different
stages and regions of selective sweeps and insecticide
resistance, thus identifying adaptive loci critical for disease
control. Additionally, Kaplow et al. (2023) explored the use of
CNNs for elucidating genetic variations in enhancers and
identifying associations between enhancers and phenotypes
across various mammals. Furthermore, Jiang etal. (2023)
developed RNN-VirSeeker, a deep learning method tailored to
detect short viral sequences within pig metagenomes. Trained
on 500 bp samples of known viral host RefSeq genomes,
RNN-VirSeeker surpassed three established methods in
testing, achieving superior performance in receiver operating
characteristic curve (AUROC), recall, and precision,
particularly for the CAMI gut metagenome dataset. These
studies integrating Al with genomics not only lay the
groundwork for understanding genetic variation within animal
populations but also forge new pathways for linking genomic
research with phenotypes.

Transcriptional modification

Transcriptional modification (Li etal., 2017b), a complex
process central to the regulation of gene expression, presents
a challenge to traditional analysis due to its dynamic and
complex nature. Deep learning models, which excel at
handling large datasets and identifying modifications (Salekin
etal.,, 2020), offer a powerful and efficient solution for
transcriptional modification analysis in the era of big data. Luo
etal. (2022) developed im6APred, an advanced model
designed to predict N6-methyladenosine (m6A) sites —a
pivotal RNA modification implicated in many biological
processes (Zhu etal.,, 2020) —across a spectrum of
mammalian tissues. The architecture of im6APred was
grounded in the comprehensive assessment of seven distinct
classification methods, including four traditional algorithms
and three deep learning techniques, along with their
integration. This ensemble approach enabled im6APred to
ascertain the general methylation patterns on RNA bases and
extend this knowledge to the entire m6A transcriptome across
different tissues and biological environments, with increased
prediction accuracy and robustness.

Evolutionary issues

The integration of Al with omics data has proven efficacious in
extracting vital features from such datasets, which are
subsequently employed in the construction of phylogenetic
trees for species classification and in the adaptive analysis of
gene flow. Barrow etal. (2021) highlighted the potential of
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machine learning algorithms, particularly the random forest
model, in analyzing intraspecific diversity among Nearctic
amphibians, integrating over 42 000 gene sequences across
299 species. Similarly, Derkarabetian etal. (2019) applied
genomics to study species classification within arachnid taxa,
such as Metanonychus, known for a high degree of population
genetic structuring. Using three unified machine learning
methods, namely, random forest, variational autoencoders,
and t-distributed Stochastic Neighbor Embedding (t-SNE),
they constructed a phylogenetic tree conducive to species
delimitation, demonstrating effectiveness across diverse
natural systems and taxa with different Dbiological
characteristics.

Deep learning techniques have also been applied in the
study of animal evolution. Gower et al. (2021) introduced an
innovative CNN-based approach that analyzes the genome to
explore adaptive introgression in human evolution, particularly
the process of adaptive gene flow. This approach, which aims
to distinguish between genomic regions influenced by
adaptive gene flow from those affected by neutral evolution or
selective sweeps, has been successfully applied to the human
genome dataset, achieving 95% accuracy in identifying
candidate regions implicated in adaptive gene flow, thus
offering insights into the evolutionary history of humans.

Deep learning approaches have also been successfully
integrated with protein sequences. Li et al. (2018) introduced
DNN-PPI, a deep neural network framework for analysis of
protein interaction datasets from humans, mice, and other
species, which showed excellent prediction accuracy and
significant generalization ability. Its innovation lies in its ability
to make predictions entirely from features automatically
learned from protein sequences, thus avoiding the need to rely
on complex biochemical information. These examples
emphasize the advantages of Al in evolutionary studies,
showcasing its proficiency in handling large-scale datasets,
revealing hidden evolutionary patterns, and enhancing
analytical efficiency.

Al IN ANIMAL DISEASE MODELS

Animal disease models are essential for advancing our
understanding of human pathologies and drug development.
In the face of challenges associated with the automatic and
effective processing of diverse data, various Al models have
been adopted to process complex datasets related to animal
disease (Figure 3E). Tree-based methodologies, including
random forest and Extreme Gradient Boosting (XGBoost)
models, are more adept at handling structured tabular data
than popular deep learning models (Grinsztajn et al., 2022).
Conversely, non-deep learning algorithms, such as logistic
regression and SVM, are often employed for the modeling and
analysis of structured data due to their simplicity in training.
For example, Leung etal. (2019) analyzed amyloidosis in
Indian-origin rhesus macaques by applying logistic regression
to structured tabular data with 62 variables. After analyzing the
model output, they identified significant factors associated with
diagnoses of colitis, gastric adenocarcinoma, and
endometriosis, along with clinical issues including trauma and
pregnancies. Gardiner et al. (2020) utilized several machine
learning models, including linear regression, XGBoost,
random forest, k-Nearest Neighbors, and light gradient
boosting, to extract information from gene expression and
chemical structure data, predicting potential renal dysfunction
induced by drugs in rats. These studies highlight the potential



of non-deep learning algorithms to effectively handle
structured tabular data and benefit research on animal
disease models.

As discussed above, deep learning techniques are more
suitable for unstructured data, as demonstrated across various
studies. Bouteldja etal. (2021) leveraged CNN models to
analyze whole-slide images from mouse models of disease,
including unilateral ureteral obstruction, adenine-induced
kidney disease, renal ischemia-reperfusion injury, and
nephrotoxic serum nephritis. Based on computational
comparative pathology, Abduljabbar etal. (2023) utilized a
CNN model trained on human samples to accurately assess
immune responses in 18 vertebrate species. Li et al. (2023)
used a ResNet-based toolkit to investigate active and
depressive behaviors in mutant monkeys, serving as a
disease model for Rett syndrome. Zhang etal. (2022)
developed an enhanced YOLOv5 model algorithm to
significantly increase the accuracy and efficiency of counting
retinal ganglion cells in glaucoma research.

Although non-deep learning and deep learning algorithms
are employed for various types of data, it is important to note
that structured data often originate from raw unstructured
data, such as chemical structures. This conversion, known as
feature engineering (Verdonck et al., 2021), can lead to the
loss of original information, potentially impairing the predictive
accuracy of models. Additionally, gene expression and key
variable datasets may be transformed or regarded as pseudo-
sequential (Yang et al., 2022) or graph-structured data (Cao &
Gao, 2022). Therefore, deep learning algorithms, with their
inherent ability to fit unstructured data, may dominate in this
research area. These algorithms offer enhanced precision,
end-to-end manipulation of unprocessed data for the
extraction of predictive outcomes, and more effective
exploitation of the intrinsic relationships embedded within the
data.

Al IN ANIMAL BREEDING AND HEALTH

Traditional methods of recording animal behavior, size,
weight, and feeding data to predict growth patterns and living
habits require substantial manpower and material resources.
Moreover, intensive efforts to optimize efficiency and output in
animal husbandry can result in substantial social deprivation
for livestock, leading to adverse effects on behavior and
welfare (Neethirajan, 2021b). Al has the potential to enhance
farm management and breeding practices by advancing the
automation of anomaly detection, body condition evaluation,
and disease diagnosis (Figure 3F). Such advancements can
substantially reduce the burden of manual data analysis while
increasing overall accuracy.

Abnormal detection in breeding

Although conventional methods based on sensors are well
established, they often fail to detect anomalies promptly due to
the extensive coverage of farming facilities. In contrast,
machine learning technology offers rapid, efficient, and
contactless automatic recognition of individual animals for
breeding farm management. Shen et al. (2020) developed a
recognition method using the YOLO model to detect side view
images of cows and a fine-tuning CNN for classification,
achieving a recognition accuracy rate of 96.65%. Similarly, Li
etal. (2017a) extracted shape feature descriptors from
captured cow tail root images, employing four classifiers,
namely linear discriminant analysis, quadratic discriminant

analysis, artificial neural network, and SVM, with the quadratic
discriminant analysis and SVM classifiers demonstrating
superior performance, obtaining an F1 score of 0.995 and the
highest accuracy and precision, respectively. Additionally,
Bakoev et al. (2020) used nine machine learning algorithms,
including random forest and k-Nearest Neighbors, to assess
pig limb conditions based on growth and meat characteristics,
thus addressing the issue of leg weakness and lameness in
pig farming.

With the increasing need to boost fishery productivity, Al
models have been applied to aquaculture management to
monitor fish growth and improve aquatic product quality.
Chang etal. (2021) developed an intelligent cage farming
management system, known as AloT, to collect extensive data
on fish and feed within the cage environment. They trained
two deep learning-based object detectors, Faster-RCNN and
YOLOV3, to specifically detect fish bodies and monitor growth
and feeding conditions, thereby reducing feed waste,
enhancing feed conversion rates, and increasing fish survival
rates. The YOLO model is capable of tracking multiple objects
in real-time within images, making it ideal for automated
systems designed to monitor large populations in both
aquaculture and fisheries. Fish classification is essential for
quality control and population statistics. However, the task
becomes challenging due to changes that occur when fish
leave the water. Abinaya et al. (2021) implemented a deep
learning model augmented with a naive Bayes classifier for
fish classification, achieving better accuracy and robustness
compared to original neural networks. Additionally, Liao et al.
(2021) developed 3DPhenoFish to provide a more efficient
and objective approach for semantic segmentation and
extraction of 3D fish morphological phenotypes from point
cloud data, which has implications in artificial breeding,
functional gene mapping, and population-based studies in
aquaculture and ecology.

Animal health

Al technologies have also been applied to streamline animal
healthcare by improving body condition assessment and
disease diagnosis (Ezanno etal., 2021). Accurate body
condition scoring is crucial for evaluating health and energy
balance in cows, guiding dietary and reproductive
management (Cockburn, 2020; Rodriguez Alvarez et al.,
2019). Rodriguez Alvarez etal. (2019) developed a CNN-
based model combined with transfer learning and ensemble
modeling to assess body condition in cows from depth image
features, achieving an accuracy of 82% within 0.25 units and
97% within 0.50 units of the real value. In addition, bluetongue
disease represents a common infectious disease in ruminants.
Gouda etal. (2022) utilized several algorithms, including
logistic regression, decision tree, random forest, and
feedforward artificial neural network, to predict the risk of
bluetongue disease using seroepidemiological data, with the
centralized machine learning model outperforming traditional
methods. Wagner etal. (2020) used machine learning
techniques, such as K-nearest neighbor regression, decision
tree regression, Multi-Layer Perceptron, and LSTM, to detect
subtle behavioral changes in dairy cows based on data from
the previous day. Furthermore, Al algorithms have been
applied to automatically monitor the health and emotional
state of animals (Neethirajan, 2021a). Neethirajan (2021b)
developed an Al model based on generative adversarial
network architecture capable of analyzing different modes of
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animal communication behavior and generating virtual
conspecific companion videos to improve animal well-being.
Such Al-driven approaches can successfully detect abnormal
behavior and stress in animals, even before clinical symptoms
appear.

Al IN PALEOZOOLOGY

The field of paleozoology, dedicated to the study of prehistoric
life through fossil analysis, has traditionally demanded
significant labor and time. In recent years, however,
advancements in Al algorithms capable of learning, prediction,
and automation have revolutionized this field by enhancing
fossil analysis, species identification, and the extrapolation of
functions and behaviors from fossil evidence (Figure 3G).

Al has been effectively applied for the classification of
animal fossils based on both text and image data. For
instance, in their study on marine invertebrates, Kopperud
et al. (2019) used an automated pipeline based on supervised
machine learning to extract observations of fossils and their
inferred ages from unstructured text, achieving high accuracy
compared to human annotators and greatly reducing the time
required. In a broader study, Hoyal Cuthill et al. (2020) used a
machine learning spatial embedding method to measure
distance among 171 231 species and analyze the impacts of
speciation and extinction based on an evolutionary decay
clock. In regard to primates, Al has been utilized to infer
behaviors from fossils based on species classification (Marcé-
Nogué et al., 2020; Pischel et al., 2018). Puschel et al. (2018)
applied machine learning classification methods to
differentiate between various locomotor categories in
primates, using both biomechanical and morphometric data.
Similarly, Marcé-Nogué et al. (2020) used an SVM algorithm
to classify primate fossils into broad ingesta-related hardness
categories.

The application of deep learning algorithms for image data
analysis has become increasingly prevalent in resolving
classification issues related to animal fossils. CNNs have
demonstrated considerable accuracy in the classification of
modern and ancient bone surface modifications within multiple
mammals (Dominguez-Rodrigo etal., 2020). Using both
unsupervised and supervised Al algorithms, studies have
achieved high accuracy (88%-98%) in classifying carnivore
species based on 3D modeling and geometric morphometrics
of tooth pits (Courtenay etal., 2021). Furthermore, deep
CNNs have distinguished between theropod and ornithischian
dinosaur tracks based on outline silhouettes, consistently
demonstrating superior performance compared to human
experts (Lallensack et al., 2022).

CHALLENGES
RESEARCH

FOR USING Al IN ZOOLOGICAL

As discussed in the introduction, there is a lag in the adoption
of Al in zoological research (Figure 1A, B). One reason for this
delay is the unfamiliarity of zoologists with various models,
coupled with the challenges arising from data format
complexity, data insufficiency, and reliance on small sample
learning tasks. Comprehensive zoological research includes
complex unstructured data, spanning images, videos, sound
recordings, text sequences, and protein structures, presenting
significant challenges for Al model applications, requiring
experts to select appropriate models for specific data types
and, in some instances, expend additional effort in data

1126 www.zoores.ac.cn

processing. Small sample learning is another common
challenge, especially when studying specific species or
ecosystems, with the extreme rarity of certain animal species
posing considerable challenges in gathering adequate data.
Furthermore, while identifying animals based on their sounds
can provide valuable insights, gathering high-quality sound
data can be time and resource-intensive, leading to limitations
in sample sizes (Bravo Sanchez etal., 2021). In addition,
observing animal behavior typically requires time and effort,
often resulting in limited data and constraints on in-depth
studies of specific behaviors (Arac etal., 2019). These
circumstances give rise to imbalanced datasets and fewer
samples from rare species for training neural networks (Hgye
et al., 2021).

Although the application of Al models in zoology has been
slow compared to the broader biological sciences, the
introduction of new technologies in specialized subfields often
comes with an inherent time lag. To address these challenges,
it is recommended to enhance data collection initiatives,
focusing on long-term accumulation and integration with
existing databases to mitigate data insufficiency. In situations
of limited sample sizes, employing pre-training and transfer
learning methods would be beneficial ((Hoye etal., 2021;
Vélez et al., 2022). For data concerning rare species or of low
quality, applying data augmentation methods such as image
manipulation and geometric transformations can expand
training datasets (Klasen et al., 2022). Model-agnostic meta-
learning (Shui et al., 2023) and multiset feature learning (Jing
etal., 2021) could offer innovative solutions to these issues
(Shui etal., 2023; Jing etal., 2021). When encountering
species not present in existing databases, the challenge
becomes even more significant. Addressing this situation
necessitates the application of multiple class anomaly/novelty
detection or open set/world recognition (Perera & Patel, 2019;
Turkoz etal., 2020). Moreover, simpler models such as
logistic regression, K-Nearest Neighbor Regression, and SVM
may be more suitable in these cases. To address
generalization issues, emphasis should be placed on data
integrity through meticulous cleaning and quality control
processes. Leveraging pre-trained models and fine-tuning
them on specific tasks can also aid in adapting to varied
species data (Lin etal., 2023). Lastly, the broader
dissemination and implementation of these Al technologies
should be encouraged, alongside fostering collaborative
efforts between Al experts and domain specialists.

Supervised learning plays a pivotal role in zoological
research due to its close association with species
classification, behavior identification, and regression tasks in
feeding behaviors. Supervised learning requires high-quality
annotated data to train models and produce highly accurate
predictions. As discussed in the “Animal Classification and
Resource Protection” section, certain species classification
models have shown suboptimal accuracy (Bravo Sanchez
etal.,, 2021), which may be partly attributed to a lack of
labeled data for supervised learning. To address this issue,
techniques like semi-supervised, which combines supervised
and unsupervised learning, and weakly supervised learning
have been applied in the field of Al, offering potential
methodologies for zoological research.

PROSPECTS FOR FUTURE WORK

Deep learning models, particularly CNNs, are favored by
researchers as predictive models due to their local receptive



fields and convolutional architecture, which make them
effective at processing image data. However, their efficacy in
handling sequential data, such as text and video recordings, is
less satisfactory compared to linguistic models such as LSTM
and BERT. The main limitation of CNNs is their inability to
effectively capture and preserve the positional dependencies
inherent in sequential data. Thus, zoological researchers may
adopt different trajectories, which is not necessarily
problematic but warrants further exploration. Supervised
learning is also prevalent in zoological studies, commonly
chosen for fitting models and performing classification tasks.
In contrast, unsupervised learning is less frequently used,
primarily for generative and clustering tasks, due to the
absence of supervised labels. Reinforcement learning also
draws inspiration from zoological studies exploring animal
decision-making behavior derived from neuronal activation.
Such integration is expected, as the field of zoological
research emphasizes using Al models to address specific,
domain-related challenges spanning supervised,
unsupervised, and reinforcement learning.

The integration of Al into zoological research promises a
paradigm shift, enhancing efficiency, accuracy, and scope
(Wang etal., 2023a). Al will enhance data collection and
interpretation by increasing efficiency, reducing time
expenditure, and improving accuracy, especially in handling
complex data like intricate sounds and high-resolution images
(Shen etal.,, 2022b). Al will enable real-time, non-invasive
monitoring of wildlife, in contrast to traditional methods that
are often invasive and limited. Al technologies also promote
objectivity in behavioral analysis by automating processes and
providing quantitative metrics. The focus of zoological
research is shifting from mere descriptive to predictive and
explanatory models. This technology will also improve the
verifiability and reproducibility of research, influencing the
broader acceptance of theories. The interdisciplinary nature of
Al also allows for the integration of computer science,
statistics, and biology, facilitating the development of new
theoretical frameworks. Al further democratizes zoological
research by enabling public participation in data collection,
such as through social media-based wildlife monitoring (Foglio
et al., 2019). Paradigm shifts are not usually completed in the
short term but are gradual, evolving transformations. However,
as the application of Al in zoology becomes increasingly
widespread, we anticipate a series of profound changes in this
field, including in the evolution of theoretical frameworks.
These changes will advance our understanding of the
complexity of the animal world in a more comprehensive and
in-depth manner.

In the future, beyond the establishment and use of cameras
in nature reserves, Al will also be able to utilize satellite
images, climate data, and drones to detect changes in animal
populations or potential threats like poaching, helping to
predict areas where endangered species can reproduce and
thrive. The integration of Al with biological recording devices
will also revolutionize the study of animal migration, behavior,
and physiology under natural conditions. The potential
development of a global platform will enable zoologists
worldwide to collaborate, share data, and utilize Al tools
collectively for analysis.

Zoological research can also directly influence model
design, drawing insights from animal neuroscience and
behavioral studies (Yu, 2016). Furthermore, the zoological
domain provides a vast and diverse dataset, supporting

comparative analysis of models across different architectures
and theoretical paradigms. As a result, it serves as an ideal
experimental platform for Al models requiring extensive data
resources. Therefore, the relationship is not just about
applying Al to zoology but is mutually beneficial for both
disciplines.

CONCLUSIONS

This review comprehensively examines the integration of Al
within zoological research, outlining the primary tasks, core
models, datasets, and the challenges encountered in this field.
Al algorithms have been instrumental in advancing various
subfields, managing complex data forms, and achieving
leading-edge predictive accuracy. The combination of Al and
zoological research harnesses the computational power of
“bytes” to successfully decipher the inner secrets of “beasts”.
Given the increasing demand for analyzing data generated
from laboratories, natural habitats, and agricultural
settings —including but not limited to images, text, tables,
videos, gene sequences, and molecular structures —the
strategic selection and application of Al models tailored to
specific scientific inquiries is expected to gain momentum.
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