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A 1.1 Mb duplication CNV on chromosome 17 contributes to
skeletal muscle development in Boer goats
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ABSTRACT

The Boer goat is one of the top meat breeds in modern
animal husbandry and has attracted widespread attention
for its unique growth performance. However, the genetic
basis of muscle development in the Boer goat remains
obscure. In this study, we identified specific structural
variants in the Boer goat based on genome-wide selection
signals and analyzed the basis of the molecular heredity of
related candidate genes in muscle development. A total of
9 959 autosomal copy number variations (CNVs) were
identified through selection signal analysis in 127 goat
genomes. Specifically, we confirmed that the highest
signal CNV (HSV) was a chromosomal arrangement
containing an approximately 1.11 Mb (CHIR17:
60062304-61171840 bp) duplicated fragment inserted in
reverse orientation and a 5 362 bp deleted region
(CHIR17:60145940-60151302 bp) with overlapping genes
(e.g., ARHGAP10, NR3C2, EDNRA, PRMT9, and
TMEM184C). The homozygous duplicated HSV genotype
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(+/+) was found in 96% of Boer goats but was not detected
in Eurasian goats and was only detected in 4% of
indigenous African goats. The expression network of three
candidate genes (ARHGAP10, NR3C2, and EDNRA)
regulating dose transcription was constructed by RNA
sequencing. Results indicated that these genes were
involved in the proliferation and differentiation of skeletal
muscle satellite cells (SMSCs) and their overexpression
significantly increased the expression of SAA3. The HSV
of the Boer goat contributed to superior skeletal muscle
growth via the dose effects of overlapping genes.

Keywords: Boer goat; CNV; Muscle development;
SMSCs
INTRODUCTION

Boer goat is a world-renowned meat breed of goat
characterized by a large body and good meat production.
Because of its broad ecological adaptability, it has been widely
introduced in many countries for the hybrid genetic
improvement of native goats (Marques etal., 2021; Ncube
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etal., 2022; Pérez-Baena etal.,, 2021). Many researchers
have explored its meat quality (van Wyk et al., 2022), feeding
mode (Pérez-Baena etal.,, 2021), and reproductive
performance (Bezerra et al., 2019; Kholif et al., 2020), as well
as the molecular basis of muscle development, coat color, and
environmental adaptation (Chaosap et al., 2020; Shakweer &
El-Rahman, 2020; Wang et al., 2019b; Xiong et al., 2020).
However, the genetic basis for its superior muscle growth
remains poorly understood.

Copy number variation (CNV) is a major form of genomic
structural variation, defined as the deletion/duplication of
genomic fragments of more than 1 kb caused by genome
rearrangements (Xie & Tammi, 2009). CNVs participate in
various biological functions and phenotype formation through
the dosage effects of included genes and are involved in the
reconstruction of gene regulatory regions (Pielberg et al.,
2003; Shen etal, 2013; Xu etal.,, 2020). For example,
CCL3L1 copy exhibits a robust large-scale gene dosage effect
on CCL3L1 mRNA levels (Adewoye et al., 2018). The human
SLC2A3 gene locus located on chromosome 12p13.31 is
unstable and prone to non-allelic homologous recombination
events, generating multiple CNVs of SLC2A3 that alter
SLC2A3 expression (Veal etal., 2014). Specifically, organ
development, proliferation, and cellular degeneration are
particularly susceptible to SLC2A3 copy number alterations
(Ziegler et al., 2020). Furthermore, the 16p11.2 and 22q911.2
genes involved in CNVs are thought to have copy number
dose-dependent effects on the behavior of affected humans
(Shishido et al., 2014). Overall, CNVs are closely related to
the expression levels of the covered genes and the copy
numbers of most genes are positively correlated with their
expression (Shao etal.,, 2019). Recent studies have
suggested that CNVs are key drivers of phenotypic diversity
and economic traits in domesticated animals (Ladeira et al.,
2022; Lye & Purugganan, 2019; Paudel et al., 2013), and are
associated with goat muscle development (Huang et al., 2021;
Liu et al.,, 2019).

Skeletal muscle is the main source of protein in edible meat
(Yin etal, 2020), and its developmental status directly
determines the growth-related economic traits of animals
(Dodson et al., 2010). The formation of new muscle fibers in
skeletal muscle depends on the activation of muscle-specific
precursor cells (Dumont et al., 2015; Relaix & Zammit, 2012).
The self-renewal and proliferation of skeletal muscle satellite
cells (SMSCs) can provide many myogenic cells, which
redifferentiate into myoblasts and fuse into myotubes to form
new muscle fibers (Chang & Rudnicki, 2014).

The development of SMSCs is a complex process due to
the co-regulation of numerous signaling pathways and genes
(Giordani etal.,, 2018; Milewska etal., 2014). In recent
decades, the genetic basis of goat skeletal muscle
development has been investigated. Studies have shown that
the MSTN gene is a negative regulator of skeletal muscle
growth and development and functions by controlling the
number, size, and type of muscle fibers (Bi etal., 2021).
GSK3B regulates the expression of the MYHC-2A gene via
NFATC2 to promote SMSC differentiation in goats (Wang
etal., 2019a). The mTOR signaling pathway regulates the
phosphorylation of myocyte enhancer factor 2 (MEF2) through
ILK, thereby affecting SMSC proliferation and differentiation
(Wu et al., 2015).

In this study, we aimed to identify CNVs and high-frequency
dominant genotypes associated with the extraordinary
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economic phenotypes in Australian Boer goats via genome-
wide selection signal analysis. We also clarified the molecular
roles of candidate genes carried by the variants in the
proliferation and differentiation of SMSCs and the dose effect-
based expression regulation of downstream genes.

MATERIALS AND METHODS

Genome-wide sequencing and selection signal analysis of
CNV dataset

All applicable international, national, and institutional
guidelines for the care and use of animals were strictly
followed. All animal collection protocols complied with the
current laws of China. The experimental protocols were
approved by the Animal Care Committee of Southwest
University (Permit No. IACUC-20210415-04) in compliance
with the recommendations of the Regulations for the
Administration of Affairs Concerning Experimental Animals of
China.

A total of 127 publicly available goat genome datasets were
downloaded from the NCBI Sequence Read Archive (SRA),
including 46 Australian Boer goats from our previous study
(Yang etal.,, 2021) and 81 other goats (45 African, 16
European, and 20 Asian goats) as the control group
(Supplementary Table S1).

The raw genomic data were trimmed and filtered using
Trimmomatic software (v0.36). High-quality clean reads were
mapped to the goat reference genome (ARS1,
GCF_001704415.1) using BWA-MEM (v0.7.17-r1188) with
default parameters. Potential polymerase chain reaction
(PCR) duplicates were removed by Picard (http://broadinstitute.
github.io/picard). CNVcaller (Wang et al., 2017b) was used to
determine CNVs, retaining those with silhouette score>0.65
and minor allelic frequency (MAF)>0.05 to prevent possible
false positives. Selective sweep analysis of CNVs was
performed with Vgt and Fgr. Variants were annotated by
ANNOVAR (ANNOate VARIiation). Candidate genes were
identified and annotated from the top 20 CNVs using the Vgt
and Fgr indices. Candidate genes were also annotated based
on Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses using the online tool KOBAS
(http://kobas.cbi.pku.edu.cn/kobas3) with corrected P<0.05 as
the threshold for significant enrichment.

To further explore the genotype frequencies of key
candidate CNVs in Chinese indigenous goat populations, we
followed the above-mentioned CNV identification methods to
supplement the CNV genotypes of four indigenous breeds in
southwest China (20 Dazu black goats, 20 Youzhou black
goats, 20 Hechuan white goats, and 20 Hainan goats)
(Supplementary Table S2). Venous blood samples (1.5 mL)
were collected, and genomic DNA was extracted using a
DNeasy Blood & Tissue Kit (Qiagen, Germany). DNA libraries
were constructed with an lllumina NGS Fast DNA Library Prep
Set lllumina Kit (lllumina, USA). The genome of each animal
was sequenced using the lllumina NovaSeq 6000 system for
10x sequencing (BGI, China). All bioinformatics analysis steps
were performed as described above.

Exploration of candidate CNV structures using long-read
genome-wide sequencing and PCR-Sanger sequencing

One DNA sample was collected from each of the 46 Australian
Boer goats. A SMRT bell CLR library was constructed using a
Pacific Biosciences SMRTbell Express Template Prep Kit 2.0.
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The constructed libraries were size-selected on a
BluePippin™ system for molecules =25 kb and subjected to
primer annealing. The SMRTbell templates were bound to
polymerases using a DNA/Polymerase Binding Kit.
Sequencing was carried out using the Pacific Bioscience
Sequel platform (PacBio, USA).

To verify the structural variant genotypes of chromosomal
rearrangements, PCR primers (Supplementary Table S3)
targeting breakpoints based on an approximately 1.11 Mb
chromosomal rearrangement (CHIR17:60062304—61171840)
were designed using the Primer (v3.04) online tool (http://
bioinfo.ut.ee/primer3-0.4.0/). For PCR amplification,
2xTransTaq® High Fidelity (HiFi) PCR SuperMix Il (TransGen
Biotech, China) was used. The PCR conditions consisted of
initial denaturation at 94 °C for 5 min, followed by 35 cycles of
denaturation at 94 °C for 30 s, annealing at locus-specific
annealing temperature (Tm) for 30 s, and extension at 72 °C
for 2 min, with a final extension at 72 °C for 7 min. Sanger
sequencing was conducted using two methods on the ABI
3730 sequencing platform (Life Technologies, USA).

Culture and identification of SMSCs in goats

First, 3 cm® leg muscle samples were obtained from 1-month-
old Dazu black goats. After removing fat and connective
tissues, the muscles were digested with 0.1% type |
collagenase (Solarbio, China) and 0.25% trypsin (HyClone,
USA) to release the cells. The SMSC suspension was filtered
and detached, after which the cells were cultured 10% growth
medium (GM) containing Dulbecco’s Modified Eagle Medium
(DMEM/F; Thermo Fisher Scientific, China), 10% fetal bovine
serum (Thermo Fisher Scientific, China), and 2%
penicillin/streptomycin  (Invitrogen, USA) at 37 °C in a
humidified atmosphere of 5% CO,. Differentiated SMSCs
were induced using differentiation medium (DM) containing
DMEM and 2% horse serum (HyClone, USA) when their
density reached 70%-80% in the GM. Immunofluorescence
staining of Pax7 was performed to identify SMSC purity (Feng
etal.,, 2018), and Pax7 monoclonal rabbit antibodies were
provided by Absin (China).

Candidate gene overexpression vector construction and
transfection into SMSCs

To identify effects on SMSC proliferation and differentiation,
lentiviral vectors (HBLV-ARHGAP10-3xflag-ZsGreen-PUR,
HBLV-EDNRA-HIS-mCherry-BSD, and HBLV-NR3C2-3xflag-
ZsGreen-PURO; HANBIO, China) expressing flag-tagged
ARHGAP10 (Gene ID: 102173323), EDNRA (Gene ID:
102174144), and NR3C2 (Gene ID: 102172834) were first
constructed. Their cDNAs were synthesized by PCR
amplification with corresponding primer pairs (Supplementary
Table S4) and inserted between the EcoRI and BamHI sites.
HBLV-ZsGreen-PURO and HBLV-mCherry-BSD empty
vectors were used as negative controls. Lentiviral transfection
was performed when SMSC density reached 60%—70%.
Transfection efficiency was assessed based on cell
fluorescence using a fluorescence microscope (Leica DMi8,
Germany) after 48 h.

At 12, 24, 36, and 72 h after transfection of overexpressed
candidate genes into the SMSCs, cell proliferation was
measured using a CCK8 Kit (Solarbio, China) by recording
absorbance at 450 nm and running three parallel replicates. At
48 h after transfection, an EdU (5-ethynyl-2’-deoxyuridine)
experiment was performed using a C10310 EdU Apollo In
Vitro Imaging Kit (Ribobio, China). At least four fields were

randomly selected to observe the number of stained cells
under a fluorescence microscope (Leica DMi8, Germany).

To identify SMSC differentiation when candidate genes
were overexpressed, we carried out lentiviral transfection,
followed by cell culture for 36 h at 37 °C. SMSC differentiation
was induced for 4 days by switching from GM to DM. Total
RNA was extracted using RNAiso Plus (Solarbio, China). The
mRNA expression levels of myogenic differentiation marker
genes (MyoD, MyoG) were measured by quantitative real-time
PCR (gqRT-PCR) (Metzger et al., 2020).

Molecular  regulatory network investigation of
overexpressed candidate genes in SMSCs by RNA
sequencing (RNA-seq)

The SMSC sample settings for RNA-seq were: ARHGAP10
overexpressed group (AA) and its no-load control (AO);
EDNRA overexpression group (EA) and its no-load control
(EO); and NR3C2 overexpression group (NA) and its no-load
control (NO). Three biological replicates were established for
each group. Total RNA was extracted using a Trizol Reagent
Kit (Invitrogen, USA). RNA quality was assessed with an
Agilent 2100 Bioanalyzer (Agilent Technologies, USA). RNA-
seq cDNA libraries were constructed using a NEBNext Ultra
RNA Library Prep Kit (NEB #7530, New England Biolabs,
USA). Sequencing was performed on the lllumina NovaSeq
6000 system (BGlI, China).

Fastp (v0.18.0) was used to filter raw data (PRINA843937)
to obtain clean reads. The short-read alignment tool Bowtie2
(v2.2.8) was used to map the reads to the ribosomal RNA
(rRNA) database. The rRNA-mapped reads were then
removed. Paired-end clean reads were mapped to the
reference genome (ARS1, GCA_001704415.1) using HISAT
(v2.2.4) with default parameters. The mapped reads of each
group were assembled using StringTie (v1.3.1) in a reference-
based approach. For each transcription region, fragments per
kilobase of transcripts per million mapped reads (FPKM)
values were calculated to quantify expression abundance
using RSEM software (Li & Dewey, 2011). Differential gene
expression was analyzed by DESeq2 (Love etal., 2014).
Genes with a false discovery rate (FDR)<0.05 and absolute
fold-change=2 were considered as significant differentially
expressed genes (DEGSs).

Bioinformatics analysis accuracy based on RNA-seq data
was verified using a CFX96-Touch™ Real-Time PCR
Detection system (Bio-Rad, USA). All RNA samples used for
gRT-PCR were the same as those used for RNA-seq. The
cDNA was synthesized using a First-Strand cDNA Synthesis
Kit (Takara Bio, RR047A, China). Primer Premier 6 (Premier
Biosoft, USA) was used to design the primers for the genes
(Supplementary Table S5).

For gRT-PCR amplification, in accordance with the
manufacturer’s instructions, the reaction volume (20 pL)
contained 10 pL of 2xSYBR Green PCR Master Mix (Takara
Bio, China), 20 ng of cDNA, 0.5 pL (10 mmol/L) of each
primer, and ddH,O to the final volume. The qRT-PCR
amplification system included: one cycle at 95 °C for 3 min,
followed by 40 cycles at 95 °C for 10 s and 55 °C for 30 s.
Within the runs, the samples were assayed in triplicate, and
the maximum acceptable standard deviation of the threshold
cycle (CT) was 0.2. Each qRT-PCR run was repeated at least
three times. Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was used to normalize gene expression (reference
gene). The relative expression levels of different gqRT-PCR
data were analyzed using the 272" method (Livak &
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Schmittgen, 2001). Statistical analysis of relative mRNA
expression was carried out using SPSS v19.0 (SPSS, USA).

RESULTS

Genome-wide selection signal analysis of CNVs in Boer
goat

In this study, 9 959 CNVs were obtained on the autosomes of
127 goats. Twenty overlapping CNVs were screened
according to the top 1% selection signals of the two
parameters (Fs720.430998, V57120.597069727; Figure 1A). A
total of 23 candidate genes (e.g., EDNRA, CYBA, and
PBRM1) were identified from those CNVs (Supplementary
Table S6).

Eleven of the 23 candidate genes were enriched in 33
KEGG signaling pathways (Figure 1B; Supplementary Table
S7), including growth and development-related pathways
(such as osteoclast differentiation (CYBA)), metabolism-
related signaling pathways (inositol phosphate metabolism
(PLCH2) and metabolic pathways (PLCH2, NDST3, and
MVD)), and biological regulatory function-related signaling
pathways (MAPK signaling pathway (CACNA1B)). Moreover,
21 of the candidate genes were enriched to 238 GO terms
(Figure 1C; Supplementary Table S8), of which 56 were
significantly enriched (corrected P<0.05). According to the
classification results, three GO terms were related to muscle
contraction function, including artery smooth muscle
contraction (EDNRA), smooth muscle contraction (EDNRA),
and positive regulation of smooth muscle cell proliferation
(CYBA). Some GO terms related to growth and development
were also enriched, such as positive regulation of endothelial
cell proliferation (CYBA), neural crest cell development
(EDNRA), and mitotic cell cycle (PBRM1). Other GO terms
were related to immune function (positive regulation of

phagocytosis (CYBA)) and reproduction (oogenesis (KMT2D)
and in utero embryonic development (EDNRA)).

Precise structure of key candidate CNVs in Boer goats
The two CNVs with the highest signal values (CNV1:
Fs7=0.918858, Vs7=0.855420854, CHIR17:60062001—
60297500 bp; CNV2: Fg=0.918858, Vs7=0.877347065,
CHIR17:60301001-61018500 bp) contained five coding genes
(ARHGAP10, NR3C2, EDNRA, TMEM184C, and PRMT9).
The full length of the duplication CNVs (CNV1 and CNV2) on
CHIR17 was approximately 1.11 Mb, as determined by the
Integrative Genome Viewer (IGV) with short reads. We
confirmed that the two CNVs were seamlessly unified (HSV;
Figure 2A), that is, they did not include at 4 145 bp spacer
sequence, as determined by long-read and PCR-Sanger
sequencing of homozygous individuals. Average read
coverage of the different HSV genotypes (Figure 2B) and
frequency of the HSV genotypes within populations located in
different geographic areas were determined. The homozygous
duplication (+/+) genotype was found in 96% of the Boer
goats, 4% of the indigenous African goats, and none of the
Eurasian goats (Figure 2C).

Long reads sequenced from a homozygous individual with
HSV (+/+) were used for HSV structural analysis. First, a
5 363 bp (CHIR17:60145940-60151302 bp) region was
observed within the 1.11 Mb HSV region of the homozygous
HSV (+/+) individual without an extra copy (Figure 2D). In
addition, many reads mapped to the two edges of the HSV
were reverse-mapped to the outer edges of the region
(CHIR17:60145940-60151302 bp), as observed by IGV. In
detail, more than 80% of reads mapped to CHIR17:60137768—
60145940 bp were also reversely located in the
CHIR17:61167664—-61171840 region (Figure 2D), and a high
frequency of reads were mapped to both CHIR17:60062304—
60063156 and CHIR17:60151302-60153676 in opposite

Figure 1 Genome-wide selective sweep analysis of Boer goats based on CNVs

A: Manhattan plot of Fgt and Vst showing CNV-based selection signals of 46 Boer goats in comparison to 81 non-meat goats and top 1% of
intersections of sweep windows between Fst and Vgr. B: KEGG pathways enriched in 11 candidate genes, with top 20 intersections of selection
signal parameters. C: GO network enriched in 21 candidate genes, with top 20 overlapping CNVs of two selection signal parameters. Different

colors represent different biological function classifications, and size is determined by amount of GO enrichment.
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Figure 2 Genomic structure of HSV on CHIR17 in goats

A: IGV screenshots of Nanopore long-read sequences, showing lack of the 4 145 bp spacer sequence between CNV1 and CNV2, as determined by
long-read and PCR-Sanger sequencing of homozygous goats. B: Coverage of genomic reads of different genotypes of HSV. C: Genotype
frequency distribution of homozygous duplicated HSV (+/+) in different geographical populations. D: Close-ups of IGV screenshots of lllumina long-
read sequences, illustrating duplication of CHIR17 at the boundaries of the variant sites. Red and green reads are mapped at different locations.
Extremely prominent multicopy elements (MCE1, MCE2) are in yellow and blue. E: Schematic of variant on CHIR17, showing inversely inserted
~1.1 Mb segment and deleted 5 363 bp region (CHIR17:60145940-60151302 bp) by retrovirus direction; location and orientation of annotated
genes and loci in involved genome regions are shown. F: Experimental confirmation of complex structural variant. Sanger sequencing of PCR
products of variant allele precisely defines breakpoints of fusion of CHIR17 segments.
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directions (Figure 2D). Therefore, we initially assumed that the
chromosomal rearrangement structure of the HSV was formed
by the insertion of the extra 1.11 Mb duplication in the reverse
orientation and by the deletion of the ~5.3 kb region
(Figure 2E). Here, the two end sequences of the HSV reverse
insertion sites were named boundary sequence | (BS |, CHIR17:
60062304 bp) and boundary sequence Il (BS |,
CHIR17:61171840 bp). We designed primers extending
approximately 1 kb on each side of BS I, which were then
verified by PCR-Sanger sequencing. The product sequence
results are shown in Figure 2F. The primers designed at each
1 kb extension of BS Il and PCR amplification were
unsuccessful and accurate sequence assignments were not
obtained due to deficiencies in the reference genome
assembly.

Two extremely prominent multicopy elements (MCEs) were
widely observed in the HSV region (Figure 2D), including
MCE1 (718 bp in size, mapped to CHIR17:60136360—
60137078 bp) and MCE2 (222 bp in size, mapped to
CHIR17:60152581-60152803 bp). Some duplicate reads of
both elements were also positioned adjacent to BS |
(Supplementary Figure S1) and BS Il (Supplementary Figure
S2). Although a nucleic acid BLAST search of the NCBI
database did not retrieve any information on MCE2, MCE1
showed 96.6% similarity to Babesia ovata Retrovirus-related
Pol poly LINE-1 (XM_029013938.1).

Cell culture, identification, and transfection
According to the KEGG results of the five genes within the

1.11 Mb duplicated region, only three were enriched in KEGG
pathways related to bacterial invasion of epithelial cells
(ARHGAP10), vascular smooth muscle contraction (EDNRA),
and aldosterone-regulated sodium reabsorption (NR3C2).

The isolated and cultured SMSCs were identified by
immunofluorescence (Wang et al., 2020). Results showed that
the expression efficiency of Pax7 was 82.3% (Supplementary
Figure S3A). Infection efficiency was assessed using different
multiplicities of infection (MOls: 30, 60, 90, and 120)
(Supplementary Figure S4). At an MOI of 90, the fluorescence
intensity was highest and SMSCs grew well (Supplementary
Figure S3B). At 48 h after lentiviral transfection, the gene
expression levels of ARHGAP10, NR3C2, and EDNRA were
significantly higher than those in the control group (P<0.01;
Supplementary Figure S3C).

Involvement of overexpressed candidate genes
(ARHGAP10, NR3C2, and EDNRA) in proliferation and
differentiation of SMSCs

The effects of the three candidate genes on SMSC
proliferation were determined by the CCK-8 method. Cells
proliferated rapidly within 24—36 h after lentiviral transfection,
and the proliferation rate of SMSCs transfected with
ARHGAP10 and NR3C2 overexpressing lentiviruses was
significantly higher than that of the control cells (Figure 3C).
We also examined the proliferation of SMSCs by EdU assay
and found that ARHGAP10 and NR3C2 overexpression
significantly increased the number of EdU-positive cells in the
proliferation phase (Figure 3A, B).

Figure 3 Effects of overexpression of ARHGAP10, NR3C2, and EDNRA or control on SMSC proliferation and differentiation

A: EdU assay results for SMSCs after overexpression of ARHGAP10, NR3C2, and EDNRA for 48 h, where EdU (red) fluorescence indicates
proliferation and Hoechst (blue) fluorescence indicates nuclei. B: EdU-positive cell ratio of SMSCs after overexpression of ARHGAP10, NR3C2, and
EDNRA for 48 h. Data are meantstandard error of the mean (SEM) (n=6). C: Cell growth curves of SMSCs measured by CCK-8 Kit after
overexpression. D: Effects of mMRNA expression of MyHC, MyoD, and MyoG in overexpressed ARHGAP10, NR3C2, and EDNRA genes on SMSC

differentiation. ns: No significance; ": P<0.05; ”: P<0.01 vs. Control.
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The differentiation effects observed after SMSCs were
induced to differentiate for 4 days is shown in Supplementary
Figure S5. Analysis of the effects of candidate gene
overexpression on SMSC differentiation revealed that the
relative mMRNA expression levels of differentiation marker
genes (MyoD and MyoG) increased after transfection with
ARHGAP10- and EDNRA-carrying lentiviruses (Figure 3D). In
contrast, the relative mRNA expression levels of MyoD and
MyoG were inhibited in SMSCs after NR3C2 transfection.

Molecular heredity regulation basis of overexpressed
candidate genes in SMSCs

To further understand the regulatory mechanism of the
ARHGAP10, NR3C2, and EDNRA genes in goat SMSCs, we
performed RNA-seq of the transfected SMSCs and identified
changes in related genes during cell proliferation and
differentiation. A total of 273 significant DEGs were identified
in the NA versus NO group, including 228 up-regulated genes
(e.g., BMP2, MYH3, and MYORG) and 45 down-regulated
genes (e.g., EGR3, HAS2, and LIF) (Figure 4A). Five
significant DEGs (CFB, C2, CYP26B1, SLC7A8, and SLPI)
were identified in the EA versus EO group, all of which were
significantly up-regulated. One significant DEG (SAA3) was
identified in the AA versus AO group, which was significantly
up-regulated.

In the NA versus NO group, 125 DEGs were enriched in
223 pathways (Figure 4B), including several well-known
pathways involved in cell growth and muscle development,
such as the calcium signaling pathway, cyclic guanosine
monophosphate-dependent protein kinase G (cGMP-PKG)
signaling pathway, and transforming growth factor (TGF)
signaling pathway. Many DEGs (e.g., TGF-B2, MYHS3,
ANKRD1, and MYH15) were involved in growth and
development (Figure 4C), including muscle cell differentiation
(e.g., muscle cell differentiation and cardiac muscle cell cycle
based on GO annotation).

We also explored mRNA expression of DEGs in the NA

versus NO group (Figure 5A) and EA versus EO group
(Figure 5B). Notably, mRNA expression of SAA3 was up-
regulated in the SMSCs after overexpression of ARHGAP10,
EDNRA, and NR3C2 (Figure 5C). DEG validation by gRT-
PCR was consistent with the RNA-seq results, confirming the
stability and reliability of the transcriptome data in this study.

DISCUSSION

In this study, Australian Boer goats were shown to carry a high
frequency of a homozygous-duplicated genotype of HSV. This
duplicated genotype was not found in indigenous European
and Asian goats but was detected at a low frequency in
indigenous African goats. This finding suggests that this
duplicated genotype may have originated from Africa, as Boer
goats were initially bred by crossing indigenous African goats
with European goats (Malan, 2000).

A large number of chromosomal rearrangements are
distributed within vertebrate genomes (Tsai & Lieber, 2010),
which are involved in a wide variety of biological functions and
the formation of various phenotypes (Castronovo et al., 2015;
Kot et al., 2021). A potential lentiviral transposable sequence
appeared at junctional boundaries formed by the HSV
chromosomal rearrangements. Various studies have shown
that repetitive sequence elements of retroviruses may lead to
large-scale chromosomal deletions, duplications, and
rearrangements via homologous recombination (Hughes &
Coffin, 2001). Evidence suggests that the frequency of
rearrangements is higher when the LINE-1 copy number
within the genomic region is high (Kemp & Longworth, 2015).
Hence, HSV may be a retrovirus-directed chromosomal
rearrangement.

Several studies have demonstrated that CNVs can promote
phenotypic variation through dosage effects on gene
expression (Berkel & Cacan, 2022; Pielberg etal., 2003).
Evidence also suggests that the three genes within HSV
identified in our study are involved in the development of

Figure 4 Transcriptomic changes in SMSCs after NR3C2 overexpression
A: Volcano plot clustering of DEGs in samples transfected with overexpressed NR3C2. B: Pathways of DEGs in NA versus NO group according to
KEGG enrichment analysis. C: Network diagram of GO terms enriched in DEGs in NA vs. NO group.
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Figure 5 Results of mRNA expression of DEGs

A: mRNA expression of DEGs involved in muscle development in samples transfected with overexpressed NR3C2 or control. B: mRNA expression

of DEGs in samples transfected with overexpressed EDNRA or control. C: mRNA expression of SAA3 in SMSCs after overexpression of

ARHGAP10, EDNRA, and NR3C2. Data are meantSEM (n=6). ": P<0.05; ™:

muscle cells. For example, Rho GTPase activating protein 10
(ARHGAP10) not only regulates the Rho-GTPase signaling
pathway associated with actin cytoskeleton dynamics and cell
proliferation and differentiation by encoding a potential
cytoskeletal Rho-GTPase-activating protein but is also highly
expressed in muscles and involved in cell differentiation
(Basseéres et al., 2002; Shibata et al., 2001). Coincidentally,
ARHGAP10 is reported to be involved in the formation of
intramuscular fat in Japanese black cattle (Ueda et al., 2021).
Nuclear receptor subfamily 3 group C member 2 (NR3C2) is a
key component of hypothalamic-pituitary-adrenal
neuroendocrine axis regulation, and variants in this gene are
associated with muscle glycogen content and meat quality
traits in male Nellore cattle (Poleti et al., 2015). NR3C2 also
contributes to muscular dystrophy relief and skeletal muscle
repair in acute muscle injury (Howard et al., 2022). Endothelin
receptor type A (EDNRA) is involved in various physiological
functions, including smooth muscle contraction and fetal
muscle development (Kobayashi etal., 2016; Sato etal.,
2008).

The development of skeletal muscles is determined by the
co-regulation of multiple signaling pathways, such as the
adherens junction and Ca* signaling pathways (Su etal.,
2018). In addition, mTOR plays an essential role in satellite
cell function and skeletal muscle regeneration by controlling
the expression of myogenic genes (Zhang et al., 2015), while
WNT is involved in myogenesis, neuromuscular synapses,
and fibrosis (Cisternas et al., 2014). Specifically, activation of
the TNF, MAPK/ERK, and PI3K/Akt pathways promotes
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P<0.01 vs. control.

proliferation and differentiation of adult muscle cells (Elia
et al., 2007). Furthermore, the DNA methylation status of Wnt
and TGF-B signaling is a key factor regulating SMSC
development and function (Zhang et al., 2019). Here, many of
the above-mentioned pathways were enriched in DEGs
according to the NA versus NO RNA-seq results, indicating
that NR3C2 is involved in the signal transduction of many
regulatory pathways related to skeletal muscle development.

Muscle satellite cells play a critical role in muscle growth via
activation of the cell cycle in quiescent satellite cells (Chang &
Rudnicki, 2014). Based on GO analysis, many DEGs from the
NA versus NO RNA-seq group were associated with the cell
cycle. For example, up-regulation of interferon regulatory
factor 1 (IRF1) can accelerate cell cycle progression (Zhang
etal.,, 2013), and growth arrest and DNA damage-inducible
gene gamma (GADD45G) is associated with cell cycle
checkpoints, apoptosis, and DNA repair (Humayun & Fornace,
2022). The centrosome scaffold protein (CEP192) recruits
mitotic protein kinases Aurora A and PLK1 to the centrosome,
and is essential for bipolar spindle assembly with centrioles to
promote bipolar spindle formation and cell cycle regulation
(Chinen et al., 2021; Nasa et al., 2017). Up-regulation of the
adenosine triphosphate-binding cassette subfamily B member
1 (ABCB1) can reduce cell viability, promote apoptosis, and
induce cell cycle arrest in G2/M (Zhou et al., 2019).

Satellite cell activation is accompanied by extensive cell
migration (Yin et al., 2013). Our GO analysis results confirmed
that DEGs from the NA versus NO RNA-seq group were
involved in cell migration and positive regulation. For example,
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as an important cytoskeletal protein, NEDD9 regulates cell
proliferation, migration, invasion, and survival (Wang et al.,
2017a). Bradykinin receptor B1 (BDKRB1) is a specific
regulator of immune cell entry into the central nervous system
and regulates lymphocyte migration across the blood-brain
barrier endothelium in vitro (Schulze-Topphoff et al., 2009).
Bradykinin expression can also induce the migration and
invasion of glioma cells through BDKRB1-mediated calcium
influx and subsequent behavior (Sun et al., 2020).

Complete skeletal muscle growth and repair includes SMSC
growth and proliferation, myotube fusion, and myoblast
production (Delaney et al., 2017). Here, many DEGs identified
in the NA versus NO RNA-seq group were involved in these
biological processes. In particular, functional loosening of
cadherin 1 (CDH1) can promote and prevent quiescent
SMSCs from switching on the cell cycle and ultimately
compensates for the proliferation of muscle precursor cells
(Christensen etal., 2007). Overexpression of CASP8 and
FADD-like apoptosis regulator (CFLAR), also known as c-
FLIP, can induce nuclear factor-kB (NF-kB) activation and
promote SMSC proliferation (Giampietri etal., 2010). Early
growth response 3 (EGR3), a zinc finger transcription factor,
regulates diverse cellular functions and is involved in muscle
cell proliferation (Kurosaka etal.,, 2017). Reduced EGR3
expression is associated with attenuated function of SMSCs
and hinders muscle cell regeneration in aged individuals
(Ogura etal., 2020). Ankyrin repeat domain protein 1
(ANKRD1) is a transcriptional co-regulator in striated muscles
and is involved in myofibril assembly (Boskovic et al., 2018).
Skeletal muscle regeneration is also controlled by various
extracellular factors, such as TGF-62, which encodes
transforming growth factor 32; this protein regulates skeletal
muscle growth, stimulates SMSC proliferation, and restores
muscle regeneration potential by perturbing B-catenin in
SMSCs (Rudolf et al., 2016). In addition, fatty acid translocase
cluster of differentiation (CD36) is not only related to the
binding and transport of long-chain fatty acids but is also
involved in fatty acid metabolism in skeletal muscles (lbrahimi
etal., 1999). Studies have reported that CD36 deficiency
impairs SMSC function and delays muscle regeneration
(Verpoorten et al., 2020).

Six DEGs were identified in the EA versus EO RNA-seq
group, which are widely involved in biological processes, such
as growth and immunity. Cytochrome P450 family 26
subfamily B member 1 (CYP26B71) can regulate tongue
muscle differentiation via retinoic acid signaling (Okano et al.,
2008). CYP26B1 also promotes maxillary tendon
condensation and musculoskeletal patterning in zebrafish
embryos (McGurk et al., 2017). Complement factor B (CFB) is
involved in an alternative pathway of complement expression
in muscle cells in vitro, with evidence showing that local
complement expression in skeletal muscles is associated with
certain muscle inflammatory or pathological processes in vivo
(Legoedec etal., 1995). SLC7A8 expression impairs
proteolysis and affects carcass characteristics and meat
quality in yak (Liu etal, 2021). Finally, secretory
leukoprotease inhibitor (SLPI) can suppress proinflammatory
cytokine production in lipopolysaccharide-stimulated cells,
prevent neutrophil infiltration in mouse models of lung and
liver injury, and modulate activity of transcription factor NF-kB
(Douglas & Hannila, 2022).

This study showed that overexpression of all candidate
genes significantly up-regulated the transcriptional expression

of serum amyloid antigen 3 (SAA3). Abnormal local
inflammatory signaling of skeletal muscles is considered a
contributing factor in sarcopenia (Buford etal., 2009). The
SAA family, consisting of major vertebrate acute-phase
reactants, plays an important role in host defense during
inflammation (Uhlar & Whitehead, 1999). SAA3 is associated
with obesity and insulin resistance in humans (Scheja et al.,
2008). Specifically, SAA3 levels show a positive correlation
with obesity (Ji et al., 2022). Furthermore, Lycium barbarum
polysaccharide can improve diabetes by inhibiting the effects
of NF-kB activation in mouse models of diabetic nephropathy
to reduce SAA3 expression (Wan et al., 2022). In addition,
studies have reported that SAA3 is required for normal weight
and immunometabolic function of SLC2A3 in mice (Ather &
Poynter, 2018).

CONCLUSIONS

The proliferation and differentiation of SMSCs play an
important role in muscle development. Our study first identified
the complex structure of a high frequency 1.1 Mb duplication
CNV in Boer goats and clarified that a dosage effect on the
expression of overlapping genes (ARHGAP10, NR3C2, and
EDNRA) significantly contributed to SMSC proliferation and
differentiation. This study not only improves our understanding
of the genetic basis for the excellent growth performance of
Boer goats but also provides new insights into the molecular
regulation of muscle development.
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