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ABSTRACT

Quantification of behaviors in macaques provides crucial
support for various scientific disciplines, including
pharmacology, neuroscience, and ethology. Despite recent
advancements in the analysis of macaque behavior,
research on multi-label behavior detection in socially
housed macaques, including consideration of interactions
among them, remains scarce. Given the lack of relevant
approaches and datasets, we developed the Behavior-
Aware Relation Network (BARN) for multi-label behavior
detection of socially housed macaques. Our approach
models the relationship of behavioral similarity between
macaques, guided by a behavior-aware module and novel
behavior classifier, which is suitable for multi-label
classification. We also constructed a behavior dataset of
rhesus macaques using ordinary RGB cameras mounted
outside their cages. The dataset included 65 913 labels for
19 behaviors and 60 367 proposals, including identities
and locations of the macaques. Experimental results
showed that BARN significantly improved the baseline
SlowFast network and outperformed existing relation
networks. In conclusion, we successfully achieved multi-
label behavior detection of socially housed macaques with
both economic efficiency and high accuracy.
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INTRODUCTION

The study of macaque behavior is crucial in many scientific
domains, including pharmacology, yielding valuable data for
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drug safety assessment, cocaine abuse medications (Wit,
2011), stimulants (Volkow, 2012), sedatives (Kops etal.,
2021), and anti-inflammatory medications (Singh et al., 1996),
as well as the fields of neuroscience, psychology (Bala et al.,
2020), and ethology (Defler, 2000). The process of monitoring
and analyzing macaque behavior is instrumental in enhancing
our understanding of their health and specific requirements
(Bala et al., 2020). However, traditional monitoring methods,
which primarily rely on manual observation, are labor-intensive
and prone to inaccuracies (Kim et al., 2017). The emergence
of video-based methods has provided an automated
alternative, facilitating the quantitative prediction of behaviors
(Liu etal.,, 2022), with approaches that focus on either
individual or multiple animals. Given their social nature
(Ballesta et al., 2014), behavioral analysis of socially housed
macaques has attracted increasing attention (Bala etal,,
2020; Ballesta et al., 2014).

Interactions among socially housed macaques can influence
individual behaviors, necessitating an understanding of the
behavior of the target macaque in the context of others
(Morimoto & Fujita, 2011; Yu, 2016). Thus, a model
accounting for the relationships between socially housed
macaques is required (Sun etal., 2018). In recent years,
several indirect behavior recognition approaches have been
proposed, including detecting the position of macaques using
traditional image processing (Liu etal,, 2022) and pose
estimation (Bala etal.,, 2020; Negrete et al.,, 2021; Li etal.,
2023), with social interactions then determined based on inter-
macaque distance. In addition, Marks et al. (2022) developed
SIPEC:BehaveNet, a direct behavior recognition network that
classifies three types of social interaction from videos without
using pose estimation. However, these techniques fall short in
capturing the relationships among macaques and in
classifying multiple concurrent behaviors within individual
macaques, such as eating while walking, a crucial aspect
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reflecting the true habits and characteristics of macaques
(Glander, 1975; Roder & Timmermans, 2002). When dealing
with complex relationships between target classes or a large
number of classes, a multitude of different behavior
combinations may emerge. In such cases, multi-label methods
are typically employed to classify simultaneous classes rather
than utilizing single-label techniques (Gu etal., 2018). To
date, however, such approaches remain poorly studied.

Multi-label behavior detection, involving the localization,
identification, and classification of individual or multiple
simultaneous behaviors within a group (Zhang et al., 2019),
presents a complex challenge in high-level video recognition
(Pan et al., 2021). For application in macaques, existing multi-
label behavior detection methods face two main issues.
Firstly, due to the complexity of real-world scenarios, multi-
label behavior detection in humans usually involves modeling
relationships between humans and contextual objects,
including first-order (human-human, human-context) and
higher-order relationships (human-context-human), which
require multiple modeling steps, large models with millions of
trainable parameters (Pan etal., 2021), and large-scale
datasets (e.g., AVA dataset with 1.6 million behavior labels)
(Gu etal, 2018). However, a corresponding dataset for
macaques is not yet available and would be very expensive to
create. Furthermore, training large models on small-scale
datasets may lead to over-fitting (Xu et al., 2019). Secondly,
most recent methods typically generate only one output
feature (Zhang etal, 2021), converted into behavior
predictions using the Sigmoid activation function (Holman,
1948). Although they provide multi-label predictions, these
approaches do not offer specific designs for multi-label
classification, such as the coexistence of certain behaviors
and the exclusion of others.

To address the above issues, we developed the Behavior-
Aware Relation Network (BARN), which primarily consists of
the Behavior-Aware Module (BAM) and two-branched
Behavioral Similarity Reasoning Module (BSRM). First, an
original dataset is reorganized into a behavior-aware dataset
by dividing the behavior labels into three categories: i.e.,
behaviors with Apparent Displacement (AD), behaviors
without AD (NAD), and foraging behaviors. The behavior-
aware dataset contains only AD and NAD behaviors (which
cannot co-exist), but not foraging behaviors (which can coexist
with both AD and NAD behaviors). BAM is then pre-trained on
the reorganized dataset to acquire prior behavioral knowledge.
In the training stage, the proposed network first generates the
proposals (identites and bounding boxes) and three-
dimensional (3D) features of all monkeys using the backbone
network SlowFast (Feichtenhofer et al., 2019) and ROI Align
(He etal.,, 2017). In parallel, BAM generates two types of
behavior-specific information pertaining to AD and NAD
behaviors, which are combined with the bounding boxes to
form behavior guidance data. The obtained 3D features of all
monkeys and behavior guidance data are then taken as
BSRM inputs to model the similarity of AD or NAD behaviors
between macaques. The behavior guidance data enables
BSRM to focus on the simple but important relationship of
behavioral similarity, thus improving network performance.
Finally, the proposed network employs a novel behavior
classifier to generate three different output features, which is
more suitable for multi-label behavior prediction.

To evaluate BARN performance, we established a macaque
behavior dataset using several ordinary RGB cameras

mounted outside the monkey cages. The dataset contained
the daily-life records of socially housed macaques, as well as
data annotations, including 65 913 labels for 19 macaque
behaviors and 60 367 proposals. We conducted extensive
experiments on the proposed dataset. Results showed that
BARN achieved significant improvements to the baseline
network of SlowFast (Feichtenhofer etal, 2019) and
outperformed existing relation networks.

The contributions of our research include the following: (1)
We accomplished multi-label behavior detection of socially
housed macaques for the first time using the proposed BARN
model. (2) We designed BSRM to model simple but important
relationships of behavioral similarity among macaques. (3) We
proposed a dataset reconstruction approach, and designed
BAM to acquire prior behavioral knowledge from the
reconstructed dataset. (4) We designed a novel behavior
classifier based on the characteristics of behaviors and their
various combinations, which was more suitable for multi-label
classification.

MATERIALS AND METHODS

Data acquisition

This study complied with international standards for the care
and use of non-human primates and was approved by the
Animal Management and Use Committee of Joinn
Laboratories (China) Co., Ltd. (B-ACU22-H-NHP-001). All
cages (length 1.4 mxwidth 1.1 mxheight 2.2 m) were
equipped with a viewing platform, two shelves for perching, a
water pipe, an externally welded food trough, and several
regularly changed toys. A total of 20 male macaques (aged
3-5 years) were divided into four groups and placed in the
cages. The concrete floor of the cage was covered with
regularly renewed wood shavings to encourage foraging.
Given the spatial constraints of a single camera covering the
entire cage, three HIK VISION DS-2CD3T47EWDV3-L
cameras (1 920x1 080 pixels, 30 FPS, 4 mm focal length)
were used. The overall cage environment and camera setup
are shown in Figure 1. Cameras #1 and #3 were positioned
near the cage to preclude any obstruction by the fence in front
of the camera lenses. As the macaques frequently occupied
the viewing platform within the enclosures, capturing images
of this specific area was essential for observations. To
mitigate any interference by the metal railings, Camera #2 was
located proximal to the monkey cage, although this camera
arrangement posed challenges in capturing the entire viewing
platform. Upon careful consideration, the distance between
Camera #2 and the viewing platform was set to 15 cm.

For automatic monitoring of macaque behavior, individual
identification of each monkey is necessary (Marks et al.,
2022). Given that macaques possess thick fur and frequently
exit the frame, researchers can employ sensors, jackets, and
neck collars to identify monkeys. However, sensors are often
prohibitive in cost (Meunier etal.,, 2018) and jackets can
induce significant perturbations in behavior (Bala et al., 2020).
Therefore, in the current study, we used different colored neck
collars to distinguish the macaques. The obtained videos were
categorized by the corresponding monkey cage number,
camera number, and timestamp.

Data annotation
As the same behaviors can convey different information when
performed in different locations (Defler, 2000), differentiation
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Figure 1 Overall cage environment and camera setup
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A: Perspective view of overall environment. Cameras #1 and #3 were placed close to the cage. The distance of Camera #2 to the viewing platform
was set to 15 cm. B-D: One video frame recorded by Cameras #1, #2, and #3, respectively.

between these behaviors, such as sitting (high) and sitting
(ground), is required. Based on previous research (Marks
et al., 2022) and visual analysis of macaque behaviors (Defler,
2000; Westlund et al., 2012), we defined 19 daily behaviors. In
addition, five identity labels were also defined based on neck
collar colors, including yellow, green, red, black, and white
(numbered 0 to 4, respectively). Specific descriptions of each
behavior are provided in Table 1.

Due to the long-tail distribution of macaque behaviors, there
are fewer “tail” behaviors compared to “head” behaviors in the
original videos over the same period. This imbalance may
negatively affect behavior detection. To amplify the frequency
of “tail” behaviors, the original videos were processed into
behavior-intensive video clips of different lengths in the time
dimension. Importantly, the model has the capacity to handle
original videos of any length automatically.

Jumping was identified as the fastest behavior in the
obtained video clips, with a duration of 0.3 to 0.5 s. As a
result, one key frame was selected from every 10 video
frames, with all target monkeys in the frames then annotated
with bounding boxes, identities, and behavior labels using
atomic annotation (Gu et al., 2018). For example, if a monkey
wearing a green neck collar was observed eating while
walking, the bounding box and three labels, including green,
eating, and walking, were recorded.

The transition from one behavioral pattern to another
manifests as a “transitional behavior’, a phenomenon that
presents challenges in precise definition and discrimination. In
the present study, transitional behavior was identified at the
midpoint of the corresponding “transition movement”. For
example, changing from “sitting” to “bipedal standing” was
conceptualized as the transition of the angle between the
monkey’s thigh and calf from 0° to 180°, with the transition
movement thus approximately corresponding to 90°. During
the process of data annotation, two specific difficulties were
encountered. First, within a single camera view, macaques
may be positioned in close proximity to one another, leading to
the obscuration of some individuals. Second, spatial
constraints related to the housing environment and the wide
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angle of the camera lens presented difficulties in capturing the
entirety of the monkey cage, culminating in a “dead corner
within the field of view of the cameras. Consequently,
macaques could enter and exit the camera view, leading to
complexities in capturing all behaviors. In contrast to previous
studies where these issues remain unaddressed (Ballesta
et al., 2014; Marks et al., 2022), we implemented two methods
to mitigate these challenges.

Method one: During the recording process, the macaques
were detected by different cameras at the same time. Thus,
although a macaque may have been blocked from one
perspective, it was discernible from others. Therefore, data
annotators made the final judgment on the identities and
behaviors of the macaques by referencing videos from various
perspectives with congruent timestamps. Resolution of this
problem was facilitated by the fact that each monkey was
equipped with a uniquely colored collar. Thus, the identity and
behaviors of the macaques were determined using video
timestamps and colored collars.

Method two: A common feature of both identified problems
was the reduction in body area of the macaque that could be
captured by the camera. Therefore, a threshold was
established, whereby the data annotator refrained from
labeling the monkey if its body area within view was less than
one-third of the original size, and neither its head nor collar
was visible.

We formed a special data annotation team of 10 people,
with the data annotators divided into two groups. Detailed
marking specifications were developed and the VOTT labeling
platform (Wbreza, 2021), a public annotation tool, was used
for tagging. Upon completion of annotation, two distinct steps
were undertaken to improve annotation quality.

Step one: Codes were employed to search for low-level
errors, including: (1) instances where a data annotator may
label a bounding box with two or more identity tags, despite a
one-to-one correspondence rule between bounding boxes and
identity tags; (2) instances where a data annotator may label a
bounding box with multiple incompatible behaviors, such as
“climbing” and “jumping”; and (3) instances where a data



Table 1 Descriptions of macaque behaviors based on visual analysis

Number Category Description of behavior

0 Sitting (high) Sitting on shelf or lookout

1 Sitting (ground) Sitting on ground

2 Prostrating (high) Prostrating on shelf or lookout

8 Prostrating (ground) Prostrating on ground

4 Quadrupedal standing All limbs are straight, supporting the body
5 Bipedal standing Hind legs are straight, supporting the body
6 Hang (arm) Suspending body with forelimbs

7 Hang upside down Suspending body with hind legs

8 Attaching Holding and leaning against cage in mid air
9 Walking Going somewhere on foot

10 Climbing Holding the cage and going somewhere

11 Jumping Moving quickly by pushing body with limbs
12 Eating Holding food and chewing it anywhere

13 Grasping food Grabbing food from the trough

14 Drinking Biting the water pipe and drinking

15 Fighting Fighting with each other

16 Chasing Monkey running after another monkey

17 Grooming Cleaning the fur of another monkey or itself
18 Others Other behaviors, not described above

annotator may only label a bounding box, neglecting to assign
an identity or behavior tag.

Step two: After labels were incorporated into the videos, the
two data annotator groups conducted reciprocal checks. Any
labels identified as ambiguous or suspicious were earmarked
for further discussion.

Finally, the identity labels and bounding boxes were
employed to create an identity dataset, whereas the behavior
labels and bounding boxes were utilized to assemble a
behavior dataset.

In total, 19 daily behaviors were classified into three main
behavioral categories based on the coexistence (or not) of
certain behaviors, i.e., foraging behaviors, behaviors with
Apparent Displacement (AD), and behaviors without AD
(NAD). Initially, foraging behaviors were classified as eating,
grasping food, and drinking, while the remaining 16 behaviors
were classified as non-foraging behaviors. Subsequently,
based on analysis of significant differences in movement
distance, the non-foraging behaviors were divided into NAD
and AD behaviors. Typical NAD behaviors included sitting
(high), prostrating (high), and quadrupedal standing, while
typical AD behaviors included walking, climbing, jumping, and
chasing. The NAD and AD behaviors were mutually exclusive
categories, whereas foraging behaviors were capable of
coexisting with both. Figure 2 provides a detailed illustration of
each behavior and its corresponding classification into one of
principal categories.

We next reorganized the behavior dataset into a behavior-
aware dataset. In detail, the labels corresponding to NAD
behaviors were recorded as “NAD” and the Ilabels
corresponding to AD behaviors were recorded as “AD”. Labels
associated with foraging behaviors were not used in the
behavior-aware dataset.

In the final dataset, 21 642 key frames were extracted from
228 video clips of varying duration. These data annotations
contained 60 367 identity labels and bounding boxes, 65 913
behavior labels, and 58 964 behavior-aware labels. The
above-mentioned labels and bounding boxes were selected as
grounding-truth. The number of samples in the three datasets
is shown in Figure 3.

Partition of datasets

The dataset was divided into three parts according to the
sequence of video timestamps, i.e., training set (earliest part),
validation set (middle part), and test set (latest part). Due to
the uneven distribution of behaviors within the subsets, e.g.,
the “Hang upside down” behavior occurred more often in the
test set than in the training set, certain videos were adjusted to
create similar behavior distributions across the different
subsets. Ultimately, 21 642 key frames were split into 13 785
training, 3 706 validation, and 4 151 test key frames, resulting
in 41 231 training, 11 482 validation, and 13 200 test bounding
boxes with identity and behavior labels (see Supplementary
Materials for number of labels in different subsets).

Overall framework of BARN
BARN was designed to generate places (bounding boxes),
identities, and multi-label behavior predictions of all macaques
in an input video clip (16 continuous video frames in our
experiments). As shown in Figure 4, the proposed network
contains three primary modules: i.e., the Feature Extraction
Module (FEM), Behavior-Aware Module (BAM), and
Behavioral Similarity Reasoning Module (BSRM), the latter of
which is the key module. Specifically, the network initially
employs the FEM and detector to generate the proposals of
each monkey, including identities and bounding boxes, along
with the 3D features of all monkeys (monkey features).
Simultaneously, after training on the behavior-aware dataset,
the BAM generates two types of behavior-specific information,
which are combined with the bounding boxes to yield behavior
guidance information. The BSRM then models the similarity in
NAD and AD behaviors between different macaques using
both the monkey features and behavior guidance information.
The resultant behavior correlation features are converted into
three different output features by a novel behavior classifier for
final behavior predictions.

The main network modules are described in detail as
follows:

(1) Input video frames: Although the input of the proposed
model is set to 16 video frames, the model can automatically
detect original videos of any length by sequential sampling.
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Figure 2 Example of each behavior and corresponding category

NAD, behaviors without apparent displacement. AD, behaviors with apparent displacement. Foraging behaviors can occur simultaneously with other

behaviors, while NAD and AD behaviors are mutually exclusive.

Specifically, the original videos and natural behaviors within
them are divided into several 16 frame segments
automatically and then detected sequentially by the network. If
the length of the segment is less than 16 frames, the last
frame is copied to ensure a length of 16 frames. In addition,
within the study datasets, a frame taken from a single camera
view may contain zero to five macaques. We used three
macaques as an example in Figure 4.

(2) Monkey detector: The YOLO v7 network (Wang et al.,
2022) is employed to generate the proposal for each monkey
in each input video frame. The network is pretrained on the
proposed identity dataset to detect all monkeys within a single
frame. When training the whole network, detection of the
monkeys is initially carried out on the middle frame of the input
video (e.g., ninth frame of the 16 video frames). The obtained
proposals are then duplicated to neighboring frames of the
middle frame. The detected bounding boxes (place
information) of N monkeys are recorded as p ¢ R¥*4. It is worth

1030 www.zoores.ac.cn

noting that identity information is not used in BARN.
Therefore, even if the identity prediction results are incorrect,
the prediction for behavior is not influenced.

(3) Feature Extraction Module (FEM): FEM employs the
standard SlowFast backbone network (Feichtenhofer et al.,
2019) to extract spatiotemporal features (3D features) of input
video frames. The backbone network includes both slow and
fast pathway. The former uses a 3D convolutional neural
network (3D-CNN) at a low frame rate to capture spatial
semantics, while the latter operates at a high frame rate to
capture motion at a fine temporal resolution. The outputs of
the two pathways are then fused into 3D features. Specifically,
the SlowFast R-50 4x16 instantiation, pretrained on the AVA
v2.1 dataset (Gu etal., 2018), serves as the backbone
network. To reduce subsequent calculation costs, the FEM
performs average pooling in the time dimension. The obtained
3D features and place information are then converted into
monkey features, me gRVO", using ROI Align (He etal.,



Figure 3 Number of samples in different datasets

A: Behavior dataset. B: Identity dataset. C: Behavior-aware dataset. Behavior dataset contains 19 behaviors and follows long-tail distribution.
Identity dataset contains five colored labels, with corresponding to a monkey with a collar of the same color. Behavior-aware dataset is derived from

the behavior dataset and contains only two classes. NAD, behaviors without apparent displacement. AD, behaviors with apparent displacement.
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Figure 4 Overview of proposed muti-label behavior detection framework

Videos including several macaques (such as n=3) are processed with the FEM to produce spatiotemporal context features. For each macaque
proposal (bounding box), monkey features are extracted from the context features by ROI Align. Given the monkey features and behavior guidance
from the BAM and proposals, the BSRM models behavioral similarity between macaques. The two obtained behavior correlation features are
converted into final behavior predictions for each macaque by the behavior classifier. NAD, behaviors without apparent displacement. AD, behaviors

with apparent displacement. GAP, global average pool. FC, fully connected layer. BSRM, Behavioral Similarity Reasoning Module.

2017), where n, C, H, and w represent number of monkeys,
channel, height, and width, respectively.

(4) Behavior-Aware Module (BAM): The BAM is designed to
acquire prior knowledge on NAD and AD behaviors from the
reorganized behavior-aware dataset. As shown in Figure 4,
the structure of BAM is similar to that of FEM, except that
BAM contains a global average pool (GAP) layer and a fully
connected layer (FC) with an output dimension of 2. The
output of BAM is recorded as behavior-specificity information
D e R"2, including D, € /" and D, € R™.

To distinguish between NAD and AD behaviors more
effectively, BAM weights are pretrained on the behavior-aware
dataset. The learned weights are then used to initialize BAM
when training the whole network.

(5) Behavior guidance information: As macaque behaviors
are related to their location (Defler, 2000), monkey detector
place information is also regarded as important prior
knowledge. As shown in Figure 4, place information p is
combined with the behavior-specificity information (D, D;) into
a prior knowledge of behavior guidance information G e R~*,
including G, € ' and G, e R"°. The process can be expressed
as:

G, = concatenate(D,, P)
G, = concatenate(D;, P)
G={G, G}
(6) Behavioral Similarity Reasoning Module (BSRM): The
architecture of BSRM is shown in Figure 5. BSRM uses two

(1)
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Figure 5 Architecture of BSRM

Monkey features and two types of behavior guidance information are
processed with different BSROs to two behavior correlation features.
BSRO uses monkey features to produce tensors Key and Value and
uses behavior guidance to produce tensor Query. Point multiplication
is used to interact different tensors in the MatMul layer. NAD,
behaviors without apparent displacement. AD, behaviors with apparent
displacement. BSRO, behavioral similarity reasoning operation.

kinds of behavior guidance information (G, G;) and monkey
features (m) as inputs, and builds two branches to generate
two behavior correlation features (r, S), with each branch
performing behavioral similarity reasoning operation (BSRO).

BSRO is inspired by the mechanism of primate emotional
contagion (Morimoto & Fuijita, 2011). Notably, perception of
another’'s emotional expression can automatically evoke the
same emotion in the perceiver, inducing potential performance
of similar behaviors (Morimoto & Fujita, 2011). For instance,
one-day-old human neonates may begin to cry when they
hear the cry of another (Morimoto & Fujita, 2011). Utilizing this
conceptual framework, BSRO can generate features sensitive
to certain behaviors using the behavior guidance information.
As shown in Figure 5, the monkey features and NAD behavior
guidance information can be converted into behavior
correlation features ;.

Based on Pan etal. (2021), BSRO uses convolution to
generate three tensors, Query (Q), Key (K), and Value (V),
with the following innovations: (1) While Pan etal. (2021)
employed a combination of human and context features as
inputs to model relationships between humans and contextual
objects, BSRO excludes context features from the network to
avoid network emphasis on secondary (monkey-context) and
complex (monkey-context-monkey) relationships among
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socially housed macaques. (2) In contrast to Pan et al. (2021),
where the generation of the three tensors (Q, K and V) was
based solely on certain features, BSRO utilizes the NAD
behavior guidance information to generate Q and uses
monkey features to generate K and V.

Specifically, monkey features (m) are converted to the
tensors K and V by convolution. The NAD behavior guidance
information is initially resized to the dimensions of the monkey
features using the unsqueeze and repeat functions within the
Torch software library (Collobert etal.,, 2002), and
subsequently converted into tensor Q. The operation can be
described as follows:

K,V = conv2D(M)
Q = conv2D(repeat(unsqueeze(G))))

()

where M, Q, K,V e R and G, e R"™. BSRO then adjusts the
size of the three tensors using the unsqueeze function. The
obtained tensors are converted into attention vectors Att and
behavioral similarity features 7z based on the relational
reasoning operation of HR?O (Pan etal., 2021). It is worth
noting that point multiplication is used for the interaction
between different tensors. The operation can be described by:

Q', K , V= unsqueeze(Q, K, V)

Att = unsqueeze (soft max (sum (% ))) (3)

Z= sum(Att- V)

where Q’ € RNX1XCXHXW,K c R1><N><C><H><W, V c R1><N><C><H><W’Att € RNxNx1xHxW’
and 7 ¢ gV Following Wu et al. (2019), the normalization
layer, ReLU activation function, two-dimensional (2D)
convolution, and dropout layer are then employed to generate
the NAD behavior correlation features |. The process can be
represented as:

Z= Dropout (conv2D (ReLU (norm (2)))) (4)
L=M+Z

The process of generating AD behavior correlation features
S is similar to that of NAD. Finally, the behavior correlation
features are passed to the proposed behavior classifier.

(7) Behavior classifier: As foraging behaviors may coexist
with NAD or AD behaviors, behavior correlation features (L
and S) are also used to predict foraging behaviors. As shown
in Figure 4 (right), the behavior correlation features are
converted into three different output features using the GAP
and FC layers, as follows:

L’:{LLL%::FCAGAPQ»
§={i54=FQ«mHﬂ) (5)

0= {Oh 057 Of} = {LI7557 Lf+ Sf}

Nx10 Nx6

where L, € R and s, € #° represent the predictions of 10
NAD behaviors and six AD behaviors of N monkeys in the
input video frames, respectively. L, € R*® and s; e R™® are
converted into predictions for the three foraging behaviors by
an addition operation.

RESULTS

The proposed BARN necessitated the preliminary training of
both the monkey detector and BAM, prior to implementation of



BARN itself. Thus, the monkey detector and BAM were trained
in advance. Various comparative experiments were then
conducted on the proposed macaque behavior dataset,
followed by extensive ablation experiments to study the effects
of the different BARN modules. Finally, BARN was used to
analyze the behaviors of macaques to show the wide
application foreground.

Training of monkey detector and BAM

Mean average precision (mAP) (Everingham et al., 2010) was
selected as the evaluation metric in the object and multi-label
behavior detection tasks. Specifically, given the predictions
with different classification confidences and ground-truth, we
computed precision and recall at different classification
confidences of the model on each class and obtained the P-R
curve, with the area under the P-R curve representing average
precision (AP) of each class. The mAP of the model was then
produced by averaging the AP of the model across all classes.
The calculation process compared the prediction results of the
model with the ground-truth and generated a quantitative
evaluation result for model performance. We used mAP with
an loU threshold of 0.5 and a classification confidence
threshold of 0.002 to evaluate the models.

For the monkey detector, we trained YOLO v7 on the
proposed identity dataset using default setting. After 50
epochs, we achieved 93.1% precision, 91.1% recall, and
95.1% mAP on the validation set, and achieved 94.4%
precision, 91.3% recall, and 95.1% mAP on the test set.

For evaluation of behavior detection, the area under the
curve (AUC) metric was added, calculated similarly to mAP.
The true positive rate (TPR) and false positive rate (FPR)
were first calculated at different classification confidence
thresholds of the model on each class to generate receiver
operating characteristic (ROC) curves for each class. The
AUC of the model was generated by averaging the areas
under the ROC curves of all classes.

BAM was trained to classify two classes in single-label form
on the behavior-aware dataset using synchronized stochastic
gradient descent (SGD) across three NVIDIA TITAN RTX
GPUs. The batch size was set to 16. BAM was trained end-to-
end for 33k iterations with a base learning rate of 0.1125.
During the first 4k iterations, linear warm-up was performed
(Goyal et al., 2017) with a weight decay of 10"° and Nesterov
momentum of 0.9. The base learning rate was then multiplied
by 0.1 at iterations 8k and 12k. After 30 epochs, BAM
achieved 89.3% mAP and 63.3% AUC on the validation set
and 77.8% mAP and 54.3% AUC on the test set. When
training BARN, we initialized BAM with the weights learned on
the behavior-aware dataset and froze the parameters of its
backbone network. This maintained the module’s perception

of NAD and AD behaviors.

Comparison experiments on behavior dataset

In the context of limited existing methods for multi-label
behavior detection in macaques, we applied state-of-the-art
networks from the human AVA dataset (Gu et al., 2018) to the
macaque behavior dataset. As detailed in Table 2, the
“SlowFast” baseline network (Feichtenhofer etal., 2019)
achieved a mAP of 58.8%. The “ACAR (no bank)” approach
(Pan etal., 2021), as a high-order (monkey-context-monkey)
relation network without a feature bank, was less effective
than the baseline network. “ACRN” (Sun et al., 2018), as a
first-order  (monkey-monkey, = monkey-context) relation
network, showed an improvement of 0.5% in mAP over the
baseline network. The proposed BARN, modeling similarities
in NAD and AD behaviors among macaques, achieved the
highest mAP of 64.3%. Similar results were achieved on the
test set. These findings validate the effectiveness of the
proposed model in modeling behavioral similarity. The
“SlowOnly” network (Feichtenhofer et al., 2019), which is a
lighter network than “SlowFast’, also improved upon the
baseline network, implying that lightweight backbone networks
may be more suitable for small-scale behavior datasets.

In addition, AP values of the baseline network, ACRN, and
BARN for each specific behavior were determined and
displayed in Figure 6. The proposed BARN model achieved
the highest AP for 13 behaviors (marked by red rectangles)
and relatively comparable AP values for the other behaviors.

Ablation study

To verify the effectiveness of the proposed improved module,
we conducted detailed ablation experiments on the behavior
dataset. The experimental results are described below.

(1) Behavior-Aware Module: The BAM backbone was
frozen, and the behavior-specificity information generated was
used for subsequent BSRM. Ablation experiments were then
performed to verify the effectiveness of these modifications.
First, experiments were conducted to investigate the effect of
freezing different layers of BAM on the results. As shown in
Table 3, “Freeze-Non”, “Freeze-Backbone”, and “Freeze-All”
indicate freezing no parameters, freezing only parameters of
the backbone network, and freezing parameters of all layers
during the training process, respectively. Results showed that
freezing the backbone network of BAM achieved the best
performance (64.3% val mAP, 88.1% val AUC, 60.1% test
mAP, and 83.1% test AUC).

We subsequently analyzed the effects of behavior-
specificity and place information on the performance of the
proposed network. As shown in Table 4, “Guide-Non” signifies
that neither behavior-specificity nor place information were
used, and the tensor Query of BSRM was generated solely

Table 2 Comparison of BARN (ours) with state-of-the-art methods (e.g., SlowFast (Feichtenhofer et al., 2019), SlowOnly (Feichtenhofer
et al., 2019), ACAR (no bank) (Pan et al., 2021), ACRN (Sun et al., 2018)) using AVA dataset

Model SlowFast (baseline) (%) SlowOnly (%) ACAR (no bank) (%) ACRN (%) BARN (ours) (%)
Backbone SlowFast SlowOnly SlowFast SlowFast SlowFast

Pre-train AVA v2.1 AVA v2.1 AVA v2.1 AVA v2.1 AVA v2.1

Relational Relationing No No High-Order First-Order Behavioral Similarity
Val mAP 58.8 59.4 57.8 59.3 64.3

Val AUC 85.1 86.3 83.8 87.2 88.1

Test mAP 45.8 52.6 46.1 47.7 60.1

Test AUC 79.0 81.9 78.5 80.6 83.1

Bold font represents best performance achieved in the experiments.
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Figure 6 Comparative analysis of BARN (ours) with baseline network SlowFast and ACRN (Sun et al., 2018) on the validation set
Abscissa is number of each behavior; ordinate is average precision (AP) of each behavior. Red rectangle signifies that BARN achieved the highest

AP for a given behavior.

Table 3 Ablation results after freezing different layers of BAM

Model Freeze-Non (%) Freeze-Backbone (%) Freeze-All (%)
Pre-train AVA V2.1 AVA v2.1 AVA v2.1

Val mAP 55.5 64.3 61.4

Val AUC 84.6 88.1 87.4

Test mAP 44.5 60.1 56.6

Test AUC 78.8 83.1 84.4

Bold font represents best performance achieved in the experiments.

Table 4 Ablation results based on behavior guidance information

Model Guide-Non (%) Guide-Bs (%) Guide-Place (%) Guide-Bs&Place (%)
Behavior Guidance No Behavior-Specificity Place Both

Val mAP 56.6 61.1 52.5 64.3

Val AUC 85.7 88.5 87.5 88.1

Test mAP 57.0 58.0 491 60.1

Test AUC 83.5 84.5 82.8 83.1

Guide-Non, no behavioral guidance. Guide-Bs, using behavior-specificity information as behavioral guidance. Guide-Place, using place information
as behavioral guidance. Guide-Bs&Place, using both as behavioral guidance. Bold font represents best performance achieved in the experiments.

with monkey features. The terms “Guide-Bs” and “Guide-
Place” indicate that the network applied behavioral specificity
and place information as behavioral guidance information,
respectively, while “Guide-Bs&Place” indicates that the
network concatenated both into behavioral guidance
information. Results showed that “Guide-Bs” achieved a
higher mAP value than “Guide-Non”, while “Guide-Bs&Place”
achieved the highest performance overall (64.3% val mAP,
88.1% val AUC, 60.1% test mAP, and 83.1% test AUC).
These outcomes support the hypothesis that merging both
types of information is beneficial for network performance,
playing complementary roles.

(2) Behavioral Similarity Reasoning Module: BARN modeled
behavioral similarity based on the baseline network and
achieved obvious improvements (see comparison
experiments), proving the BSRM is beneficial for the network.

1034 www.zoores.ac.cn

Thus, we next investigated whether it was beneficial for
generating three different output features. As seen in Table 5,
“BSRM-NoGroup” represents the generation of one output
feature using one-branched BSRM, where all behavior-
specificity information (p e %) and place information (p ¢ gV**)
are concatenated into behavior guidance information (G € R"°).
The term “BSRM-Group” represents the generation of three
different output features using two-branched BSRM and the
proposed behavior classifier. Results showed that “BSRM-
Group” achieved a higher mAP than “BSRM-NoGroup”,
thereby proving the effectiveness of generating different
output features.

(3) Behavior Classifier: The integration of various features is
frequently achieved through addition and concatenation
operations (Feichtenhofer etal., 2019), with the FC layer
required for concatenation. In the current study, we conducted



Table 5 Ablation results after grouping operations in BSRM

Table 6 Ablation results based on application of behavior

Model BSRM-NoGroup (%) BSRM-Group (%) classifier
Branches One Two Model Add (%) Add-FC (%) Cat-FC (%)
Val mAP 59.3 64.3 Fusing Method Addition Addition Concatenation
Val AUC 87.4 88.1 FC No one FC one FC
Test mAP 56.4 60.1 Val mAP 64.3 64.9 62.6
Test AUC 84.0 83.1 Val AUC 88.1 87.7 87.8
Bold font represents best performance achieved in the experiments. Test mAP 60.1 56.8 56.6
Test AUC 83.1 84.3 83.7

several experiments on three distinct combinations of the
methods for fusing prediction results of foraging behaviors
{L,,v'}?=1 and {sﬁ'};. These three combinations, “Add”, “Add-FC”,
and “Cat-FC”, are represented by the following equations,
respectively:

O ={Ly+5i}.i=1,2,3
0r = {FclLy +5p)}i=1,2,3 (6)
0y = {Fcleat(Ly, Sp))} i =123

Table 6 shows the experimental results of the above three
combinations. “Add” achieved the best performance and was
thus taken as the default setting.

Application of monkey detector to analyze motion of
socially housed macaques

Implementation of the proposed BARN required the
employment of a monkey detector (YOLO V7 network) to
generate bounding boxes. Here, to evaluate the application of
the monkey detector, we determined the movement distance
of the macaques using the monkey detector on the test set of
the identity dataset. Specifically, the monkey detector was run
with a classification confidence threshold of 0.8 on the test set
to generate proposals of the macaques, achieving a mAP of
74.3%. Subsequent calculations were computed to determine
the Euclidean distance traversed by the center points of the
bounding boxes in adjacent key frames, as well as total
movement distance of each macaque in the test set.
Comparative analysis was performed between the generated
results and ground-truth (see Materials and Methods for
details). As illustrated in Figure 7, the movement distance
generated by the monkey detector was lower than that of
ground-truth, which may be due to occlusions and the
convergence of motion within the field of view of a single
camera.

Application of BARN to analyze behaviors of socially
housed macaques
To evaluate the application of the proposed network on
macaque behavior analysis, BARN was applied with a
classification confidence threshold of 0.8 on the test set of the
proposed macaque behavior dataset to generate behavior
predictions. Behavior predictions with a classification
confidence above 0.8 were regarded as correct classifications.
The generated results were visualized in several videos. As
seen in Figure 8, the bounding boxes and movement
trajectories of the macaques are drawn based on their collar
colors. The identities {e}, and behaviors {f}° of each
macaque were drawn in white in the format e#f;-f,
(Supplementary Videos S1, S2). The ground-truth proposals
were used to evaluate the behavior predictions of BARN to
enhance the visualization process.

We then computed the duration of each behavior and

Bold font represents best performance achieved in the experiments.

Figure 7 Movement distance of each macaque generated by
ground-truth and monkey detector on the test set of the proposed
macaque identity dataset

Test set contains a series of key frames at different camera views, with
each frame containing zero to five macaques.

compared the BARN prediction results with that of ground-
truth and ACRN. As the interval duration between adjacent
key frames was 0.33 s in the study, we multiplied the number
of correctly classified behaviors by 0.33 to generate behavior
duration. Figure 9A shows the duration of each behavior for
yellow macaques, Figure 9B shows the total duration of all
behaviors for yellow macaques, Figure 9C shows the total
duration of all behaviors for all macaques, and Figure 9D
shows the duration of each behavior for all macaques (see
Supplementary Materials for the durations of other
macaques).

DISCUSSION

In this study, we introduced the Behavior-Aware Relation
Network (BARN), which was developed to detect the locations
and identities of socially housed macaques and provide multi-
label behavior predictions for each animal. The newly
proposed network functions by the acquisition of prior
behavioral knowledge through the reorganization of original
behavior datasets, followed by the construction of simple but
important relationships of behavioral similarity among
macaques for final behavior predictions. To the best of our
knowledge, the proposed network is the first model to
successfully accomplish multi-label behavior detection in
socially housed macaques.

The proposed network faces several limitations. First, BARN
automatically splits the original videos into several 16 frame
segments, enabling processing of videos of arbitrary length.
However, during the segmentation process, the inherent
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Figure 8 Visualization results of bounding boxes, identities, movement trajectories, and behaviors of macaques in two videos

Bounding boxes and movement trajectories of each macaque are drawn in the color of its collar. Identities and behaviors of macaques are

separated by "#", and simultaneous behavior is separated by "-".

dependencies between the individual 16 frame segments and
adjacent natural behaviors are not efficiently exploited. A
feasible solution to this issue may be the incorporation of a
long-term behavioral memory bank (Pan etal., 2021). In
addition, application of an unsupervised time-warping method
may also be beneficial for capturing natural behavior structural
patterns (Han et al., 2022). Second, the efficiency of BARN is
dependent upon the ability of the detector to generate the
bounding boxes of the macaques. Although the YOLO v7
detector achieved 95.1% val and test mAP values on the
identity dataset, its performance may be compromised under
certain situations, such as during occlusions or the
intersection of multiple macaques while performing opposite
movements. Merging the prediction results from various
camera perspectives, utilizing both the timestamp and collar
color as synchronization parameters, may prove beneficial for
circumventing the issue of occlusion, as macaques are
unlikely to be obstructed in the view of every camera.

Our experimental results revealed a dependency of relation
network performance on environmental complexity. In the
human AVA dataset (Gu etal.,, 2018), modeling complex
relationships yielded better results compared to modeling
simple relationships, whereas the opposite trend was
observed in our macaque dataset. This discrepancy may be
attributed to the relative simplicity of the environment in our
dataset compared to the AVA dataset. Given that BARN
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removes environmental information through the application of
ROI Align, it may be more suitable for simple environments,
such as laboratories and zoos. In contrast, in locations
characterized by more complex environments, such as
sanctuaries, the integration of monkey and context features
within the BSRM framework may achieve better performance.
Behavior predictions generated by BARN hold potential for
application in the analysis of macaque behavior. BARN
operates by sequentially sampling 16 consecutive frames from
videos of arbitrary length, then generating behavior predictions
for each macaque in the input video frames end-to-end. This
process allows the extraction of information about the
behaviors of each macaque, start and end times of each
behavior, and frequency of each behavior based on the
timestamps of the input videos. The construction of an
objective function may enable the derivation of other
behavioral metrics of interest (Jafrasteh & Suarez, 2021). For
behaviors that lack annotation, complementary unsupervised
approaches may prove useful (Hsu & Yttri, 2019; Wiltschko
etal., 2015). Moreover, the utilization of published model
weights from this study may facilitate network initialization and
training on new datasets targeting specific behaviors.
Although BARN was trained using rhesus macaque datasets,
its application to other monkey species, such as cynomolgus
macaques, is also feasible. For monkeys with large
differences in appearance from rhesus macaques, such as



Figure 9 Duration of behaviors generated by ground-truth, BARN (ours), and ACRN (Sun et al., 2018) on the test set of the proposed

macaque behavior dataset

A: Duration of each behavior for yellow macaques. B: Total duration of all behaviors for yellow macaques. C: Total duration of all behaviors for all

macaques. D: Duration of each behavior for all macaques.

squirrel monkeys, employing the model weights published in
this study as initial weights for pre-training may be an effective
approach. Furthermore, high-level events can be obtained by
combining the situations of all macaques.

In addition to behavior predictions and identities, the places
and movement ftrajectories of each macaque can be
generated. Places encompass 2D coordinates corresponding
to the center point of the bounding box, and research that is
interested in the movement trajectories of macaques can
benefit from this network. It is important to note that places
reflect whole-level movement rather than subtle movements of
small body parts (Liu etal., 2022). Moreover, for 3D
movement trajectories, one economical approach is to model
the actual environment and map 2D positions into 3D space
(Marks et al., 2022). Alternatively, using MouseVenue3D to
generate 3D positions of markerless animals may be another
viable approach (Han et al., 2022).

In the context of multi-label behavior detection of socially
housed macaques, modeling the relationships among
individual macaques is crucial. Existing methods generally
model relationships between entities based on large models
and large-scale annotated datasets and are therefore difficult
to apply to macaques. To overcome these challenges, we
developed the BARN model and a macaque behavior dataset.
Experimental results demonstrated the effectiveness of the

different modules and showed that the proposed network
outperformed many state-of-art methods. Notably, BARN
successfully accomplished multi-label behavior detection of
socially housed macaques and can be easily used to analyze
macaque behaviors.

DATA AVAILABILITY

Our code and macaque datasets are freely available online
(https://github.com/BertonYang18/BARN-monkey) along with the publication
of this study. We hope to receive feedback on any potential bugs or issues.
Supplementary Videos S1 and S2 can also be found online
(https://drive.google.com/drive/folders/1v2ZcXIrAR7rBOPws4SWUQZPTKup
VQIw7?usp=share_link).
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Supplementary data to this article can be found online.
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