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ABSTRACT

A critical function of animal movement is to maximize
access to essential resources in temporally fluctuating and
spatially  heterogeneous environments.  Seasonally
mediated resource fluctuations may influence animal
movements, enabling them to track changing resource
distributions, resulting in annual migration patterns. The
conservation-dependent  giant  panda (Ailuropoda
melanoleuca) displays seasonal movement patterns;
however, the key factor driving these seasonal migration
patterns remains poorly understood. Here, we used GPS
tracking collars to monitor the movements of six giant
pandas over a 12-year period across different elevations,
and performed statistical analysis of seasonal migration
directions, routes, habitat revisitation, home range overlap,
first arrival events, and stability. Our results revealed a
compelling pattern of seasonal migrations that facilitated
the ability of the pandas to forage at the appropriate time
and place to maximize nutritional intake. Our results
indicated that pandas utilize spatial memory to locate
reliable food resources, as evidenced by their annual
return to the same or similar winter and summer home
ranges and the consistently maintained percentage of
home range overlap. These novel insights into giant panda
foraging and movement ecology not only enhance our
understanding of its ability to adapt to nutritionally poor
dietary resources but also provide important information for
the development of resource utilization-based protection
and management strategies.
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INTRODUCTION

Migration—or seasonal movement behavior—is an important
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ecological process (Fryxell & Sinclair, 1988) widely found in
both terrestrial and marine systems (Avgar et al., 2014; Bailey
et al., 2009). Spatially heterogeneous and temporally dynamic
resource distribution is a critical driver of species movement
patterns (Fagan etal., 2013), which serve to maximize
resource acquisition (Albon & Langvatn, 1992; Deacy et al.,
2018; Middleton et al., 2018). One of the key functions of
seasonal migration is to facilitate access to optimal foraging
habitats (Aikens etal., 2017; Avgar etal.,, 2015; Schindler
etal.,, 2013), thus enabling the acquisition of energy and
nutrients that are critical for survival, growth, and reproduction
(Barboza & Parker, 2008; Ben-David, 1997; Monteith et al.,
2014). For herbivores, plant phenology is a primary factor that
shapes the resource landscape (Aikens etal., 2017). The
Green Wave Hypothesis posits that animal migration is not
confined to a dichotomous migration between two seasonal
habitats, but rather is the result of tracking changing resources
along a migratory path. When animals repeatedly return to the
same foraging areas across years, they frequently employ
spatial memory as a means of efficiently navigating the
landscape (Abrahms etal., 2019; Bracis & Mueller, 2017;
Merkle et al., 2019; Ranc et al., 2021). This movement pattern
differs markedly from behavioral adjustment based on current
conditions or environmental gradients (Betts etal.,, 2008;
Singh et al., 2010). The role of memory is to forecast future
conditions by invoking past experiences (Abrahms etal.,
2019) and guide migration to temporally predictable resource-
rich locations (Mueller et al., 2011; Mueller & Fagan, 2008).
Spatial memory can facilitate navigation to high-quality
foraging patches (Bracis etal., 2015; Merkle etal.,, 2014;
Polansky et al., 2015) and stopover sites (Mettke-Hofmann &
Gwinner, 2003). Given their high daily food intake
requirements, herbivores tend to return to the same seasonal
home range they have used in the past (Merkle et al., 2014),
resulting in more efficient resource utilization (Van Moorter
et al., 2009). Spatial memory serves to ensure reliable access
to food resources, thereby maximizing nutritional gain while
minimizing risk of food resource scarcity (Wolf et al., 2009).
The concept of home range can be defined as a cognitive
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map, encompassing the territory an animal has stored in its
memory due its significance and relevance (Powell, 2000),
with home-range fidelity considered to be a reflection of spatial
memory (Sahanatien etal.,, 2015). Therefore, repeated
movement patterns within a home range guided by spatial
memory can increase foraging efficiency (Spencer, 2012).

Despite its recent downlisting from “Endangered” to
“Vulnerable”, the survival of the giant panda (Ailuropoda
melanoleuca) remains contingent upon conservation efforts in
the foreseeable future (Swaisgood et al., 2016). China has
established many protective measures to support the ongoing
recovery of the panda population, utilizing an increasingly
comprehensive body of scientific knowledge to inform
conservation policies and management decisions (Swaisgood
etal.,, 2018; Wang & Liu, 2017; Wei etal.,, 2015b). Key
contributions from scientific study have centered around
foraging behavior, habitat utilization, and movement patterns.
Despite evolving an obligate herbivorous foraging strategy
(Han et al., 2019), the digestive organs and protein demands
of the giant panda remain similar to those of its carnivore
ancestors (Nie etal., 2019). This disadvantage is partially
mitigated by the presence of a specific gut microbiome that
facilitates extraction of nutrients from bamboo (Wei etal.,
2015¢), including the facilitation of starch and sucrose
metabolism and vitamin B12 biosynthesis (Huang etal,
2021). The giant panda predominately inhabits low-elevation
habitats but migrates to high elevations each summer (Connor
etal.,, 2016). Pandas acquire approximately half of their
energy from protein sources, utilizing nitrogen-maximization
foraging strategies by switching to different parts and species
of bamboo at different times of the year (Nie etal., 2015,
2019). Due to the low nutritional content of bamboo and
relatively inefficient digestion processes compared with other
herbivores, pandas must consume large quantities of food
each day to meet their energy and nutritional requirements
(Wei etal., 2015d; Zhu etal., 2011a). Consequently, as a
highly specialized and energy-constrained large herbivorous
species, pandas must adopt conservative foraging strategies
that ensure access to a stable and reliable food supply.

To investigate the impact of spatial memory on the seasonal
migration and habitat utilization of the wild giant panda, we
conducted a comprehensive study using GPS-collar data
collected from six individuals from 2007 to 2018 in a key
nature reserve. We aimed to test the hypothesis that the
migration patterns, routes, and home ranges of pandas are
influenced by their spatial memory, demonstrating a strong
tendency to repeatedly use the same routes to return to the
same high and low elevation ranges each year to access
stable and consistent food resources. The findings of this
study provide valuable insights into the foraging and ranging
strategies of pandas, which will help guide conservation efforts
and improve the management of foraging resources to support
the continued recovery of this species.

MATERIALS AND METHODS

Study area and GPS tracking of giant pandas

The study area is located in Foping National Nature Reserve
on the southern slopes of the Qinling Mountains in
southwestern China, covering an area of 292 km? and an
altitudinal range of 980-2 904 m above sea level (a.s.l.) (Zhou
et al., 2022a). The region features a stable temperate and
moist habitat (Lai et al., 2020; Pan et al., 2001), thus providing
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stable habitat selection for giant pandas (Li etal., 2022).
Based on the recent fourth national survey of giant pandas,
Foping Reserve is estimated to contain 70-80 wild individuals,
with the largest known population density in China (mean
density 0.13 capita/km?) (National Forestry and Grassland
Administration, 2021). Giant pandas spend 13.5-15.2 hours a
day eating (Schaller etal., 1985), primarily feeding on two
bamboo species, i.e., Bashania fargesii, which grows at a
mean altitude of 1 600 m a.s.l. and produces shoots in May,
and Fargesia qinlingensis, which grows at a mean altitude of
2 400 m a.s.l. and produces shoots in early June (Nie et al.,
2015). Data on local temperature were obtained from the
Foping Meteorological Station (E107.59°, N33.31°; elevation:
827.2 ma.s.l.).

From 2007 to 2018, six giant pandas (one female and five
males) were fitted with GPS collars (Lotek Engineering,
Newmarket, Ontario, Canada) programmed to record location
every three hours. The ages of the six pandas were
determined based on the diameter of the fecal bolus, length of
bamboo bite fragments in feces (Schaller et al., 1985; Zhou
etal.,, 2022b), and morphological characteristics of animals
during capture. Data from individuals monitored over 12
months, excluding the mating season due to the divergent
movement patterns driven by reproductive needs, were
selected (Zhang et al., 2014). “Weiwei” was not included in the
overlap analysis because only one year of movement data
was obtained. The ages of each individual with complete
monitoring records are shown in Supplementary Table S1.

Statistical analyses

To show seasonal migration patterns of each individual during
the observation period, mean temperature data obtained from
the Foping Meteorological Station were linked to the elevation
of each panda based on timestamps. Fluctuations in
temperature were used to reflect changing seasons. We
determined the spatial range of winter and summer habitats
based on utilization and elevational range of seasonal habitat.
We then determined the first arrival time of each panda
entering their winter and summer habitats during seasonal
migrations and tested the correlation between the first arrival
time and local mean temperature. We also recorded fine-scale
patterns of panda activity within the winter and summer
habitats, as well as the direction of movement and annual
visits. Finally, we recorded the paths used by pandas to
traverse between winter and summer habitats and the time
taken for each panda to complete their migration.

We used second-generation kernel estimation “plug-in”
methods (Jones et al., 1996; Wand & Jones, 1995) to estimate
the 95% home ranges of giant pandas in their winter and
summer habitats separately. This approach addresses the
challenges associated with bandwidth selection for kernel
density estimation (KDE) and autocorrelated GPS data and
represents a significant improvement over “first generation”
methods (Walter et al., 2011). We then calculated the overlap
area (OA) and percentage of home range overlap (PO) of
each individual. The method for quantifying static overlap
considering the spatial domain of the individual home ranges
followed Kernohan et al. (2001).

PO[i,i — 1] = OA[i,i — 1]/A[i - 1] (1)

where, OA[i,i-1] is the intersection area of the two 95% home
ranges in year j and i-1 and A[]] is the 95% area of the home
range in year i. We first conducted the Shapiro-Wilk test to
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determine normality of the data, then used t-test or Wilcoxon
test to compare differences in the overlap area and
percentage of home range overlap between winter and
summer habitats. We also compared differences in migration
time within a year and differences in home range overlap area
and percentage of home range overlap between males and
females. Using the Generalized Additive Model (GAM) (Wood,
2017), we linked the 95% home range overlap area and 95%
percentage of home range overlap with individual age to
assess the stability of the home range over the life of each
panda. Additionally, we used GAM to model the relationship
between age and migration time.

Geographic analyses were conducted using ArcGIS v10.5
(Environmental Systems Research Institute Inc., Redlands,
USA) and all statistical analyses and plots were generated
using R v4.0.5.

RESULTS

All six pandas showed clear patterns of seasonal habitat
utilization (Figure 1). The pandas were tracked for a total of
6 393 monitoring days (51 150 locations) and the mean GPS
fix rate was 75.2% (+5.4% SE, min=51.7%, max=80.9%) due
to the dense bamboo and forest canopy. The amount of data
collected varied among individuals: Xiyue, 2 771 days;
Cancan, 1 023 days; Lili, 694 days; Niuniu, 1 020 days; and
Weiwei, 327 days (due to collar damage). All pandas exhibited
seasonal elevational migration (Figure 2A) and completed
summer habitat migration within a short period, with first
arrivals occurring between 20 May and 20 June during a
period of stable ambient temperature (R?=0.03, P=0.51;

Figure 2B). However, the return to winter habitats differed
among the pandas, occurring between August and October
when temperatures significantly declined (R?=0.80, P<0.001;
Figure 2C).

All pandas used the same general winter habitat area but
demonstrated a preference for distinct summer habitat
patches (Figure 3A). Notably, summer habitat 1 (SH1) in the
north was divided into two patches, and summer habitat 2
(SH2) in the east was divided into three patches, which were
used to evaluate individual migration patterns across years. All
tracked individuals exhibited consistent seasonal migration
patterns from one year to the next. For instance, Cancan
consistently selected patch SH1.1, while Xiyue migrated to all
SH2 patches over the course of seven years but never to
SH1. With only two years of data, Lili, Qiangqgiang, and Niuniu
did not show clear patterns of summer habitat use but did
migrate to adjacent areas of summer habitat in both years. As
seen in Figure 3A, the pandas showed strong tendencies to
migrate in similar directions across years. Notably, all pandas
exhibited individualistic, multiphasic movement paths during
seasonal migration. (Figure 3B—F) and maintained a stable
overlapping winter and summer home range core
(Supplementary Figure S1).

The degree of home range overlap among individual
pandas in summer and winter habitats was analyzed
(Figure 4A, B). No differences were evident in area of home
range overlap between winter (mean was 3.26 km?+0.48 SE,
min=2.05 km?, max=4.15 km?) (Shapiro-Wilk normality test,
W=0.82, P=0.09) and summer habitats (mean was 3.17
km?+0.89 SE, min=0.49 km?, max=6.00 km?) (Shapiro-Wilk

Figure 1 Seasonal migration and habitat-use patterns of six GPS-collared giant pandas in winter and summer habitats illustrating

dominant bamboo species distribution
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Figure 2 Stability analysis of seasonal migration time of six GPS-collared giant pandas
A: Migration patterns in elevation and temperature across 12 years. B, C: Varied time and temperature and their correlation of first arrival event in

summer habitat (B) and winter habitat (C). Blue dots indicate temperature and date that pandas first arrive at winter or summer habitat.

normality test, W=0.95, P=0.71) (t-test, t=—0.11, df=7.64,
P=0.92). No significance differences were observed in the
percentage of home range overlap between winter
(mean=50.00%+6% SE, min=28%, max=64%) (Shapiro-Wilk
normality test, W=0.87, P=0.22) and summer habitats
(mean=36.14%+10.13%, min=7.2%, max=63.17 %) (Shapiro-
Wilk normality test, W=0.98, P=0.69) (t-test, t=—1.43, df=8.15,
P=0.19). No differences were detected in time spent during
the two seasonal migrations of the year (WH-SH: Shapiro-Wilk
normality test, W=0.61, P<0.01; SH-WH: Shapiro-Wilk
normality test, W=0.62, P<0.01) (Wilcoxon test, W=100.50,
P=0.26; Figure 4C). Further analysis indicated that the female
had a smaller home range overlap area than the males
(female: Shapiro-Wilk normality test, W=0.97, P=0.66; male:
Shapiro-Wilk normality test, W=0.93, P=0.11) (t=3.09, df=5.94,
P<0.05; Supplementary Figure S2A), but no difference was
detected in the percentage of home range overlap (female:
Shapiro-Wilk normality test, W=0.99, P=0.84; male: Shapiro-
Wilk normality test, W=0.97, P=0.53) (t=2.19, df=2.96, P=0.12;
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Supplementary Figure S2B). GAM analysis revealed that
home range overlap area initially increased with increasing
age, reaching a peak at 10 years before declining (R?=0.52,
67.1% deviance explained; Figure 4D). However, the
percentage of home range overlap remained stable
throughout the entire tracking period (R?=0.02, 1.79%
deviance explained; Figure 4E). Furthermore, the pandas
spent more time migrating as they aged (R?=0.22, 27%
deviance explained; Figure 4F).

DISCUSSION

Our study revealed that giant pandas use spatial memory to
revisit reliable foraging sites during seasonal migrations.
These seasonal migration patterns and stable home ranges
contribute to the acquisition of food resources in a spatially
and temporally heterogeneous foodscape. While previous
studies have demonstrated that the foraging strategies of giant
pandas are driven by energy acquisition (Nie etal., 2015,
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Figure 3 Seasonal migration patterns across summer and winter habitats and movement paths of five GPS-collared giant pandas

A: Migration movement directions (N: North; S: South; E: East; W: West) for individual pandas across winter and summer habitat. Specific bars
represent revisited habitat patches for each migration event. B-F: Movement paths for each seasonal migration event for five individuals. SH:
Summer habitat; WH: Winter habitat; numerals indicate different habitat patches and sub-patches; WH-SH 1st: Migration route from winter to
summer habitat in first observation year; SH-WH 1st: Migration route from summer to winter habitat in first observation year.

Figure 4 Stability analysis of home range and migration of six GPS-collared giant pandas

A, B: Home range overlap area and percentage of home range overlap of seasonal habitats. C: Time spent during migration to summer and winter
habitat. D—F: Relationships between age and home range overlap area, percentage of home range overlap and migration time. SH: Summer
habitat; WH: Winter habitat; WH-SH: Migrate from winter habitat to summer habitat; SH-WH: Migrate from summer habitat to winter habitat.
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2019) and a preference for high-protein diets (Schaller et al.,
1985; Wei et al., 2015d), our study is the first to report that
seasonal movements in pandas may be shaped by spatial
memory.

The Green Wave Hypothesis posits that migratory
movements are guided by closely tracking the dynamics of
spring green up, sometimes referred to as “green wave
surfing” (Van Der Graaf et al., 2006). However, our migration
pattern results combined with previous nutritional evidence
indicate that pandas do not align their movements with
improving nutritional quality along their elevational migratory
path, but rather move directly and rapidly from low-elevation
habitat patches containing one bamboo species to high-
elevation patches containing a different species with a
temporally delayed phenology (Nie etal., 2015, 2019). This
suggests that pandas are not surfing a single, continuous
resource wave, but rather capitalizing on multiple, smaller
waves (Nie et al., 2019). As one wave declines in nutritional
value, pandas move to another wave, which may necessitate
migration, but may also involve a dietary switch between
bamboo shoots and leaves (Nie etal., 2015). Dietary
switching between two discontinuously distributed bamboo
species effectively excludes the utilization of a single green
wave as a foraging strategy, i.e., the wave is not “surfable”
(Aikens et al., 2020).

Our findings provide insights into how pandas accomplish
seasonal migration. As reported in Nie etal. (2019), dietary
shifts and seasonal migration appear to be driven by declining
resource quality and the availability of superior resources
elsewhere. Our study showed that pandas rapidly arrived at
their summer habitats but exhibited variations in their return
patterns (Figure 2B, C). These variations are likely a
consequence of the need to exploit nutritional opportunities
associated with the bamboo shooting period. However, the
pandas do not appear to follow a "green wave" trajectory in
their migratory movements between summer and winter
habitats, relying instead on spatial memory. Furthermore, the
dietary transition from arrow-bamboo leaves to wood-bamboo
leaves does not induce a significant nutritional difference as
compared to the consumption of bamboo shoots (Nie et al.,
2015). This hypothesis is supported by the observation that
individual pandas exhibited a strong tendency to return to the
same foraging area year after year, and that movement
between habitats was highly directional, without any circuitous
foraging paths (Zhang et al., 2014). Our results suggest that,
similar to the migratory behavior of zebras (Equus burchelli)
where memory plays a greater role than perception in the
selection of migratory routes (Bracis & Mueller, 2017), pandas
navigate to foraging areas that extend beyond their perceptual
range. Although our data are unable to elucidate the
underlying mechanisms, it appears that pandas integrate
memories of past information regarding foraging habitat with
spatial knowledge, thereby efficiently guiding navigation
between seasonal foraging grounds. This was demonstrated
by the consistent directional navigation observed over a six-
year period for Xiyue, who moved east when leaving for
summer habitat and west upon return (Figure 3A, F). Similar
consistency in directional navigation was observed in the other
four pandas, leading to the frequent use of the same or
adjacent habitats in their summer and winter ranges each
year. These results suggest that memory plays a crucial role
in interannual consistency in migratory routes, allowing
pandas to locate familiar foraging locations with greater
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efficiency and replenish the energy expended by migration
(Merkle et al., 2014; Powell, 2000). This efficiency is of vital
importance, especially following the period of relatively poor
foraging conditions from September to April, which is likely to
compromise body condition and survival (Li et al., 2017; Nie
et al., 2015). The repeated return of pandas to the same sites
each year likely enhances foraging and navigational efficiency,
as site familiarity can have a substantial impact on these
variables and contribute to fitness in a variety of taxa, and are
important drivers of population performance, site fidelity, and
win-stay/lose-shift foraging strategies (Piper, 2011; Stamps,
1995). This adaptive memory strategy, finely tuned to optimize
resource acquisition, is expected to confer fitness benefits to
pandas. The green wave surfing strategy improves body
condition and fitness in other migratory herbivores (Middleton
etal.,, 2018), while memory-based migration confers fitness
benefits that support larger populations due to more efficient
resource extraction (Fryxell et al., 1988; Riotte-Lambert et al.,
2017; Rolandsen et al., 2017), which may help sustain the
high panda population density found in the Qinling Mountains
(National Forestry and Grassland Administration, 2021). The
nutritional strategy of pandas supports vital life processes
such as mating, gestation, parturition, and lactation (Nie et al.,
2015), and our findings provide insight into how pandas time
their seasonal movements and dietary shifts to optimize
nutritional gain.

In addition to filing knowledge gaps regarding panda
movement ecology, our findings also have compelling
implications for conservation. The memory-based migratory
patterns between seasonal habitats identified in our study may
play an important role in determining the population dynamics
and survival of pandas in the landscape. The availability of
bamboo shoots, serving as “keystone resources” (Terborgh,
1986) that offer nutrition during periods of resource scarcity,
may increase the carrying capacity of panda populations. The
seasonal migratory patterns of pandas are essential for
exploiting these highly seasonal resources. However,
anthropogenic disruption of migratory routes is a growing
global conservation challenge, potentially leading to
population collapse (Bolger et al., 2008; Tucker et al., 2018).
Although panda migration is relatively truncated compared to
that of large herbivores and bird species, anthropogenic
disturbance or habitat loss can disrupt their movements, with
detrimental consequences for individuals and populations.
Road construction and other barriers to movement can impact
habitat use and genetic connectivity in pandas (Xu etal,
2017; Zhu etal., 2011b). Thus, we recommend judicious
management decisions regarding the placement of roads and
other infrastructure that may interrupt migratory routes. To
ensure the effectiveness of protected areas, it is essential that
they encompass both summer and winter habitats, enabling
pandas to access critical foraging resources throughout the
year. Additionally, the insights gained from our study have
important implications for the use of translocations as a
recovery tool in increasingly fragmented panda landscapes
(He etal., 2019; Yang etal., 2018). Given the pronounced
seasonal variation in resource availability, translocations need
to be carefully timed to coincide with abundant bamboo shoot
growth. Furthermore, to the extent that panda migrations are
guided by memory or cultural transmission, the relocation of
naive individuals may pose challenges as it can take multiple
generations for a translocated population to re-establish
migratory patterns and efficiently exploit and become familiar
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with seasonally available resources (Jesmer et al., 2018). To
mitigate these challenges, translocation programs for pandas
should consider implementing training programs or other
strategies aimed at expediting acquisition of knowledge (e.g.,
through cultural transmission) regarding seasonally and
geographically varying distribution of bamboo resources, as
well as the migratory routes that connect disparate foraging
habitats. Ultimately, a deeper understanding of the interplay
among learning, habitat familiarity, and animal migrations will
be instrumental in developing more effective conservation
strategies for this important ecological phenomenon (Bracis &
Mueller, 2017; Jesmer et al., 2018; Merkle et al., 2019).

The depiction presented herein of a highly adaptive species
capable of avoiding extinction in the absence of anthropogenic
disturbance strengthens support for additional investment in
its continued recovery. Accumulating evidence refutes the
premature claims that giant pandas are too highly specialized
and are pre-destined for extinction; the panda is not at an
evolutionary dead end (Wei etal., 2015a). Given its recent
downlisting to “Vulnerable” (Swaisgood et al., 2016), the giant
panda has shown a strong biological capacity for recovery.
Ecological investigations of movement patterns, such as our
own, will continue to provide a scientific foundation for
informed management of the giant panda.
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