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ABSTRACT

Adult hippocampal neurogenesis (AHN) is crucial for
learning, memory, and emotion. Deficits of AHN may lead
to reduced cognitive abilities and neurodegenerative
disorders, such as Alzheimer's disease. Extensive studies
on rodent AHN have clarified the developmental and
maturation processes of adult neural stem/progenitor cells.
However, to what extent these findings apply to primates
remains controversial. Recent advances in next-generation
sequencing technologies have enabled in-depth
investigation of the transcriptome of AHN-related
populations at single-cell resolution. Here, we summarize
studies of AHN in primates. Results suggest that
neurogenesis is largely shared across species, but
substantial differences also exist. Marker gene expression
patterns in primates differ from those of rodents.
Compared with rodents, the primate hippocampus has a
higher proportion of immature dentate granule cells and a
longer maturation period of newly generated granule cells.
Future research on species divergence may deepen our
understanding of the mechanisms underlying adult
neurogenesis in primates.
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INTRODUCTION

Adult hippocampal neurogenesis (AHN) plays a crucial role in
spatial learning, memory formation, and mood regulation
(Deng etal., 2010; Kim etal.,, 2022; Sahay etal.,, 2011).
However, whether AHN persists in primates remains
controversy. Histological studies have suggested that a sharp
decline in neurogenesis occurs during the early postnatal
period, with undetectable neurogenesis in the adult human
hippocampus (Sorrells et al., 2018). However, other studies
have reported that AHN is persistent in humans (Moreno-
Jiménez et al., 2019). To date, immunobiology-based studies
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have largely relied on rodent-derived immature neuronal
markers such as doublecortin (DCX) (Boldrini etal., 2018;
Cipriani et al., 2018; Dennis etal., 2016; Flor-Garcia et al.,
2020; Moreno-Jiménez et al., 2019; Sorrells et al., 2018; Tobin
etal.,, 2019), and the existence, abundance, and molecular
properties of human AHN are often inferred from rodents. At
present, research with human samples still lacks concrete
biomarkers to measure AHN. Thus, detailed profiling of adult
neurogenesis in primates is necessary to bridge the gaps in
adult neurogenesis between rodents and humans.

New technologies, such as single-cell RNA sequencing
(RNA-seq), have provided new insight into the expression
profile, cellular diversity, and heterogeneity of tissues at the
single-cell level (Berg etal.,, 2021; Cadwell etal., 2016;
Hochgerner etal., 2018; Hodge etal.,, 2019; Huang etal.,
2022; Lake etal., 2018; Pollen etal.,, 2015; Schmitz etal.,
2022; Wei et al., 2022; Zhong et al., 2018, 2020; Zhu et al.,
2018; Zywitza etal, 2018). Furthermore, large-scale
transcriptomic datasets have shed light on proliferating neural
progenitors, newly formed neurons, and rare cell populations,
while adult neurogenesis research has provided insight into
cellular heterogeneity and lineages (Artegiani etal., 2017;
Bakken et al., 2021a, 2021b; Harris et al., 2021; Hochgerner
etal.,, 2018), as well as quiescent neural stem cell (NSC)
maintenance and activation in the hippocampus of mice
(Habib et al., 2016; Hodge et al., 2020; Kozareva et al., 2021,
Welch etal., 2019; Yao et al., 2021; Ziffra etal., 2021). To
date, however, little is known about the dynamic regulation of
postnatal hippocampal development in primates.

In this review, we summarize research on AHN in primates
in recent decades. We also discuss the similarities and
differences between adult rodents and primates to elucidate
the distinct physiological roles and self-repair mechanisms of
the primate brain.

HISTORY AND CONTROVERSY OF AHN IN PRIMATES
In the 1980s, *H-thymidine labeling studies reported a lack of
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adult neurogenesis in non-human primate (NHP) brains
(Eckenhoff & Rakic, 1988; Rakic, 1985). In the 1990s,
however, BrdU labeling combined with immunohistochemistry
revealed persistent neurogenesis in the dentate gyrus (DG) of
adult primates (Aizawa etal., 2011; Boldrini etal., 2018;
Dennis et al., 2016; Knoth et al., 2010; Ngwenya et al., 2015;
Spalding et al., 2013; Yuan et al., 2014). Adult neurogenesis
in NHPs is considered less robust after the juvenile period
compared to that in rodents and other mammals, with longer
cycles of turnover and maturation (Amrein et al., 2004, 2011;
Gould etal.,, 1999; Knoth etal.,, 2010; Perera etal., 2007;
Spalding et al., 2013). Given that maturation of new neurons
in NHPs can last up to six months, newly formed cells may not
have yet differentiated at the point of detection. Compared
with adult neurogenesis in rodents, the age-dependent decline
in neuronal production in NHPs appears to be regulated by
absolute age, not by relative age (Aizawa et al., 2009, 2011;
Amrein et al., 2011; Leuner et al., 2007; Ngwenya et al., 2006,
2008). Adult neurogenesis in humans was first characterized
in the 1990s (Eriksson et al., 1998; Gould et al., 1999, 2001).
Since then, neuronal formation in the human adult DG of the
hippocampus and subventricular zone (SVZ) has been widely
reported, with growing interest in alternative approaches for
estimating neurogenesis. For example, measuring nuclear
bomb test-derived '“C concentrations in genomic DNA has
shown that humans and mice have similar levels of AHN
(Spalding etal., 2005, 2008). Furthermore, compared with
immunobiological methods, the '“C birth dating approach has
reported the existence of neurogenesis in the adult striatum
and much higher levels of neurogenesis in the human
hippocampus (Ernst et al., 2014; Kempermann, 2014).
Immunostaining studies have provided evidence both for the
existence of adult-born granule cells in humans
(Ammothumkandy et al., 2022; Boldrini et al., 2018; Moreno-
Jiménez etal., 2019, 2021; Terreros-Roncal etal.,, 2021;
Tobin et al., 2019) as well as for against (Cipriani et al., 2018;
Sorrells et al., 2018, 2021). The conclusions drawn from these
studies are predicated on morphological characteristics and
the detection of specific markers such as DCX and
polysialylated neuronal cell adhesion molecule (PSA-NCAM).
As a microtubule-associated protein involved in the extension
of neuronal processes, DCX is the most widely utilized proxy
marker for AHN. Nestin+/Sox2+/Ki67+ neural progenitors,
DCX+/PCNA+ neuroblasts, and DCX+ immature neurons
have been detected in the adult human DG, providing further
evidence of persistent neurogenesis. However, the expression
of DCX is not exclusive to neuroblasts in the DG but has also
been observed in mature neurons and glial cells, indicating
immaturity or plasticity among both newly generated neurons
and non-newly generated neurons. Consequently, the mere
presence of DCX expression is insufficient to confirm adult
neurogenesis. In addition to DCX, several rodent-derived
markers have been used to detect AHN in primates. Radial
glia-like cells (RGLs), neural stem cells and neural progenitor
cells can be labeled using markers such as phosphine (PH3),
glial fibrillary acidic protein (GFAP), nestin, vimentin, brain lipid
binding protein (BLBP), and sex determining region Y-box 2
(SOX2) (Cipriani etal., 2018; Moreno-Jiménez et al., 2019;
Tobin et al., 2019). Proliferating cells can be labeled by nestin,
Kl67, SRY-box transcription factor 1 (SOX1), SOX2, and
minichromosome maintenance complex component 2 (MCM2)
(Cipriani etal., 2018; Moreno-Jiménez et al., 2019; Sorrells
etal., 2021; Tobin etal., 2019). DCX, PSA-NCAM, calretinin
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(CR), B-lll-tubulin, and prospero homeobox protein 1 (PROX1)
support the existence of early differentiated and immature
granule cells (Boldrini etal., 2018; Cipriani etal., 2018;
Kempermann etal.,, 2018; Moreno-Jiménez etal.,, 2021;
Sorrells et al., 2018, 2021; Terreros-Roncal et al., 2021; Tobin
etal.,, 2019), while NeuN, tau, calbindin (CB), microtubule-
associated protein 2 (MAP2), and PROX1 label late
differentiated and mature neurons (Moreno-Jiménez et al.,
2021; Tobin et al., 2019).

Whether more robust and reliable markers exist in primates
remains controversial. Immunostaining based on pre-selected
markers derived from rodents is insufficient to determine the
extent to which adult neurogenesis occurs in primates. These
controversies highlight the major gaps in our knowledge
regarding AHN in primates based on limited markers and
suggest the need for new approaches to identify AHN.

EVIDENCE OF AHN IN PRIMATES BASED ON NEXT-
GENERATION SEQUENCING TECHNOLOGIES

Single-cell/single-nucleus RNA sequencing (sc/sn-RNA-seq)
is a powerful technique for evaluation of the expression profile,
cellular diversity, and heterogeneity of tissues at single-cell
resolution (Franjic et al., 2022; Han etal., 2022; Hao etal.,
2022; Shin etal., 2015; van Galen et al., 2019; Wang et al.,
2022; Zeisel etal., 2015; Zhang etal., 2021; Zhong etal.,
2018, 2020; Zhou et al., 2022). A systematic investigation of
postnatal hippocampal development in primates should
provide more definitive information on the dynamic regulation
of postnatal hippocampal development and adult
neurogenesis.

Sc/Sn-RNA-seq has been extensively used in rodent AHN
studies (Artegiani et al., 2017; Bakken et al., 2021a, 2021b;
Habib etal., 2016; Hochgerner etal., 2018; Hodge etal.,
2019, 2020; Kozareva et al., 2021; Welch et al., 2019; Yao
etal.,, 2021), while limited research has been conducted in
primates. Despite evidence suggesting the persistence of
AHN in the macaque hippocampus, the extent of adult
neurogenesis in the human brain remains controversy. Zhang
et al. (2021) provided the first sn-RNA-seq analysis of frozen
post-mortem  hippocampus samples from cynomolgus
macaques, which revealed aging-specific differences and
impaired neuronal regeneration. Franjic etal. (2022)
performed sn-RNA-seq analysis of the hippocampal-entorhinal
system in adult humans, macaques, and pigs and reported a
lack of neurogenic cell populations in the adult human DG.
Wang et al. (2022) conducted a comprehensive evaluation of
the molecular and cellular dynamics of the hippocampus in
macaques across their lifespan and in aged humans using
high-throughput  sn-RNA-seq and demonstrated adult
neurogenesis in humans. Hao etal. (2022) established a
large-scale dataset of adult macaque hippocampal cells and
demonstrated robust adult neurogenesis in macaques. Thus,
these studies provide support for the existence of key
neurogenic precursor cell populations in the adult macaque
hippocampus, but the extent of adult neurogenesis in the
human brain remains contentious.

Variability in analysis methodology of AHN in primates

Sc/Sn-RNA-seq can provide new insights into the study of
AHN in primates. Sc-RNA-seq captures cytosolic and nuclear
RNA, resulting in higher unique transcripts per cell.
Enrichment of unique RNA enables higher resolution during
cell-type identification and subsequent bioinformatics analysis.


www.zoores.ac.cn

However, considering that some cell types are more
vulnerable to tissue dissociation, sc-RNA-seq analysis may be
biased towards certain cell types that are resilient to
treatment. In contrast, nuclei are more resistant to mechanical
assault and can be isolated from frozen tissue. As such, sn-
RNA-seq can provide a more robust and convenient tool for
studying AHN in humans, as fresh human brain samples are
difficult to obtain. The isolation of high-fidelity single cells and
nuclei and the generation of single-cell suspensions are
crucial. Modified SPLiT-seq has been applied to isolate nuclei
from snap-frozen hippocampal tissue (Qian etal., 2020;
Rosenberg et al., 2018), while droplet-based and plate-based
methods have also been used in the field of adult
neurogenesis (Habib etal., 2016, 2017). For droplet-based
methodologies, the 10x Genomics platform offers high-
throughput capability and improved capture of rare
populations. Various analysis pipelines have been developed
to determine the biological significance of sc-RNA-seq data.
After clustering and annotation, each cell type can be
characterized based on differential gene expression, pathway
dynamics, pseudo temporal resolution, and RNA velocity (La
Manno et al., 2018; Trapnell et al., 2014). Multiple platforms
for cell clustering and differential gene expression have been
developed, including R-based (e.g., Seurat from the Satija lab
and Monocle from the Trapnel lab), Python-based (SCANPY)
(Wolf etal., 2018), and Matlab-based analyses. Zhou et al.
(2022) employed a validated machine learning-based
approach to identify and quantify immature dentate granule
cells in the human hippocampus at different stages across
lifespan. Through the utilization of high-throughput datasets,
bioinformatics has the potential to facilitate a more precise
identification of cell populations and key regulatory pathways
during neurogenesis.

Identification of cell types associated with AHN in
primates

Identification of critical neurogenic populations using sc/sn-
RNA-seq analyses can help disentangle high-dimensional
information during AHN (Figure 1). Franjic etal. (2022)
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Figure 1 Identifying cell types from sc/sn-RNA-seq data in primates

performed an integrated analysis across the mouse, pig,
macaque, and human, and identified five clusters including
astrocytes, quiescent stem cells (QNSCs), activated stem cells
(aNSCs), neural intermediate progenitor cells, neuroblasts and
granule cells. RNA velocity further identified progenitor and
neuroblast trajectories for adult neurogenesis in the mice,
pigs, and macaques, while these trajectories were absent in
humans. Wang etal. (2022) observed a cohort of cells
expressing immature neuronal markers in human tissue
samples and identified 12 clusters using unsupervised
clustering, detecting immature neurons expressing neuroblast
markers not detected in Franjic et al. (2022). All other major
cell types, except for the immature neurons, were identified in
the two studies, indicating that newborn neurons exist in
human samples.

Hao et al. (2022) performed an integrated analysis of large-
scale sc-RNA-seq datasets of adult macaque hippocampal
cells and identified all key neurogenic precursor cell
populations, including RGLs, intermediate progenitor cells,
neuroblasts, as well as abundant immature granule cells.
Transcriptomic analysis has also revealed substantial
disparities in neurogenic processes between rodents and
NHPs, as evidenced by the different marker gene expression
patterns and substantially higher proportion of immature
granule cells in the adult macaque hippocampus than in the
adult mouse hippocampus, consistent with Wang et al. (2022).
Using sn-RNA-seq, Zhou et al. (2022) also demonstrated the
existence of neurogenesis in the adult human hippocampus
based on the presence of rare dentate granule cell fate-
specific proliferating neural progenitors. They speculated that
the continuous generation of new neurons at low frequencies
is accompanied by a prolonged period of neuronal maturation,
resulting in the accumulation of a substantial number of
neurons with immature neuronal characteristics in the adult
human hippocampus at any given time. Thus, the function of
adult neurogenesis arises primarily from the unique properties
of immature neurons, rather than proliferating neural
progenitors. Future larger-scale datasets analysis may capture
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these rare proliferating neural
analyses.

progenitors for molecular

Additional bioinformatics approaches to identify key
neurogenic populations
Using expression patterns of rodent-derived marker genes as
a starting point for identifying primate neurogenic populations,
sc/sn-RNA-seq can provide additional information to define
cell types in silico based on the whole transcriptome rather
than relying on a few pre-selected markers. Taking advantage
of the rich resources accumulated for rodents, primate studies
have confirmed cell identification based on shared gene
expression patterns at the transcriptome level. After removal
of batch effects, Korsunsky etal. (2019) confirmed that
datasets from two species can be integrated and clustered
based on their transcriptomic similarities. Hao et al. (2022)
showed that, consistent with their identification, macaque
IPCs, neuroblasts, and granule cells cluster with their
counterparts in rodents and developing humans. Similarly,
Zhang et al. (2021) captured a broad spectrum of cell types in
the human hippocampus, including neurogenic lineage cells,
oligodendrocyte lineage cells, microglia, and other niche cells.
Franjic et al. (2022) only detected one cell with the neuroblast
transcriptomic profile among 32 067 granule cells (0.003%) in
humans, with much higher proportions of neuroblasts in mice
(6.6%), pigs (55.6%), macaques (2.0%), suggesting a lack of
neurogenic cell populations in the adult human DG (Table 1).
Advances in data analysis approaches for high-throughput
studies have provided details on previously obscured
physiological properties. For example, network enrichment
analysis combined with RNA velocity recapitulated the
transition from quiescent RGL to activated RGLs, suggesting
several shifted metabolic processes and providing a list of
candidate transcriptomic factors crucial for that shift (Hao
et al., 2022). Furthermore, pseudotime plot and subclustering
analyses indicated that astrocytes and NSCs exhibit strong
interactions and distinct astrocyte subtypes exert distinct
functions by providing distinct signals to adult NSCs (Wang
et al., 2022).

Identification of novel marker genes

The validation of neurogenic cell populations in primate
species through immunostaining using rodent-derived marker
genes presents a significant challenge given the substantial
differences between species. The expression of classical

neurogenesis marker genes, such as NES or DCX, at the
transcriptome level is low in adult primates compared to NPCs
in the developing hippocampus (Kempermann et al., 2018).
However, SLC1A3 (also known as GLAST) has demonstrated
greater efficacy than NES or other canonical developmental
RGL markers (Harris et al., 2021). The primate-specific NSC
marker ETNPPL has been documented in humans and
macaques (Wang etal., 2022). STMN1 and STMN2 have
been identified as novel markers of immature granule cells
(Zhou et al., 2022). Furthermore, HMGB2 has been identified
as a novel intermediate progenitor cell marker in the macaque
hippocampus (Hao etal., 2022). The identification of these
novel markers should facilitate our understanding of adult
hippocampal neurogenesis in primates (Figure 2).

EFFECTS OF AGING AND DISEASE ON AHN IN
PRIMATES

As previously reported, neurogenesis is profoundly influenced
by the neurogenic niche, which is comprised of microglia,
oligodendrocytes, neurovascular elements, and a complex
network of cytokines and chemokines (Artegiani et al., 2017;
Nicola et al., 2015; Sultan et al.,, 2015). Zhang etal. (2021)
recently highlighted a range of new aging-associated
phenotypic changes in the primate hippocampus. Wang et al.
(2022) conducted a comprehensive study of the macaque
hippocampus throughout postnatal developmental stages and
identified a cluster of active astrocytes and microglia exhibiting
inflammatory signatures, with active astrocytes present in
aged samples and active microglia found in both young and
aged samples. NSCs first differentiate into neural transiently
amplifying progenitor cells (TAPCs), which give rise to
neuroblasts that differentiate into immature and then mature
granule neurons. Several studies have indicated that aging
can have a profound impact on both TAPCs and microglia. An
in-depth analysis of gene expression dynamics revealed that
aging impairs TAPC division and compromises neuronal
function along the neurogenesis trajectory (Zhang et al.,2021).
Furthermore, aged microglia and oligodendrocytes exhibit
elevated pro-inflammatory responses and aged endothelial
cells exhibit dysregulated coagulation pathways, which may
contribute to a hostile microenvironment for neurogenesis
(Wang et al., 2022). The impact of extrinsic factors such as
environmental enrichment, exercise, stress, and diet on adult
hippocampal neurogenesis is also well documented (Zhang

Table 1 Summary of adult primate hippocampal neurogenesis studies using sc-RNA-seq or sn-RNA-seq

N f Il
Method Species Tissue umber o Ce ) Platform  Neurogenesis Notes Studies
cells population
Eight young and Neural transiently amplifying
Sn-RNA-seq Cynomolgus aged CA1, CA3, 8000 nuclei 12 clusters 10x . Yes progenitor cell and microglia Zhang etal.,
monkey Genomics - 2021
and DG were most affected by aging
38 human post- Novel candidate gene Zhou et al
Sn-RNA-seq Human mortem 32103 nuclei 14 clusters  SPLiT-Seq Yes STMN1 in human immature 2022 ”
hippocampi neurons
13 macaque and ETNPPL as a primate-
Sn-RNA-seq Human,mac . 10x specific NSC marker. STMN1Wang et al.,
Sc-ATAC-seq aque fqur human. donor 132524 nuclei 13 clusters Genomics Yes for both and STMN2 as immature 2022
hippocampi . )
neuronal markers in primates
Eight adult 10x HMGB2 as a novel Hao et al
Sc-RNA-seq Macaque  macaque 207 785 cells 34 clusters . Yes intermediate progenitor cell v
. . Genomics 2022
hippocampi marker
Human post- METTL7B-defined
Human, mortem DG 10x Yes for subregion-specific excitatory Franjic et al
Sn-RNA-seq rr;acaque, CA2-CA4, CA1, 219058 nuclei69 Clusters Genomics ?;?Ei?:::éNo neurons and astrocytes in 2022
P9 Sub, and EC primates
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etal.,, 2021). At aged stages, both microglia and astrocytes
contribute to the neuroinflammatory response, which has been
linked to detrimental effects on brain function. Impairment of
AHN may contribute to memory and cognitive dificits and
neurodegenerative disorders, such as Alzheimer's disease
(Babcock et al., 2021; Essa et al., 2022; Leng & Edison, 2021)
(Figure 3) Impairment of AHN may contribute to memory and
cognitive dificits and neurodegenerative disorders, such as
Alzheimer's disease (Babcock et al., 2021; Essa et al., 2022;
Leng & Edison, 2021) (Figure 3)

How active astrocytes and microglia affect other cell types is
an interesting question. Analysis of the interaction dynamics
among microglia, astrocytes, and NSCs has demonstrated
that astrocytes and NSCs have a more pronounced
interaction, suggesting that active astrocytes exert direct
effects on NSCs. Transcriptome dynamics of astrocytes and
analysis of the interaction between astrocytes and NSCs have

distinct roles by mediating differential signals to adult NSCs
(Cassé etal., 2018; Luo etal., 2015; Masuda et al., 2020).
Previous studies in mice have also indicated that active
astrocytes are capable of inducing the death of neurons and
oligodendrocytes (Artegiani et al., 2017).

CONCLUSIONS AND PROSPECTS FOR FUTURE WORK

At present, the validity of AHN in adult primates is primarily
based on immunohistochemical analysis of traditional
markers. These staining results are susceptible to various
experimental factors, such as fixatives, post-mortem intervals,
variability in antibody batches, and antigen retrieval methods
(Dennis et al., 2016; Flor-Garcia et al., 2020; Moreno-Jiménez
et al., 2021). Sc/Sn-RNA-seq provides a robust and sensitive
tool that circumvents the limitations of traditional techniques,
such as RNA in situ hybridization and immunohistochemistry,
to reveal rare cell types. Indeed, the identification of key

provided evidence that different astrocyte subtypes play neurogenic precursor cell populations in sc/sn-RNA-seq
PROX1
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Figure 2 Schematic representation of AHN in adult primate hippocampus
Schematic representation of AHN in adult primate hippocampus in subgranular zone. Left-most is radial glia-like cells, followed by intermediate
progenitor cells and finally immature and mature neurons. Important biomarkers of each cell type are labeled. RGL, radial glia-like cell; IPCs,

intermediate progenitor cells; NB, neuroblasts; GC, granule cells.
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Figure 3 Effects of aging and Alzheimer’s disease on AHN in primates
Summary of potential effects of aging and Alzheimer's disease on AHN in primates. INnGCs, immature dentate granule cells; NSCs, neural stem

cells.
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datasets provides strong support for the robustness of
neurogenesis in the adult macaque hippocampus. However,
the extent of neurogenesis in the adult human hippocampus
remains controversial. Further investigation of the nature of
these key populations should deepen our understanding of
adult neurogenesis.

The existence of immature neurons has been a matter of
contention for the past several decades. The utilization of sn-
RNA-seq should provide further molecular details regarding
the expression profiles of various cell types, which may lead to
the identification of additional primate-specific markers for
immature granule cells. Further comparative studies between
primates and rodents may also help clarify the mechanisms
underlying adult neurogenesis in primates. Although research
focusing on the primate hippocampus has provided evidence
for the broad existence of AHH in primates, controversy still
exists. Furthermore, accumulating evidence on the differences
between rodents and primates highlights the need for further
comparative studies. One potential direction is to develop
better and more reliable endogenous markers for the
characterization of neural precursors and neurogenesis in
post-mortem human tissues. Newly developed spatial
transcriptomic analysis (Maynard et al., 2021) may provide a
potential resolution for measuring transcriptional profiles of
previously undetectable cells. The development of new
imaging methods for high-resolution longitudinal analysis of
neurogenesis in humans should also be explored. One study
using magnetic resonance imaging identified neural
precursors in the primate hippocampus through complex
signal processing (Sierra etal., 2011), although further
validation is required large-scale sn-RNA-seq analysis may
also enable the capture of rare proliferating neural progenitors
for molecular analyses. Furthermore, comprehensive analyses
of postnatal neurons, both in infants and adults, should enable
a deeper understanding of the state and function of human
AHN and plasticity.

AHN is not a cell-replacement mechanism. In rodents, it
helps maintain plasticity in hippocampal neuronal circuits via
the continuous addition of immature neurons for circuit
integration (Harris et al., 2018; Hochgerner et al., 2018; Zeisel
etal.,, 2018). Once successfully integrated, adult newborn
granule cells exhibit unique features, suggesting that these
newborn cells may play a role in hippocampal function,
including learning and memory as well as anxiety and stress
regulation (Abrous & Wojtowicz, 2015; Deng etal., 2010;
Hernandez-Rabaza et al., 2009; Kent etal., 2016; Lemaire
etal., 2000). However, the contribution of newly formed
neurons to network function in primates is unknown. Despite
the difficulties, validation of the functional integration of
newborn cells is a crucial step for understanding the functional
consequences of adult neurogenesis in primates. Cutting-
edge in vivo lineage tracing may be a good approach to
further clarify the controversy regarding AHN in primates.
Genetically modified NHPs with specific markers could be
created to meet this requirement and provide resources for
future research.
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