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ABSTRACT

Widespread species that inhabit diverse environments
possess large population sizes and exhibit a high capacity
for environmental adaptation, thus enabling range
expansion. In contrast, narrow-range species are confined
to restricted geographical areas and are ecologically
adapted to narrow environmental conditions, thus limiting
their ability to expand into novel environments. However,
the genomic mechanisms underlying the differentiation
between closely related species with varying distribution
ranges remain poorly understood. The Niviventer
niviventer species complex (NNSC), consisting of highly
abundant wild rats in Southeast Asia and China, offers an
excellent opportunity to investigate these questions due to
the presence of both widespread and narrow-range
species that are phylogenetically closely related. In the
present study, we combined ecological niche modeling
with phylogenetic analysis, which suggested that sister
species cannot be both widespread and dominant within
the same geographical region. Moreover, by assessing
heterozygosity, linkage disequilibrium decay, and Tajima’s
D analysis, we found that widespread species exhibited
higher genetic diversity than narrow-range species. In
addition, by exploring the “genomic islands of speciation”,
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we identified 13 genes in highly divergent regions that
were shared by the two widespread species, distinguishing
them from their narrow-range counterparts. Functional
annotation analysis indicated that these genes are
involved in nervous system development and regulation.
The adaptive evolution of these genes likely played an
important role in the speciation of these widespread
species.
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INTRODUCTION

Environmental change and human activity during the
Anthropocene epoch have had a profound impact on the
original geographical distribution of various species. This has
resulted in significant shifts in their ranges and colonization of
new areas, leading to considerable disruption of ecological
dynamics within local communities. Consequently, the
conservation of biodiversity and formulation of policy planning
and management strategies face substantial challenges (Daru
et al.,, 2021). Furthermore, species with different distributions
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may shift their ranges to different degrees. For example,
species with broad distribution patterns tend to demonstrate
robust dispersal capabilities and ability to adapt to diverse
environments. As a result, these species possess heightened
adaptability and a reduced risk of extinction. Conversely,
species with limited geographical ranges tend to be confined
to isolated ecological niches and display preferences for
specific habitats (Slatyer et al., 2013). Thus, the ranges of
widespread species tend to increase while those of narrow-
range species tend to decrease under environmental change.
This process involves certain species undergoing range
contraction, while others undergo range expansion into
previously unoccupied areas, often establishing themselves as
invasive species and displacing native species that may lose
their original habitats due to environmental disturbance
(McKinney & Lockwood, 1999). Their impact on local
ecosystems and biodiversity has received considerable
attention (Hickling et al., 2006; Hill et al., 1999; Thomas et al.,
2001), with the identification of various factors that affect
species range size, including climate fluctuations, topographic
heterogeneity, evolutionary history, land area, dispersal ability,
annual fecundity, and body size (Gaston, 2009; Hawkins &
Diniz-Filho, 2006; Laube etal.,, 2013; Lester etal.,, 2007;
Pither, 2003; Sandel etal., 2011). However, the genomic
mechanisms  underlying the differentiation  between
widespread species and their closely related narrow-range
congeneric species remain largely unexplored.

In recent decades, due to their rapid range expansion,
brown rats (Rattus norvegicus), Asian house rats (R.
tanezumi), and black rats (R. rattus) have demonstrated the
highest invasion success among mammals (Puckett et al.,
2016; Suzuki etal., 2019; Teng et al.,, 2017). They not only
pose a substantial threat to agricultural and forestry production
but, as commensal rodents, they also increase the risks to
human health and ecosystem sustainability by serving as
carriers of viruses and diseases, such as plague, hantavirus,
Anjozorobe virus, and other zoonotic infections (Liu etal.,
2017; Rabiee et al., 2018; Raharinosy et al., 2018). In addition
to the aforementioned Rattus species, white-bellied rats
(Niviventer Marshall, 1976) represent one of the most widely
distributed and abundant genera of wild rats in Asia, with 23
recognized species, including 18 species in China (Ge et al.,
2018, 2021a; Zhang etal., 2016). Notably, these rats are
known vectors for many diseases and viruses, including
hantavirus (Dai et al., 2019; Ge et al., 2016; Hu et al., 2014;
Lin etal., 2012; Wang et al.,, 2000), Borrelia-causing Lyme
disease (Masuzawa et al., 2001), tsutsugamushi disease (Latif
et al., 2017), and babesiosis (Saito-Ito et al., 2008). Inference
from demographic history has shown a marked reduction in
range for species living in mid- to high-altitude regions,
whereas Southeast Asian species have experienced
considerable population and range expansion (Ge etal,
2021b). Of note, Niviventer confucianus, a habitat generalist
within this genus, has shown a remarkable increase in
population size and range since the late Quaternary,
particularly in central and northern China (Ge etal., 2019).
However, this population increase and range expansion is
accompanied by a higher risk of rodent-borne diseases
(Young et al., 2014).

Phylogenetic studies have revealed the existence of four
distinct species complexes within Niviventer, including the
Niviventer andersoni species complex (NASC), Niviventer
niviventer species complex (NNSC), Niviventer fulvescens

species complex (NFSC), and Niviventer eha species complex
(NESC) (Ge etal., 2018; He & Jiang, 2015; Lu et al., 2015;
Zhang et al., 2016). Among these complexes, three expanded
outwards from the southeastern Qinghai-Xizang Plateau, while
one remains restricted to the southeastern edge of the
Qinghai-Xizang Plateau (Ge etal., 2021b). The NNSC (N.
confucianus, N. bukit, N. tenaster, N. gladiusmaculus, N.
pianmaensis, N. niviventer, N. lotipes, N. sacer, N. culturatus,
and N. coninga) represents the most abundant group of small
mammals in Southeast Asia and China, providing an excellent
model for studying the genomic differentiation between
widespread and narrow-range species. Within the NNSC, N.
confucianus and N. lotipes are widely distributed, while all
other species are confined to limited geographic ranges.
Notably, N. confucianus is widely distributed from the Indo-
China Peninsula and adjacent mountains near the
southeastern Qinghai-Xizang Plateau to the Loess Plateau
and northern China, while N. lotipes is the most common
faunal component in southeastern China. These widespread
species may have benefited from the well-documented
extinction of mega-fauna and the range contraction and
population decline of large mammals since the late
Pleistocene (Bartlett et al., 2016; Gill, 2014). In contrast, many
species within the NNSC are confined to small regions. For
example, N. sacer is narrowly distributed within Shandong,
China, N. gladiusmaculus, N. pianmaensis, and N. niviventer
are known only from the southeast region of the Qinghai-
Xizang Plateau, N. bukit and N. tenaster are confined to
Southeast Asia, and N. culturatus and N. coninga are endemic
to Taiwan, China. Thus, we aimed to explore the potential
genomic divergence between these widespread and narrow-
range species, shedding light on their evolutionary trajectories
and adaptations to diverse or specific environmental
conditions.

In the present study, we conducted whole-genome
sequencing of 50 individuals belonging to the Niviventer
genus. Using single nucleotide polymorphism (SNP) data
extracted from these genomes, we analyzed the
phylogenomic structure and species differentiation within the
NNSC. Through the integration of ecological niche models,
our analysis revealed that the two widespread species were
not closely related but exhibited partial sympatry in the NNSC.
Subsequently, we performed genome scanning to assess the
genomic differentiation between the widespread and narrow-
range species. The primary objective of this study was to
reveal the genomic mechanisms underlying the differentiation
of widespread and narrow-range species in the NNSC using
large-scale genomic data.

MATERIALS AND METHODS

Sampling

Tissue samples were collected from 50 white-bellied rats
within the Niviventer genus, including eight NNSC species
(n=44) and one NASC species (n=6). NNSC species,
including N. niviventer (n=3), N. tenaster (n=4), N.
gladiusmaculus (n=4), N. bukit (n=6), N. pianmaensis (n=5),
N. Iotipes (n=6), N. confucianus (n=10), and N. sacer (n=6),
and NASC species N. andersoni (n=6) were used as the
outgroup. All samples were collected at altitudes of 425 to
2830 m and were preserved in 95% ethanol at =80 °C before
DNA extraction. The molecular voucher specimens are
preserved in the National Zoological Museum, Institute of
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Zoology, Chinese Academy of Sciences, Beijing, China.

DNA extraction and sequencing

The cetyltrimethylammonium bromide (CTAB) method was
used to extract genomic DNA from muscle tissue. The
extracted genomic DNA was sequenced by the Beijing Berry
(China) sequencing company. DNA concentration, purity, and
integrity were tested wusing a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, USA) and
agarose electrophoresis. High-quality DNA samples were
selected for library construction and sequencing. Whole-
genome sequencing was performed using the lllumina HiSeq
X Ten platform (lllumina, USA). From each sample, 1.5 pg of
genomic DNA was sheared into 350 bp fragments using a
Covaris instrument for lllumina library preparation. The
fragmented DNA was end-polished, A-tailed, and ligated using
a TruSeq Nano DNA HT Sample Preparation Kit (lllumina,
USA). We used the AMPure XP system to purify polymerase
chain reaction (PCR) products, with the libraries then analyzed
using the Agilent 2100 Bioanalyzer (Agilent, USA). The
lllumina HiSeq X Ten platform (lllumina, USA) was employed
to sequence the constructed libraries and generate paired-end
150 bp reads.

Genomic data quality control

The raw read data of all samples were tested and filtered
using fastp v0.20.1 (Chen et al., 2018). Low-quality bases with
a Phred score<20 were clipped from the 5" and 3’ ends of the
reads. Adapters and low-quality and duplicated reads were
filtered out. FastQC v0.11.9 (Schmieder & Edwards, 2011)
was used to measure the quality of clean data.

Read mapping and SNP identification

The 150 bp paired-end reads were mapped to the Rattus
norvegicus genome (GCF_015227675.2_mRatBN7.2 from
NCBI) by BWA v0.7.17 (Li & Durbin, 2009). Mapping results
were then converted into BAM format and sorted with
SAMtools v1.12, which also removed duplicate reads. If
multiple read pairs had identical external coordinates, only the
pair with the highest mapping quality was retained. After
mapping, we performed SNP calling using BCFtools v1.12 (Li,
2011) and VCFtools v0.1.16. High-quality SNPs retained for
further analysis had to meet the following criteria: (1) mean
coverage depth=5, (2) missing rates<30%, (3) genotype
quality (GQ)>20 and minor allele count (MAC)>3, and
(4) double allele retained.

Phylogenetics,
parameters
After filtering, we generated a set of SNPs for subsequent
analyses. The phylogenetic tree of the nine species was
constructed using the maximum-likelihood (ML) approach in
IQ-TREE v1.6.12 (Nguyen etal, 2015) with multiple
nucleotide substitution models. The tree was inferred based
on high-quality SNPs for 44 NNSC individuals, with six N.
andersoni individuals set as the outgroup and with 1 000
bootstraps. Next, an individual-based neighbor-joining (NJ)
tree was constructed for all samples based on the nucleotide
P-distance matrix using VCF2Dis (https://github.com/BGI-
shenzhen/VCF2Dis), with the phylogenetic relationships
between individuals then inferred using FastMe v2.0 (Lefort
etal, 2015). The NJ tree was rooted using the six N.
andersoni individuals as the outgroup and visualized using
FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/).

genetic structure, and demographic
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Principal component analysis (PCA) of the whole-genome
SNPs for all 44 individuals was performed using Plink
v1.90b6.21 (Purcell etal., 2007). Genetic structure and
admixture proportion were assessed using default settings in
ADMIXTURE v1.3.0 (Alexander & Lange, 2011). The number
of assumed genetic clusters (K) ranged from 2 to 9. We
implemented linkage disequilibrium (LD) pruning using the
parameter --indep-pairwise (50 5 0.2) in PLINK. The r? for LD
was calculated for SNPs using PoplLDdecay (Zhang etal.,
2019) with the parameter (-MaxDist 50). Heterozygosity of
each individual was calculated using Plink v1.90b6.21 and
Tajima’s D value for each species was calculated using
VCFtools in a 100 kb non-overlapping sliding window.

Ecological niche modeling to predict niche suitability
under current climate

To predict the potential range size of eight NNSC species, we
built ecological niche models using the MaxEnt v3.4.1
(Muscarella etal., 2014) algorithm implemented in the
ENMeval R package. Nineteen temperature- and precipitation-
related variables were downloaded from WorldClim
(http://www.worldclim.org) at 10 min resolution for all periods
(Supplementary Table S1). To minimize the bias introduced by
high correlations between environmental factors and their
impact on the potential distribution range size, we eliminated
environmental factors with Pearson coefficients exceeding 0.8,
resulting in the retention of eight uncorrelated environmental
factors for subsequent analyses (Supplementary Figure S1).
Species occurrence was limited to confirmed museum
specimens or locations of sequenced individuals
(Supplementary Table S3). We did not include N. bukit and N.
tenaster as narrow-range species due to their limited
distribution records and rare distribution in China. After
excluding duplicated localities, a total of 10 000
pseudoabsence points were randomly selected for model
training from a self-defined area, which included the entire
distribution of the NNSC.

For each species, we used ENMeval wrapped with five
feature classes (“L”, “LQ", “H”, “LQH", and “LQHP”, L=linear,
Q=quadratic, H=hinge, and P=product) and regularization
multipliers (RM, from 0.5 to 5 with an increment of 1). We
estimated the best-fitting models based on the smallest Akaike
information criterion (AIC). To calculate the distribution range
size, we converted the raw MaxEnt output into a logistic output
with a range from 0 to 1. Finally, the logistic output data were
used to calculate suitable area (km?) for each species.

Detection of selective sweeps

To identify genome-wide selective sweeps associated with
widespread species, we used two different methods (Fst and
m ratio) to identify highly differentiated regions between
widespread and narrow-range NNSC species, with a window
size of 100 kb and step size of 10 kb. After Z-transformation of
Fst values, the regions in both the top 1% of Z(Fg1) values
and top 1% of T ratios were chosen as selective sweep
regions. To clarify the location of highly differentiated SNPs in
the genome and corresponding functional genes, we used
SnpEff v6.1 (Cingolani etal., 2012) to annotate SNP loci
within the highly differentiated region (top 1%) between the
two compared species. These highly differentiated genes were
used for functional enrichment analysis by ShinyGO v0.75 (Ge
etal., 2020), with P<0.05 used as the threshold for
significantly enriched pathways and functions.
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RESULTS

Sequencing and SNP calling

Genome sequencing of the 50 NNSC and N. andersoni
samples generated a total of 2 375.60 Gb of 150 bp paired-
end reads, with an average depth of 17.73x per individual.
Average genome depth was 15.10x (11.52-23.66) for N.
bukit, 15.68x (12.04-32.92) for N. confucianus, 20.65%
(12.01-43.81) for N. gladiusmaculus, 16.97x (10.79-39.12)
for N. lotipes, 20.91% (13.21-35.09) for N. niviventer, 19.20%
(13.80-39.25) for N. pianmaensis, 17.55% (11.83-42.75) for
N. sacer, and 20.20x (11.53-40.44) for N. tenaster. An
average of 96.14% of the NNSC sequencing reads were
successfully mapped to the R. norvegicus reference genome.
A total of 355 746 980 SNPs were obtained after SNP calling
using SAMtools v1.12 (Li etal, 2009). A final set of
138 826 884 SNPs was retained after filtering with VCFtools
v0.1.16 (Danecek et al., 2011). The average number of SNPs
per species was 10 806 233 (Figure 1B; Supplementary
Tables S3, S4).

Ecological niche modeling of NNSC

Based on the current distribution records of eight species
within the NNSC, we predicted their potential niches using
ecological niche modeling. Results showed that N.
confucianus and N. lotipes exhibited the largest distribution
ranges (>200 000 km?), while the remaining six species
showed ranges of <100 000 km? (Figure 1C). We thus defined
N. confucianus and N. lotipes as widespread species and N.
gladiusmaculus, N. pianmaensis, N. niviventer, and N. sacer
as narrow-range species.

Phylogenetic reconstruction of genomic structure of
NNSC

The whole-genome ML tree, using N. andersoni as the
outgroup, showed that N. sacer formed a monophyletic
lineage and was sister to N. confucianus (Figure 1D). The two
widespread species were not closely related, but their
distributions overlapped in central and southeastern China.
The reconstructed NJ tree indicated that the eight NNSC
species were separated from each other and clustered in well-
supported monophyletic clades, with the structure of the NJ
and ML trees based on whole-genome SNPs showing
similarity (Figure 2A). This result was confirmed by PCA,
although N. pianmaensis and N. tenaster were clustered
together and not clearly separated (Figure 2B). Population
structure analysis using ADMIXTURE, which estimates
individual ancestry and admixture proportions assuming K
ancestral populations, indicated that the best-supported
cluster was K=7. ADMIXTURE analysis also revealed a small
amount of gene flow between N. lotipes and N. confucianus
(Figure 2C). Regarding heterozygosity, N. lotipes (4.77E-2)
demonstrated the largest heterozygosity, followed by N.
confucianus (4.38E-2), while N. gladiusmaculus (1.49E-2)
showed the lowest heterozygosity, followed by N. tenaster
(1.59E-2), indicating high genetic diversity between N. lotipes
and N. confucianus (Figure 2E). For Tajima’s D, all species
showed negative values, suggesting that the range of these
species may expand in the future (Figure 2F). LD comparison
among the NNSC members showed that N. confucianus and
N. lotipes had more rapid LD decay than other species
(Figure 2D). Overall, these results suggest that N. confucianus
and N. lotipes (widespread species) have higher genetic

diversity (larger effective population sizes) than narrow-range
species in the NNSC.

Detection signature of selection between widespread and
narrow-range species

To clarify the genomic differences between widespread and
narrow-range species, Fgt and T ratio sweep analyses were
used to detect common selective sweep regions between
these species within the NNSC (Figure 3A). Notably, the
widespread species were highly differentiated from the
narrow-range species on chromosome 13 (Figure 3B, C).
Using global Fgy, we scanned for genomic regions with
extreme allele frequency differentiation. The top 1% of Fst
values revealed numerous candidate genes (486—740) in the
different groups after annotation and removal of repeats. In
addition, for the different groups, functional analysis of the
candidate genes based on Gene Ontology (GO) categories
identified two common functions (G protein-coupled receptor
signaling pathway and nervous system process) (Figure 3D,
E; Supplementary Tables S5-S9). Comparing the widespread
species N. confucianus with narrow-range species, we
identified the most candidate genes in the CG (N. confucianus
vs. N. gladiusmaculus) group (740) and the fewest candidate
genes in the CP (N. confucianus vs. N. pianmaensis) group
(486). Among these genes, 34 were shared by the four
species pairs (Supplementary Figure S2A). Comparing the
widespread species N. lotipes with narrow-range species, we
identified the most candidate genes in the LG (N. lotipes vs. N.
gladiusmaculus) group (803) and the fewest in the LS (N.
lotipes vs. N. sacer) group (463). Among these genes, 45
were shared by the four species pairs (Supplementary Figure
S2B). In addition, we identified 22 shared candidate genes in
these two sets of comparisons (N. confucianus vs. four
narrow-range species and N. /lotipes vs. four narrow-range
species) (Supplementary Figure S2C and Table S10).

Regarding the T ratio results, we identified 38 significantly
differentiated genes between the widespread and narrow-
range species (Supplementary Figure S3 and Table S11),
which were mainly enriched in neuronal development, nervous
system development, and sympathetic nervous system
development (Figure 4A; Supplementary Tables S12-S19).
Most of these genes are highly expressed in the brain and are
essential for brain development (Allen etal., 2005; Anney
et al., 2010; Howell et al., 1997; Ito et al., 2018; Laughlin et al.,
2011; Stefansson etal.,, 2009), suggesting that cognitive
improvement aids in exploratory behavior and may play a key
role in species expansion.

Finally, based on Fg1 and 1t ratio, we identified 13 candidate
genes (LOC7100360923, LOC100362382, LOC100911899,
LOC102553684, LOC103691598, LOC120096228,
LOC120096412, LOC120096444, LOC682479, LOC304725,
HSPD-PS8, LOC679734, and RGD1561440) between the
widespread and narrow-range species (Supplementary Figure
S4 and Table S20). Interestingly, these candidate genes were
all located on chromosome 13 within an approximately 5 Mb
region (Figure 4B), with the haplotype map of two genes
(LOC103691598 and LOC304725) showing significant
differences between the widespread and narrow-range
species (Figure 4C). Subsequently, based on the NJ tree
constructed using SNPs, these three genes were
differentiated between the widespread and narrow-range
species (Figure 4D).

We next combined all widespread individuals as one group
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Figure 1 Geographic distribution and phylogenetic relationships in Niviventer niviventer species complex (NNSC)
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and all narrow-range individuals as another group. Results
showed that the highly differentiated genes between the
widespread and narrow-range species were mainly located on
chromosome 13 when calculating the Fgt values of the two
groups (Supplementary Figure S5A), with these genes mainly
enriched in neuronal development, system development, and
neuron projection development (Supplementary Figure S5B).
These results are consistent with the above findings.
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DISCUSSION

Phylogenetic structure of NNSC

The taxonomic classification of N. sacer within the NNSC
remains a subject of debate. Historically, N. sacer was
considered a subspecies of N. confucianus (Allen, 1926;
Thomas, 1908; Wang, 2003). After conducting multilocus
phylogenetic analysis using nuclear genes, Zhang etal.
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(2016) reported N. sacer as an independent phylogenetic
clade, although they did not consider the genetic difference to
reach the species level. Furthermore, based on analysis of
phylogenetic relationships, genetic distances, chromosomal
characteristics, and morphology, Li etal. (2020) suggested

that N. sacer should be reclassified as a distinct species rather
than a subspecies of N. confucianus. However, these previous
studies relied on limited and short DNA fragments for their
analyses. Therefore, in our study, we utilized whole-genome
data to reconstruct the phylogenetic tree of the NNSC, which
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strongly supported N. sacer as an independent species.
Subsequent NJ tree analysis based on genome-wide SNP,
PCA, and ADMIXTURE analyses showed a significant
separation between N. sacer and N. confucianus.
Interestingly, the phylogenetic trees revealed a substructure
within N. confucianus across geographic locations, with six
individuals from southern China and four individuals from
northern China clustered into two different lineages.
Consistently, Ge etal. (2019) also found that many N.
confucianus samples from three different geographical regions
were clustered into three distinct lineages. Our phylogenetic
findings further support the substantial genomic differentiation
of N. confucianus across various geographic locations, thus
corroborating previous studies.

Sister species cannot be widespread and dominant in the
same geographical region

Interspecific competition refers to the shared use of limited
resources, such as food, breeding sites, and habitats, by

multiple sympatric species (Arthur, 1982). Gause (1934)
demonstrated that if the resource requirements of two species
completely overlap, they cannot coexist within the same
landscape, leading to the exclusion of one species by the
other. Building upon this understanding, Hardin (1960)
proposed the well-known competitive exclusion principle in
ecology, which suggests that two closely related species face
considerable challenges in occupying the same or similar
ecological niches, with most unable to coexist long-term due
to intense competition for limited food, space, or other
environmental resources.

Our phylogenetic analysis identified N. confucianus and N.
sacer as sister species and N. pianmaensis and N. niviventer
as sister species. Interestingly, we did not find sister species
that were both widespread in the same geographical region.
Ecological niche modeling suggested a slight range overlap
between the two widespread species (N. confucianus and N.
lotipes). We propose that the ability of both species to become
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widespread is facilitated by their non-overlapping distribution
ranges, which reduces competition for food, breeding sites,
and other resources and contributes to their dominance within
their respective distribution ranges. Thus, sister species
cannot both become widespread in the same region due to
competition for limited resources, as supported by multiple
examples in nature. For instance, the wild boar (Sus scrofa), a
globally distributed ecological generalist, has experienced a
substantial population increase in many regions (Erkinaro
et al., 1982). In contrast, its sister species, the bearded pig (S.
barbatus), remains restricted to specific areas in Sumatra,
Borneo, Malay Peninsula, and certain smaller islands in
Southeast Asia, and is currently classified as vulnerable due
to population decline. Sister species Lepus tolai and L.
yarkandensis show a similar pattern, with the former widely
distributed in China, including northeastern, northwestern, and
middle China, while the latter is only found in the Tarim Basin
of western China (Gao, 1983). In addition, the striped field
mouse (Apodemus agrarius) boasts an extensive range
spanning the Palearctic and Indomalaya regions (Karaseva
et al., 1992), while its sister species, A. chevrieri, is only native
to southwest China. Therefore, based on phylogenetic
analysis, ecological niche modeling, and the principle of
competitive exclusion, we hypothesize that sister species
cannot be both widespread and dominant within the same
geographical region.

Genomic differentiation between widespread and narrow-
range species

The alteration of range sizes plays a significant role in the
evolutionary history of species. Members within the NNSC are
recognized as highly abundant small mammals in Southeast
Asia and China. Recent investigations have revealed the
dispersal of the NNSC across southeastern, central, and
northern regions of China (Ge etal., 2021b). Our findings
suggested the occurrence of gene flow between N. lotipes and
N. confucianus, implying potential hybridization between these
two widespread species during the process of population
expansion in overlapping distribution areas. Notably,
compared with narrow-range species, widespread species in
the NNSC exhibited higher levels of genetic diversity, which
may contribute to their adaptability to changing environments
and rapid expansion (Krehenwinkel et al., 2015).

Based on analysis of highly divergent outlier genomic
regions in both widespread and narrow-range species, we
found that genes in the top 1% of Fgr outlier regions were
related to nervous system processes, G protein-coupled
receptor signaling pathway, sensory perception of smell, and
detection of chemical stimuli involved in sensory perception of
smell. Certainly, increased cognitive abilities would aid rodents
in adapting to changes in the external environment, while
improved olfactory abilities would enable rats to survive in
different habitats. Moreover, G protein-coupled receptors have
been linked to population differentiation in rodents and
ecological adaptation in house mice (Mus musculus)
(Janousek et al., 2015; Staubach et al., 2012). Furthermore,
using the m ratio, we observed the presence of positively
selected immune-related genes in widespread species,
indicating that these species experienced strong selection
pressure from external pathogens during range expansion.

Elucidating the selection signatures in widespread species
is important for understanding adaptive evolution in wild
rodents in response to different environments. In the current
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study, we identified several crucial genes that exhibited high
expression levels in the brain, including SYN3, DABI1,
LINGO1, MACROD2, and MAP1B. Several of these key
nuclear genes, such as synapsin Il (SYN3), are expressed in
the hippocampus, striatum, and neocortex (Laughlin etal.,
2011), with SYN3 expression found to be positively correlated
with behavioral flexibility (Moore etal., 2021). Moreover,
Disabled-1 (DABT), a cytoplasmic adaptor protein, regulates
neuronal migration during mammalian brain development
(Howell et al., 1997; Sheldon et al., 1997). Leucine-rich repeat
and Ig domain containing 1 (LINGOT), another gene
overexpressed in the brain, is associated with an increased
risk of essential tremor (ET) (Stefansson etal.,, 2009).
MACRO domain containing 2 (MACROD2) is a
neurodevelopmental disorder-related mono-ADP-
ribosylhydrolase (Ito et al., 2018) involved in the etiology of
neurodevelopmental, neurological, and neuropsychiatric
diseases (Anney etal., 2010; Lionel etal., 2011; Xu etal.,
2009). Microtubule-associated protein 1B (MAP1B)
participates in several neuronal developmental processes,
such as neuronal migration, neurite growth, and growth cone
function, and is associated with several neurological disorders,
such as fragile X syndrome (Lu et al., 2004) and giant axonal
neuropathy (Allen etal., 2005). Interestingly, we observed
significant genomic differences between the widespread and
narrow-range species on chromosome 13. Within this
chromosome, the LOC304725 gene is similar to contactin-
associated protein-like 5 (CNTNAP5). CNTNAPS, which
belongs to the neurexin gene family, is associated with
epilepsy, schizophrenia, autoimmune encephalitis, and
multiple sclerosis (Pagnamenta et al., 2010; Zou et al., 2017).
Therefore, our findings suggest that adaptive evolution of
these genes may facilitate range expansion in widespread
species. The superior environmental adaptability and
expansion capacity of N. confucianus and N. lotipes are key
factors driving their dominance as rodent species in China.

In recent years, increasing studies have explored the factors
that may contribute to the successful invasion and wide
distribution of certain rodent species. Many of these studies
have suggested that genes involved in the nervous system, G
protein-coupled receptor signaling pathway, and immunity
may facilitate local adaptation and range expansion (Chen
et al., 2021; Harpak et al., 2021; Zeng et al., 2018), consistent
with our findings. Moreover, we also observed that genes
related to sensory perception of smell and detection of
chemical stimulus involved in sensory perception of smell
underwent positive selection in the widespread species. It is
important to note that the expansion of these species may
have significant consequences. They may compete with native
species for food and ecological niches, thereby placing native
species at risk of population decline due to resource scarcity.
Additionally, these invasive species can serve as hosts for a
variety of zoonotic viruses, posing potential risks to human
safety.

In conclusion, based on phylogenetic tree construction from
genomic data and prediction of potential distribution ranges,
our study revealed several important findings. Firstly, we
determined that sister species within the same geographical
region cannot be both widespread and dominant. Second, we
revealed that genetic diversity was higher in the widespread
species, such as N. confucianus and N. lotipes, than in
narrow-range species, indicating robust adaptability to
environmental changes. Finally, by comparing widespread and



narrow-range species, we identified several candidate genes
(SYN3, DAB1, LINGO1, MACROD2, MAP1B, LOC304725,
and LOC103691598) that were highly expressed in the brain
and located in “genomic islands of speciation”. These genes
are involved in hindbrain structural organization, cerebellum
structural organization, and neuronal development and
differentiation. Collectively, our findings provide valuable
insights into the genomic mechanisms underlying the
differentiation of widespread and narrow-range species.
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