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ABSTRACT

  Flaviviruses are a group of positive-stranded RNA viruses that 

cause a broad spectrum of severe illnesses in humans worldwide. 

Clinical manifestations of flavivirus infections range from mild 

febrile illness to hemorrhage, shock, and neurological manifestations. 

Flavivirus infections cause a substantial global health impact, with 

an estimated more than 400 million cases of infections annually. 

Hence, an understanding of flavivirus-host interaction is urgently 

needed for new antiviral therapeutic strategies. In recent years, 

many aspects concerning epigenetic therapy for viral infections have 

been addressed, including methylation of the genome, acetylation/

deacetylation of histone complex and microRNA regulation. In this 

context, we surveyed and reviewed the literature and summarized the 

epigenetic effects of resveratrol, a natural polyphenol with potential 

anti-viral properties, on flavivirus infections.
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1. Introduction

  Flavivirus is a genus of more than 70 arthropod-transmitted 

viruses that belong to the Flaviviridae family. These viruses have 

caused many outbreaks and epidemics over the past few decades. 

The most well-known flaviviruses that result in significant social 

burden and economic implications are dengue virus (DENV), Zika 

virus (ZIKV), West Nile virus (WNV), yellow fever virus (YFV), 

Japanese encephalitis virus (JEV) and tick-borne encephalitis 

virus (TBEV)[1]. DENV, however, is the most prevalent and of 

significant public health concern, with estimating 390 million cases 

per year and 3.97 billion people at risk of infection in approximately 

128 countries[2]. Clinical manifestations of dengue vary between 

individuals, with most infected persons are asymptomatic. 

Symptomatic dengue is classified as self-limiting and mild dengue 

fever (DF), and severe forms of disease, dengue haemorrhagic 

fever (DHF) or dengue shock syndrome (DSS). ZIKV, on the 

other hand, is recognized as a public health concern because of its 

unexpected association with severe neurological abnormalities such 

as microcephaly in newborns and Guillain-Barré syndrome (GBS) 

in adults[3]. WNV and JEV can also cause severe clinical symptoms, 

including encephalitis and meningitis with a significant mortality 

risk[4]. The fatality rate associated with encephalitis caused by 

TBEV infection is around 2%[5]. Given the severity of illness caused 

by many of these flaviviruses, effective treatment and prevention 

measures are urgently needed. Towards these, a good understanding 

of the mechanisms of virus replication and the pathogenesis of the 

infection are needed. 

  Harnessing epigenetic factors is one possible approach towards 

mitigating the effects of flavivirus infections. Epigenetics, is a 

study of heritable phenotype changes concerned primarily with 

the regulation of covalent modifications in histone proteins and 
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DNA molecules, which may affect gene expression such as gene 

silencing and thus could alter cellular processes, including apoptosis, 

maintenance of stem cell pluripotency, X-chromosome inactivation 

and genomic imprinting without directly influencing the DNA 

sequence[6]. Other than the core components of histone, chromatin 

and DNA, the non-histone chromatin proteins and other epigenetic 

regulators such as the non-coding RNAs also play critical roles in 

epigenetic regulation[7]. Several Food and Drug Administration 

(FDA)-and European Medicines Agency (EMA)-approved epigenetic 

drugs, such as azacytidine (AZA) and decitabine (DAC), are already 

in use either as a monotherapy or in combination with conventional 

chemotherapy for the treatment of myelodysplastic syndrome (MDS)[8], 

acute myeloid leukemia (AML)[9] and chronic myelomonocytic 

leukemia (CMML)[10]. The current review; however, focused on how 

viruses use the epigenetic machinery to promote viral propagation 

or latency and immune evasion[11]. Hence, the epigenetic-targeted 

natural compounds such as resveratrol[12], curcumin[13] and 

quercetin[14] could be effective and beneficial for inhibition of virus 

replication and modulation of the host immune response regulation. 

  Resveratrol (3, 5, 4’ –trihydroxy-trans-stilbene, RES) has been shown 

to possess antiviral properties against viruses such as enterovirus 71[15], 

influenza A virus[16], Epstein-Barr virus (EBV)[17], herpes simplex 

virus (HSV)[18], cytomegalovirus[19], respiratory syncytial virus[20], 

human immunodeficiency virus (HIV), severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2)[21] as well as flaviviruses including 

dengue virus[22], Zika virus[23], hepatitis C virus (HCV)[24] and West 

Nile virus[25]. The compound is a natural stilbenoid polyphenol 

isolated initially from the roots of the white Veratrum grandiflorum 
in 1939[26]. RES is an antioxidant that is commonly present in a 

variety of plants, especially grapes, berries and peanuts, in response 

to stress, infections and ultraviolet radiation[27]. RES exists in 

two isomeric forms, cis- and trans-resveratrol. Its main suggested 

antiviral mechanisms involve suppressing viral gene expression or 

viral protein synthesis, as well asinhibiting various transcription and 

signaling pathways. A growing number of studies, however, relate 

RES’s therapeutic effects to its involvement in epigenetic targets 

such as DNA[28], histone proteins (e.g., H2B[29], H3[30] and H4[31]), 

non-histone proteins (e.g., high mobility group box 1 (HMGB1)[32], 

nuclear factor-kappa B (NF-κb)[33] and microRNA[34]. The following 

review discusses the possible epigenetic mechanisms of RES in 

affecting flavivirus infections. It intends to propose alternative 

therapeutic strategies to restrict virus infection and dissemination. 

Four widely recognized epigenetic mechanisms that could be 

induced by RES and with potential to affect virus replication are 

1) suppression of DNA methylation, 2) histone modification, 3) 

non-histone protein modification and 4) regulation of microRNA 

expression. These mechanisms are summarized in Table 1 and 

discussed in detail in the following sections.

2. Suppression of DNA methylation

  DNA methylation is essential in diverse fundamental cellular 

processes, such as embryonic development, regulation of 

transcription, genome imprinting, genome stability and chromatin 

structure[35]. Mammalian DNA methylation is catalyzed by a family 

of DNA methyltransferase enzymes (DNMTs) that transfer the 

methyl group from S-adenyl methionine (SAM) to the fifth carbon 

of a cytosine residue, forming 5‐methyl cytosine (5mC) mainly 

within CpG dinucleotides[36]. Most methylations of mammalian 

genomic DNA are catalyzed by the DNMT1 and DNMT3 DNA 

methyltransferases[37], whereas DNMT2 is a highly selective DNA 

and RNA methyltransferase that simultaneously methylates DNA 

and tRNAAsp[38]. 

  Due to the importance of DNA methylation in regulating numerous 

cellular processes, abnormalities in its profile have been associated 

to the pathogenesis and progression of a variety of illnesses. The 

dysregulation of the DNA methylation system could also have 

significant implications on virus replication[39]. RNA viruses can 

methylate both host and viral genomes as a potential mechanism to 

mask themselves from recognition and clearance by the host immune 

system during latent infections[40]. The NS5 methyltransferase 

of flaviviruses disrupts the dynamics of the epigenome through 

methylation of the viral genome and de novo methylation of the 

host genome[41]. A previous study postulated that DENV induces 

the expression of DNA methyltransferase gene (AaDnmt2) to 

enhance its replication, whilst downregulation of AaDnmt2 in 

Wolbachia mosquitoes inhibits DENV replication[42]. Conversely, 

hypomethylation of the tumor necrosis factor-alpha (TNF-α) 

promoter gene has been associated with the overexpression of 

TNF-α, which is recognized as one of the pathogenic mechanisms of 

DENV[43]. DENV could induce both methylation and demethylation 

of certain genes, facilitate its replication and contribute to its 

pathogenesis. ZIKV has also been discovered to alter host DNA 

methylation in vitro, which downregulates the expression of RAB 

GTPase activating protein 1 (RABGAP1L), involved in intracellular 

membrane trafficking, and interferon-stimulated genes, ISGs [e.g., 
myxovirus resistance protein A (MxA) and ISG15], contributing 

to the pathogenesis of ZIKV-induced neurological disorder[39,44]. 

Besides, HCV’s core 1b protein was found to induce DNMT1 and 

DNMT3b overexpression in a signal transducer and activator of 

transcription 3 (STAT3)-dependent manner[45]. Down-regulation 

of DNMT1 or DNMT3b expression in Huh7.5.1 cells severely 

affected cell culture-produced HCV infection, highlighting the 

significant role of DNMTs as host factors in HCV propagation[46]. 

These findings suggest that inhibition of DNMTs may represent a 

novel antiviral therapeutic development approach against flavivirus 

infections. Notably, decitabine (NCT04482621), a DNMT inhibitor, 

has been recently included in Phase 2 clinical trials for the treatment 
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Concentration of RES Epigenetic mechanism
Target protein/ 

RNA
Cell line/

Animal model
Functional effects Ref.

15 µM 
(combination with 
5 µM pterostilbene)  

DNA methylation suppression;
Histone deacetylation; 
Histone acetyltransferase enzyme 
activity

DNMT
HDAC 
HAT

MDA-MB-157       
breast cancer cells

Lowering 5-methylcytosine levels at the CpG 
sites;
Restoring ERα expression in ERα-negative 
breast cancer cells

[48]

10 µM DNA methylation suppression DNMT1
MCF7 breast cancer 
cells; MDA MB 231 
breast cancer cells

2- to 3-folds decrease in DNMT1 levels [49]

25 mg/kg/day DNA methylation suppression DNMT3b Female ACI rats

Significant decrease in DNMT3b expression in 
mammary tumors;
No significant change in DNMT1 protein 
expression in mammary tumors

[50]

15 μM DNA methylation suppression DNMT1 HeLa cells  
Lowering DNMT1 induction by HIV-1 through 
disrupting the AP-1 transcription factor 
pathway

[51]

10 mg/kg/day DNA methylation suppression Cytokines Diabetic rat
Increasing anti-inflammatory cytokines (e.g., 
IL-10)

[52]

40 or 60 μM Histone acetylation induction
Aacetyl-H3K9
Acetyl-H3K14
Acetyl-H4K8

J-Lat cells
ACH2 cells

Jurkat T cells
Human PBMCs

Reactivating latent HIV by enhancing histone 
acetylation and activating heat shock factor 1 [68]

30 μM Histone acetylation induction
Aacetyl-H3K9
Acetyl-H3K14
Acetyl-H4K8

HeLa cells
Enhancing HSV-2 replication by increasing 
histone acetylation and activating NF-κB

[69]

80 μM
SIRT-1 activation
Nuclear HMGB1 retention

SIRT-1
HMGB1

Huh7 cells
Inhibiting DENV replication by upregulating 
ISGs through activation of SIRT-1 and retention 
of nuclear HMGB1

[72]

20, 40 or 80 μM SIRT-1 activation SIRT-1 

Jurkat cells
Molt-4 cells

HTLV-1-transformed 
T cells (MT2, MT4, 

and C8166)

Inhibiting viral transcription and Tax activation 
of human T-cell leukemia virus type 1 in a 
SIRT1-dependent manner
Obstructing the recruitment of CREB and 
CRTCs

[84]

25 μM; 25 mg/kg/day SIRT-1 activation SIRT-1 
CD4+ T cells 

C57/BL6 mice 
Male DBA1 mice

Suppressing T-cell activation both in vitro and 
in vivo
Inducing peripheral T cell tolerance mediated 
by SIRT-1 
Reducing the incidence and severity of 
rheumatoid arthritis

[86]

50 nM SIRT-1 activation SIRT-1 
Mouse embryonic 

3T3/NIH fibroblasts

Inhibiting TNF-α induced inflammation in a 
Sirt1-dependent manner; 
Suppressing acetylated RelA/p65 and mTOR 
activation induced by TNF-α.

[87]

50 mg/kg/d SIRT-1 activation SIRT-1 BALB/c mice

I n h i b i t i n g  B  c e l l s  p r o l i f e r a t i o n  a n d 
autoantibodies production;
Suppressing CD4+ T cells activation;
Protecting against systemic lupus

[88]

80 μM Nuclear HMGB1 retention HMGB1 Huh7 cells

Inhibiting ZIKV replication by upregulating 
MxA and IFN-β via retention of nuclear 
HMGB1;
Suppressing ZIKV-induced pro-inflammatory 
response

[116]

50 μM
MmiR-155 downregulation 
MiR-34a downregulation

MiR-155 and 
miR-34a

B cells

Interrupting EBV transformation; 
Inducing apoptosis in EBV-infected cells 
though blocking viral anti-apoptotic genes 
expression; 
Inhibiting EBV-induced NF-κB activation;
Downregulating miR-155 and miR-34a induced 
by EBV

[130]

30 or 50 μM
MmiR-663 upregulation 
MiR-155 downregulation

MiR-663 and 
miR-155

THP-1 cells

Suppressing AP-1 activity by increasing miR-
663 expression
Inhibiting proinflammatory response partly 
through the downregulation miR-155

[135]

Table 1. Epigenetic mechanisms of resveratrol and its effects.

DNMT: DNA methyltransferase enzyme; HDAC: histone deacetylases; HAT: histone acetyltransferases; ERα: estrogen receptor-α; AP-1: activator protein-1; 
IL: interleukin; HIV: human immunodeficiency virus; HSV: herpes simplex virus; NF-κB: nuclear factor-kappa B; SIRT-1: Sirtuin-1; DENV: dengue 
virus; ISGs: interferon-stimulated genes; HMGB1: high mobility group box; CREB: cAMP responsive element binding protein; CRTCs: CREB-regulating 
transcriptional coactivators; TNF-α: tumor necrosis factor-alpha; MxA: myxovirus resistance protein A; IFN-β, interferon-beta; EBV: Epstein-Barr virus.
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of coronavirus (COVID-19) pneumonia-acute respiratory distress 

syndrome (ARDS)[47], paving ways for evaluating the antiviral 

potential against other virus infections. 

  Numerous in vitro and in vivo studies have reported the ability 

of RES to suppress DNA methylation by downregulating the 

expression of DNMTs. For instance, the combination of 15 µM 

RES and 5 µM pterostilbene demonstrates a significant decrease 

in DNMT enzymatic activity in MDA-MB-157 breast cancer cells, 

which alters overall DNA methylation patterns by decreasing 

5-methylcytosine levels in the CpG sites globally[48]. Additionally, 

immunoblotting studies revealed a 2- to 3-fold reduction of DNMT1 

protein expression in human breast cancer cell lines (e.g., MCF7 and 

MDA MB 231 cells) after cells were exposed to 10 µM RES for 96 

hours[49]. In another in vivo study, treatment of RES (25 mg/kg/day) 

was found to significantly reduce DNMT3b expression in hormone-

sensitive mammary tumors compared to normal mammary tissue, but 

had no significant change in DNMT1 protein expression[50]. Other 

than the protective effects of RES in cancers through inhibition of 

DNA methylation, induction of DNMT1 expression via HIV-1 Tat 

and Nef early proteins has also been reported to be inhibited by 

RES, which interferes with the transcription factor AP1 pathway[51]. 

In addition, one intriguing hypothesis posits that RES could 

potentially boost the immune response by inducing hypomethylation 

of immune-related genes, thereby impeding virus replication. 

Nevertheless, it is still constrained by insufficient research to support 

this claim and further investigations are needed to fully understand 

the effects of RES on the hypomethylation of immune genes and 

its impact on viral infections. RES treatment in mice has also been 

shown to reduce DNA methylation at the promoter region of anti-

inflammatory cytokines, such as IL-10[52], suggesting that RES 

may help to alleviate the inflammatory response induced by virus 

infections. RES-induced DNA methylation suppression might have 

dual roles in modulating the innate immune response and alleviating 

the inflammatory response. Therefore, it is plausible to propose that 

DNMT inhibition is one of the major epigenetic mechanisms by 

which RES could inhibit viral replication. 

3. Histone modification

  Host DNA is tightly wrapped around the histone protein octamer, 

resulting in compact chromosomes to regulate gene transcription. 

Five distinct types of histone proteins have been identified: H1/

H5, H2A, H2B, H3, and H4[53]. Histones can be modified to 

govern the intrinsic histone-DNA interactions via the acetylation or 

deacetylation of lysine residues by histone acetyltransferases (HATs) 

or histone deacetylases (HDACs). HAT-induced acetylation leads to a 

less compact chromatin structure, which enhances RNA polymerase 

accessibility and gene expression. Conversely, HDAC-induced 

deacetylation promotes a compact chromatin structure, limiting RNA 

polymerase access, hence, lowering gene expression[54]. 

  It has been revealed that histone acetylation[55] and histone 

deacetylation[56] are essential for the replication and lytic reactivation 

of viruses, implying that histone modification is virus-specific 

and caution must be taken when developing therapeutic agents. In 

particular, JEV has been found to downregulate NF-κB expression 

through HDAC inhibition, hence suppressing the inflammatory 

response for viral immune evasion[57]. Meanwhile, prior research 

has demonstrated that inhibiting histone deacetylation is beneficial 

in suppressing the replication of flaviviruses and improving the 

disease outcome by reducing inflammation[58,59] since HDACs 

are needed for immune response induction[60]. For example, the 

decrease in cytokine production in DENV-infected macrophages 

by valproic acid (VPA), an HDAC inhibitor, has been proposed as 

treatment against DENV infection and preventing the progression to 

severe illness such as DHF/DSS[61]. Similar results were observed 

in an in vivo study where the co-treatment of an RNA polymerase 

inhibitor (NITD008) and a HDAC inhibitor (vorinostat or SAHA) 

reduced WNV replication, inflammation and virus-induced neuronal 

death[58]. Additionally, HDAC inhibitors, including SAHA[62], 

tubastain A[63], hydroxamic acids[64] and RGFP966[59] showed 

antiviral effects on HCV propagation. Therefore, HDAC inhibitors 

could be proposed as a potential therapeutic target for antivirals 

against flaviviruses due to their antiviral and immunosuppressive 

properties. 

  HDACs are a family of enzymes that remove acetyl groups from the 
ε-N-acetyl lysine amino acids on histone and non-histone proteins. 

HDACs are categorized into five major classes: class栺(which 

includes HDAC1, 2, 3 and 8); class 栻a (which includes HDAC4, 

5, 6, 7, and 9); class 栻b (which includes HDAC 6 and 10); class 栿
(also known as Sirtuins, including SIRT1 to SIRT7); and class 桇
(HDAC11, the sole member)[65]. During an RNA virus infection, 

HDAC6 interacts with the viral sensor, retinoic acid-inducible 

gene栺(RIG-栺) and deacetylates lysine 909 of RIG-栺, thereby 

suppressing its RNA-sensing activity and downstream signalling 

pathways[66]. It has been discovered that RES inhibits all 11 classical 

HDACs of classes栺,栻 and 桇[67]. Furthermore, the suppression 

of RES on histone deacetylase activity has been postulated to be 

involved in the transcriptional repression of BRLF1 and BZLF1 

promoters to limit EBV lytic protein expression[17]. In contrast, 

RES has also been found to have pro-viral effects enhancing HIV 

and HSV-2 replication by inducing histone acetylation[68,69]. These 

findings from prior research suggest that RES histone modification 

is virus-specific and involves distinct mechanisms.

  On the other hand, RES also induces histone deacetylation, 

mainly mediated by Sirtuins, a family of NAD+-dependent class 

栿 HDAC. In vitro and in vivo studies have shown that RES 
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upregulates transcription and activity of SIRT1, consequently 

regulating gene expression[70]. SIRT1 is involved in various 

viral infections[71], flaviviruses (DENV[72], HCV[73]), and other 

viruses (influenza A virus[74], HBV[75], HIV[76], Kaposi's sarcoma-

associated herpesvirus[77], respiratory syncytial virus[78] and SARS-

CoV-2[79]). Accumulated studies have shown that SIRT1 can 

inhibit viral infection in some circumstances, but it can potentially 

enhance the replication of certain viruses. One of the proposed 

antiviral mechanisms of SIRT1 is that SIRT1 upregulates host 

immune responses, thereby restricting respiratory syncytial virus 

infection and pathogenesis through autophagy induction[78,80]. 

SIRT1 has also been reported to suppress Kaposi's sarcoma-

associated herpesvirus latency by decreasing the expression of 

viral lytic protein replication and transcription activator[77,81]. In 

contrast, SIRT1 has also been discovered to interact with HBV mini-

chromosome[82] and activate the peroxisome proliferator-activated 

receptor gamma coactivator-1 alpha (PGC-1α), a transcriptional 

coactivator[83], resulting in enhanced HBV replication. Meanwhile, 

SIRT1 activation by RES has been demonstrated to suppress viral 

transcription and Tax activation of human T-cell leukemia virus type 

1 by preventing the recruitment of cAMP responsive element binding 

protein (CREB) and CREB-regulating transcriptional coactivators 

(CRTCs)[84], with similar inhibitory effects on Tat-induced HIV-1 

LTR transactivation[85]. Hence, it is worth pointing out that SIRT1 

activation possesses both pro-viral and antiviral properties against 

virus infections. Moreover, the crucial role of SIRT1 in enhancing 

the immune response against viral infections has been demonstrated 

in previous research with DENV. Notably, the downregulation 

of interferon-stimulated genes (MxA and ISG56) was observed in 

DENV-infected SIRT-1 knockdown cells compared to infected wild-

type cells, highlighting the importance of SIRT-1 in augmenting 

an effective immune response to combat the virus[72]. RES, on 

the other hand, has the potential to modulate the inflammatory 

response triggered by virus infections. Through SIRT1 activation, 

RES can induce peripheral T cell tolerance[86] and downregulation 

of NF-κB-induced inflammatory response via inhibition of v-rel 

avian reticuloendotheliosis viral oncogene homolog A (RelA) 

acetylation[87], which may help to prevent excessive immune reaction 

during virus infections. The activation of SIRT-1 by RES has been 

shown to hinder the proliferation of B cells and the production 

of autoantibodies, thereby conferring a protective effect against 

systemic lupus erythematosus (SLE), an autoimmune disease[88]. 

However, it is important to note that RES-induced SIRT-1 activation 

is not universally beneficial in all contexts of virus infections. 

Future investigation is required to elucidate the histone acetylation/ 

deacetylation mechanisms involved in the antiviral effects of RES 

against flaviviruses, and how these mechanisms might be exploited 

for the development of novel antiviral therapies.

4. Non-histone proteins modification-regulation of 
high mobility group box 1

  Non-histone proteins are proteins which remained within 

chromatin after the histones were removed. Non-histone proteins are 

epigenetic targets that are involved in a wide variety of key cellular 

processes, such as gene transcription[89], signal transduction[90], 

RNA metabolism[91] and protein synthesis[92]. HMGB1 protein is a 

well-known example of a non-histone nucleosomal DNA-binding 

protein that regulates DNA transcription and nucleosome stability 

in nearly all cell types[93]. HMGB1 is generally distributed in a 30:1 

ratio in the nucleus and cytoplasm, but this ratio is significantly 

lowered in response to lipopolysaccharides, radiation, and oxidative 

stress[94,95]. HMGB1 is a multifunctional protein that plays a variety 

of roles depending on its subcellular localization. The assembly 

of HMGB1-DNA in the cell nucleus induces DNA binding and 

bending, as well as chromatin remodelling[96]. Nuclear HMGB1 

is subjected to several post-translational modifications such as 

acetylation[97], phosphorylation[98], oxidation[95,99], methylation[100] 

and glycosylation[101], inducing its secretion from the nucleus to 

the outside of the cell, where it functions as a damage-associated 

molecular pattern (DAMP) that initiates inflammatory reactions[102].

  During viral infection including HCV[103], DENV[72], ZIKV[104], 

WNV[105], chikungunya virus (CHIKV)[106], HSV[107], HIV[108] 

and SARS-CoV-2[109], HMGB1 is transported from the nucleus 

to the extracellular milieu, where it acts as an alarmin to elicit 

inflammatory responses. Besides, the overproduction of HMGB1 in 

the sera of individuals infected with DENV and CHIKV was observed 

to be strongly linked with viral load and illness symptoms[106,110]. 

Extracellular HMGB1 has been shown to play a harmful role in 

viral infection by causing a major impact on the pathogenesis of 

viral infections linked with cytopathic effect (CPE) and triggering 

inflammatory responses, according to previous studies[105,111]. 

For example, extracellular HMGB1 has been implicated in the 

pathophysiology of DHF/DSS, most likely via disrupting the 

vascular barrier[112]. Additionally, excessive extracellular HMGB1 

induced by ZIKV, WNV and JEV may cause neuroinvasion, 

probably through the blood-brain barrier disruption [104,105,113]. As 

a result, secreted HMGB1 may be considered as a biomarker for the 

diagnosis of flavivirus infections and inhibiting its overproduction as 

a therapeutic strategy for treating viral infection pathogenesis could 

be a feasible alternative.

  RES positively upregulates SIRT1, leading to HMGB1 deacetylation, 

thus inhibiting the intracellular-extracellular translocation of HMGB1 

and retention of HMGB1 in the nucleus[114]. The inhibition of 

extracellular HMGB1 release by RES-activated SIRT1 helps to 

reduce the inflammation-related positive feedback loop, as evidenced 

by the fact that extracellular HMGB1 triggers overexpression of a 

panel of pro-inflammatory cytokines[20,114,115]. Hence, administering 
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RES or anti-HMGB1 neutralizing antibody may be a strategy to 

alleviate the virus-induced inflammatory damage. 

  Previous studies have suggested that RES possesses antiviral effects 

against DENV[72] and ZIKV[116] through the intranuclear retention 

of HMGB1. Nuclear HMGB1 is proposed to be involved in the 

antiviral response to DENV[72], ZIKV[116], duck reovirus and duck 

Tembusu virus or duck plague virus[117] by binding to the promoter 

regions of ISGs and upregulating their expression to inhibit viral 

replication. Contrarily, nuclear HMGB1 has been shown to bind 

to viral nucleoprotein to facilitate influenza virus replication[118]. 

Whereas, the cytoplasmic HMGB1 has also been shown to act as a 

pro-viral factor during DENV and HCV replication by interacting 

with viral UTRs and eliciting pro-inflammatory responses[119,120]. 

Hence, RES’s inhibitory effects on other flavivirus infections are 

plausible through nuclear HMGB1 retention mechanisms similar to 

that reported in DENV and ZIKV infections.

5. Regulation of micro-RNA expression

  MiRNAs are small non-coding RNAs with a length of about 

22 nucleotides that play significant roles in controlling gene 

transcription. More than 460 miRNAs have been identified, but the 

complete list of miRNAs in the human genome remains unknown. 

In general, miRNAs in our genome are transcribed by RNA 

polymerase栻[121]. Once bound to their target mRNAs, miRNAs 

downregulate their target gene expression post-transcriptionally by 

either destabilizing target mRNAs or inhibiting mRNA translation, 

ultimately impacting protein levels and cellular functions[122]. 

  To date, miRNAs have been linked to various diseases, such as 

cancer, neurodegenerative diseases and viral infections. Numerous 

miRNAs have been identified to regulate viral replication, either 

positively or negatively, in flavivirus infections. Viruses have 

evolved the cellular miRNA machinery in order to aid in replication. 

For instance, miR-146a promotes DENV replication by targeting 

tumor necrosis factor receptor-associated factor 6 (TRAF6) and 

dampening interferon-beta (IFN-β) induction[123]. This is similar 

to how miR-146a enhances JEV replication by suppressing NF-

κB activation, Janus kinase (Jak)-STAT pathway and ISGs[124]. 

MiR-21 has also been found to facilitate DENV-2 replication in 

HepG2 cells and treatment with anti-miRNA-21 oligonucleotide 

(AMO-21) significantly reduces DENV-2 replication[125]. On the 

other hand, the host produces a variety of miRNAs to combat 

infections. For example, miR-30e* and miR-223 limit DENV 

replication by enhancing NF-κB-dependent IFN-β induction[126] 

and downregulating the microtubule-destabilizing protein stathmin 

1 (STMN1)[127], respectively. The highly expressed chromosome 

19 miRNA cluster (C19MC) in primary human trophoblasts, 

which includes miR-512-3p, miR-516b, miR-517a, and miR-525-

5p, protects against ZIKV infection via a type栿IFN and ISGs-

independent mechanism[128]. In addition, miR-532-5P suppresses 

the host genes SEC14 and spectrin domains 1 (SESTD1) and TAK1-

binding proteins 3 (TAB3), which are essential for WNV replication, 

thus, exerting antiviral action against WNV[129]. Overall, the 

conflicting functions of miRNAs which can either promote or hinder 

virus replication, highlight the intricacy of the relationship between 

hosts and viruses.

  RES can act as a miRNAs regulator in treating both communicable 

and non-communicable diseases. Previous studies have suggested 

that RES treatment can regulate the expression of miRNA to combat 

viruses through SIRT1-dependent or SIRT1-independent pathways. 

RES, for example, downregulates the levels of miR-155 and miR-

34a expressions, which in turn interrupts EBV transformation[130].  

Meanwhile, elevated miR-182 and miR-217 expressions lead to a 

decrease in SIRT1 expression and an increase in Tat-induced HIV-1 

long-terminal repeat transactivation[131,132]. Similarly, SIRT1 levels 

have been discovered to be inhibited by the upregulation of miR-

142 expression in simian immunodeficiency virus-infected cells[133] 

and miR-217 expression in human cytomegalovirus-infected 

cells[134], respectively. In short, these findings suggest that RES’s 

miRNA regulation of SIRT1 may suppress viral transactivation and 

replication via the SIRT1-dependent mechanism since RES is a 

SIRT-1 activator, as previously described. In addition to its antiviral 

effects, RES has been shown to modulate miRNA expression, which 

can influence the immune response and potentially help combat 

virus replication. For instance, RES induces an anti-inflammatory 

response by upregulating miR-663 and downregulating miR-155, 

leading to the downregulation of JunB and JunD proteins[135], since 

these proteins are components of the AP-1 transcription factor 

complex that regulates inflammation and immune response. Further 

studies, however, are required to identify additional miRNAs targeted 

by RES and to understand the implications of these interactions in 

the context of viral infections.

6. Conclusions and future prospects

  Flavivirus infections have recently emerged as among the most 

widely distributed vector-borne diseases, affecting millions of 

individuals annually and putting billions more at risk for contracting 

the infection. Infection with a flavivirus can cause a wide range 

of symptoms, from asymptomatic, mild to severe infections and 

deaths. The disease imposed a substantial medical and economic 

burden onto the population especially in developing countries 

where the disease in endemic. Even though vaccines for several 

of the flaviviruses are available, there is still a number of other 

debilitating flavivirus infections that still do not have approved 

vaccines. Effective antiviral drugs to treat these flavivirus infections, 
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hence are urgently needed. Although several compounds have been 

demonstrated with anti-flavivirus properties, there is currently a lack 

of approved antiviral drugs specially formulated for the prevention or 

treatment of flavivirus infections. Among the promising alternative 

is an approach employing epigenetic therapy. There is a growing 

evidence that epigenetic plays a pivotal role in controlling various 

viral infections. Epigenetic modifications are in general reversible, 

highly adaptable and rapidly sensitive to environmental changes 

and other exposures[136]. RES, a polyphenol with antiviral activity, 

has been discovered to induce epigenetic changes which inhibited 

flaviviruses and other viruses replication. Epigenetic alterations 

implicated in flavivirus infections include DNA methylation, histone 

acetylation or deacetylation, non-histone modification and miRNA 

regulation. Epigenetic mechanisms by RES also include activation 

of innate immune responses, induction of T-cell tolerance, and 

inhibition of pro-inflammatory cytokines. These effects collectively 

can aid in controlling virus replication and alleviating inflammatory 

responses. By lowering inflammation, the detrimental consequences 

associated with excessive inflammation, such as haemorrhagic 

fever, neurological complications, and multiple organ failure, can 

be prevented during viral infections. Hence, immunomodulatory 

potential of RES through epigenetic mechanisms makes it a valuable 

therapeutic approach in combating virus infections. Apart from its 

potential as an epigenetic therapy, RES has shown high potential 

as an adjuvant to enhance vaccine efficacy and provide long-

lasting protection against flavivirus infections. For example, co-

administration of RES with pseudorabies virus vaccine increased 

antibody production and enhanced the antigen presentation ability of 

peritoneal macrophages in mice[137]. 

  While RES in general holds potential as epigenetic therapeutic 

agent against flavivirus infections, it is important to consider several 

limitations including the substantial variations of results between 

studies. RES-induced epigenetic mechanisms have been found to 

have both proviral and antiviral properties, which could likely due 

to the complex and multifaceted nature of epigenetic regulation in 

virus infections. Another limitation is its lack of specificity in its 

action, which can vary depending on its concentration. This is due 

to the fact that RES has been shown to have effects on multiple 

signaling pathways and cellular processes, which can lead to 

unintended effects on the host. For instance, at low doses, RES has 

been discovered to have anti-inflammatory effects by inhibiting NF-

κB and reducing the expression of pro-inflammatory cytokines[138]. 

Conversely, high doses of RES can result in the upregulation of 

pro-inflammatory cytokine expressions and apoptosis[139]. In 

addition, there is still a lack of clinical data on the safety of RES 

as an epigenetic therapy for virus infections. To overcome these 

limitations, more research is necessary to fully understand the 

underlying epigenetics mechanisms of RES, optimize its efficacy 

and specificity as well as assess its safety in clinical trials to avoid 

inadvertent side effects. In this review, attempts were made to 

summarize the epigenetic modifications that could take place in 

flavivirus infections and how the epigenetic effects of RES may 

be explored to limit these infections. Targeting specific epigenetic 

modulators to prevent and treat infections could be the future 

epigenomic investigations to explore new avenues for developing 

novel antiviral drugs.
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