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ABSTRACT 

Aiming at the suboptimal local path, slow convergence speed, and many inflection points in the path 

planning of fruit and vegetable picking robots in complex environments, a global planning method combining 

particle swarm optimization (PSO) algorithm and A* algorithm was proposed. Firstly, Manhattan distance 

was taken as a heuristic function of global programming based on the A* algorithm. Secondly, the step size 

of PSO was adjusted to optimize the path, shorten the path length, and reduce the number of inflection 

points. Finally, the planned path of the fruit and vegetable picking robot was smoothed so that it could 

steadily move along a smoother driving path in real scenarios. The experimental results show that compared 

with the traditional PSO algorithm, the hybrid algorithm based on the improved A* algorithm and PSO 

algorithm achieves a smoother path and fewer folding points. In comparison with the PSO algorithm, 

moreover, this algorithm can guarantee the path generation efficiency and the global optimum. In the end, 

the effectiveness of the proposed method was verified by shortening the path length and reducing the 

accumulative number of inflection points. 

 

摘要 

针对复杂环境下果蔬采摘机器人路径规划中存在的局部路径次优、收敛速度慢、拐点多等问题，提出了一种基

于粒子群优化算法和 A*算法相结合的全局规划方法。首先，基于 A*算法，将曼哈顿距离作为全局规划的启发

式函数。其次，通过调整粒子群算法的步长来优化路径，缩短路径长度，减少拐点数量。最后，对果蔬采摘机

器人规划路径进行平滑处理，使机器人能够在真实场景中平稳移动，使采摘机器人行驶路径更加平滑。实验结

果表明，与传统的粒子群优化算法相比，基于改进 A*算法和粒子群算法的混合算法具有更平滑的路径和更少

的折叠点。与粒子群优化算法相比，该算法能够保证生成路径的效率和全局最优性。通过缩短路径长度和减少

累积拐点数量，验证了该方法的有效性。 

 

INTRODUCTION 

 With the development of machinery manufacturing industry in China, the popularization rate of 

agricultural machinery and fruit and vegetable machinery has gradually increased in recent years, 

accompanied by the elevated specialization level. Restricted by various factors, however, the automation 

degree of fruit and vegetable picking operations is very low, and a large quantity of manpower needs to be 

mobilized to collectively pick fruits and vegetables using picking tools like ladders, baskets, and scissors. 

Other picking methods have also been tried, e.g., picking the whole spurs of fruits and vegetables with long-

handled garden shears or pulling down fruits and vegetables by rotating long-handled rubber claws, and 

even shaking fruits on the fruit tree in outdoor fruit and vegetable planting areas with the help of large-scale 

team and focusing on picking fruits falling to the ground. Meanwhile, picking robots have also been actively 

investigated by universities and research institutions in China (Wang et al., 2012). Nevertheless, most of the 

current scientific picking methods fail to catch up with the flexibility and completeness of artificial picking in 

the current stage, so the actual popularization degree of intelligent fruit and vegetable picking remains to be 

improved. 

 Agriculture is one of the best scenarios for artificial intelligence to be put into practice. As an emerging 

field characterized by the deep integration of information technology and agriculture, intelligent agriculture 

has become an inevitable development trend through the organic combination of artificial intelligence and 

agriculture.  
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 At present, picking environments have become complicated and diversified due to factors like the 

overlapping of fruit spurs in fruit trees, and the intelligence, automation, and mechanization levels of fruit and 

vegetable picking are relatively low (Xu et al., 2014). Obstacles such as naturally growing branches and 

immature fruits bring difficulties to the picking path control design of picking equipment (Gao et al., 2014). In 

order to improve the intelligence level of fruit and vegetable picking, liberate manpower, and improve the 

harvest quality and mechanization level, it is also necessary to improve the intelligent decision-making level 

of fruit and vegetable picking robots’ dynamic trajectory planning in unstructured natural environments in 

addition to strengthening the standardized management of agronomy in the process of fruit tree planting (Ji 

et al., 2011). Path planning is one of the most basic links for picking robots to realize autonomous navigation. 

It means that in the picking working environment with obstacles, the picking robot senses the picking 

environment by using the sensor device it carries, so as to continuously obtain information such as the size, 

position, distance, and obstacles of the working area to be picked. The parameters for picking robots to 

search for the optimal path should be planned, including the shortest, the safest, and collision-free path (Liu 

et al., 2010). According to the understanding of the environment where the picking robot is located, path 

planning can be divided into two categories: global path planning with all the environment known and local 

path planning with environmental information partially known or unknown. The working environment of 

picking robots is generally known, so intelligent algorithms can be introduced to effectively improve the path 

planning efficiency of picking robots through the global-coverage path planning method. 

 

STATE OF THE ART 

 In recent years, picking robots have attracted worldwide attention, and many research institutions and 

universities have successively carried out related research and development work, including mechanical 

structure design, visual system development, and intelligent algorithm research, and made some progress 

(Grau et al., 2015). Satyam et al. designed a fruit and vegetable picking robot with seven degrees of 

freedom, which has accurate positioning ability with the picking success rate exceeding 80% (Paul et al., 

2021). Li et al. developed a fruit and vegetable picking robot, which acquired the contour of fruits and 

vegetables combining K-means clustering segmentation with Canny edge detection method, and then used 

the minimum circle wrapping method to extract the centre coordinates of fruits and vegetables. Finally, the 

spatial trajectory of the picking robot arm was drawn according to the quintic polynomial interpolation law to 

realize fruit and vegetable grabbing (Li et al., 2019). Path planning is one of the key technologies of fruit and 

vegetable picking robots, which is mainly divided into global path planning based on known map 

environment and local path planning based on sensor information (Orozco-Rosas et al., 2022). Global path 

planning mainly includes finding a path that connects the starting point and the target point while avoiding 

collision with obstacles. Therein, the path length, algorithm time, and spatial complexity are the main indexes 

to judge the performance of global path planning algorithms (Tian et al., 2021). Commonly used global path 

planning algorithms are A* algorithm (Chen et al., 2020), RRT algorithm (Qureshi et al., 2021), and genetic 

algorithm (GA) (Su et al., 2016). Among them, the RRT algorithm proposed by Sun et al. has complete 

probability, simple structure, and flexible search ability, making it suitable for path planning in various 

complex environments. Due to its random sampling mechanism, however, the RRT algorithm is subjected to 

such problems as low node utilization rate, high path complexity, and slow convergence (Sun et al., 2019). 

 Local path planning focuses on the safety and real-time performance of the path, and the typical local 

path planning algorithms include A* algorithm (Li et al., 2019), artificial potential field method (Orozco-Rosas 

et al., 2019), and particle swarm optimization (PSO) algorithm (Cao et al., 2019). In recent years, with the 

progress of sensor technology, scholars have made relevant research on path planning of agricultural robots 

based on machine vision (Mondal et al., 2021) or Lidar (Ma et al., 2022). Wu et al. obtained crop row 

information from the camera, eliminated outliers based on the random sample consistency (RANSAC) 

algorithm, and extracted navigation paths using the least square method (LSM). The path detection rate can 

reach more than 90% (Wu et al., 2020). Peng et al. improved the robustness and applicability of crop row 

extraction based on the automatic Hough transform-cumulative threshold method. Lidar sensors can 

accurately obtain environmental distance information along with strong anti-interference ability (Peng et al., 

2021). Meng et al. obtained the position of fruit trees using a laser scanner and planned the navigation path 

of agricultural machinery via LSM (Meng et al., 2022). Ping et al. used two-dimensional Lidar to obtain the 

point clouds of vineyards, and proposed a vineyard path planning algorithm based on Support Vector 

Machine (Ping et al., 2017).  
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 Masumori et al. used 16-line Lidar to obtain three-dimensional point cloud information of maize, 

introduced confidence interval and K-means algorithm to cluster maize plants, and finally used the radial 

basis function path planning method to avoid plant trunks as much as possible.  

 The existing research mostly focuses on single plant or crop row detection, and the planned path is 

straight, which is convenient for robot control but not conducive to avoiding obstacles such as tree crowns 

and pedestrians between rows (Masumori et al., 2020). 

 To sum up, the irregular crowns of fruit trees constitute one of the hidden dangers impeding the robot 

when doing fruit and vegetable picking operations. The traditional orchard planning paths are mostly straight 

lines, which is not conducive to avoiding obstacles such as crowns. In this study, taking fruit and vegetable 

picking as the research object, an improved artificial potential field method was proposed to optimize the 

robot navigation path between rows, specifically as follows: The A* algorithm was used to extract the ridge 

line and initial path, while the crowns of fruit trees and pedestrians were regarded as obstacles. Then, the 

initial path was optimized combining the PSO algorithm. Finally, a safe and reliable driving path for the 

picking robot was planned, expecting to provide technical reference for the picking path planning of mobile 

picking robots in orchards. 

 

MATERIALS AND METHODS 

Problem description 

 In an orchard, several fruit and vegetable picking robots were equipped to perform fruit and vegetable 

picking operations. In this study, the picking path of fruit and vegetable picking robots was studied, and the 

layout of the orchard is shown in Fig. 1. It is assumed that the fruit and vegetable picking robots could move 

vertically and horizontally in the orchard, which consisted of fruit trees, ridges, fruit and vegetable picking 

robots, and I/O starting points, where the I/O starting points were the starting and ending positions of the fruit 

and vegetable picking robots. It is assumed that the length of a single fruit tree in the orchard in the X 

direction is l, the width in the Y direction is w, the height is h, the ridge width is C, and the I/O starting point is 

rightly opposite to the first ridge. The orchard layout plan structure is as shown in Fig. 1. 

 

 
 

Fig. 1 - Orchard Layout Plan 

 

 In order to facilitate observation and calculation, every fruit tree in the orchard was arranged and 

distributed in the form of a grid. It is assumed that the system receives n orders in total, and the storage 

information of fruits and vegetables in each order is known. The maximum carrying weight of the fruit and 

vegetable picking robots is M, and the number of self-carried goods is Q, that is, the fruit and vegetable 

picking robots can carry at most Q fruits and vegetables in a single trip. On the premise that the fruit and 

vegetable picking robots met the double constraints of carrying capacity and container number, all the fruits 

and vegetables to be picked in the order were picked in batches, and the picking time of each batch was 

added. The optimization goal was to obtain the picking path with the least total time after addition. 
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Basic assumptions 

 Before establishing the mathematical model for picking path planning of fruit and vegetable robots, the 

following assumptions and parameters were set for fruit and vegetable picking robots and shelves: 

 (1) Each picking unit (Unit) in a picking task list of a picking robot corresponds to each fruit tree in the 

orchard; 

 (2) The number of Units in each fruit tree meets the number of orders selected; 

 (3) When the fruit and vegetable picking robot performs a certain action, it cannot perform other 

actions at the same time, and it will not interrupt the current action due to other factors, thus ensuring the 

continuity of picking operations; 

 (4) When starting to perform the picking task, the fruit and vegetable picking robot starts from the I/O 

starting point and needs to return to the I/O point after completing the picking task or reaching the constraint 

conditions; 

 (5) When the fruit and vegetable picking robot moves from one fruit tree to another, it needs to go 

through acceleration, uniform velocity, and deceleration stages. Assuming that the acceleration and 

decelerations of its horizontal movement are both under no-load and loaded conditions, the vertical velocity 

of the lifting platform in the vertical direction is the same as the falling velocity, which is set as v2. 

 

Modelling 

 The path planning model for batched picking of fruit and vegetable picking robots was established as 

follows. Firstly, the symbols appearing in the optimization model are explained: O stands for the order set; S 

represents a set of fruit trees; B={0,1,2,......,n} represents the set of picking points, where 0 is the starting 

point (sorting table); (xi,yi,zi,mi) presents the information on the Units to be picked on the order O, for 

example, (5,6,2,1) indicates the fruit trees of one Unit in Columns 5 and 6 in the orchard, with the height of 2 

m and number of 1. 

 

 The picking time of fruit and vegetable picking robots for a complete order consists of 3 periods: 

① the horizontal moving time between picking points, that is, the time T1 required to move on the xoy 

surface;  

② In the z-axis direction, the sum of the time needed by the lifting platform to rise and fall is T2;  

③ The picking and unloading time for Unit by fruit and vegetable picking robots is fixed, and the total time is 

T3. The order picking time of fruit and vegetable picking robots is expressed as: 

1 2 3
T=T +T +T                                                                                          (1)

 

 Assuming that the horizontal moving distance of the picking robot is rijs.  

 

 To facilitate the path planning of picking robots, their horizontal trajectory rijs is divided into 3 stages:  

 

 (1) The horizontal distance from the I/O starting point to the first fruit and vegetable picking point j. 

j

j j i j

j

ijs j j i j

j i j

x -2
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2

x -1
r = (x -1) 1+( ) c+y w,x , x 1 or 2,
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2
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
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


   






                (2) 

where both xi and xj represent the column positions of the picking point. 

 

 (2) The horizontal distance from the current fruit and vegetable picking point i to the fruit and 

vegetable picking point j to be picked, which is divided into two circumstances. When the fruit and vegetable 

picking points i and j are located at different ridges, namely, xi≠xj. If the total numbers of rows at points i and 

j is smaller than f, the robot will choose to move out from the next ridge. Therein, f represents the number of 

rows of a single-column shelf in the y-axis direction. 
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 If the total number of rows at points i and j is greater than f, the robot will move out from the last ridge. 

i j j i j i j
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 Vegetable picking points i and j are in the same ridge. 

 

 (3) The horizontal distance from the last shelf picking point sorted by the picking robot in a single trip 

to the I/O starting point. 

i

i i i i

ijs

i

i i i j

(x -1)
(x -1) l+ c+y w, x 0 a , x =0

2
r =

x
x l+ c+y w, x 0 a

nd an odd number

nd it's even, x =0
2


   


    


                                (5) 

 Assuming that the picking robot moves under the fruit and vegetable to the picked, the vertical moving 

distance of the lifting platform is d1, expressed as follows: 

1 j i
d = z -z h                                                                                     (6) 

where zi is the location of fruit and vegetable i; zj is the location of fruit and vegetable j. The time T1 of the 

picking robot in the horizontal direction depends on the maximum velocity and acceleration when moving. 

Assuming that the maximum velocity that the picking robot can reach when moving horizontally is v1, it can 

be divided into two motion states: first, the velocity of the picking robot does not reach the maximum velocity 

v1 during the movement on xoy plane, and then it makes uniform deceleration motion after uniform 

acceleration, that is, the moving distance of the picking robot is 
2

1
v

s<
a

; second, the velocity of the picking 

robot reaches the maximum velocity v1 during the movement on xoy plane, and it moves at a uniform velocity 

later and then moves at a uniform deceleration, that is, the moving distance is 
2

1
v

s<
a

. 

 

 The driving time of the picking robot for the nth time is calculated according to the horizontal moving 

distance rijs and whether the maximum velocity is reached, as below: 

1
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                                                                               (7) 

 

 The vertical rising and falling time of the picking robot’s mechanical arm for the nth time is T2n, 

expressed as follows: 

2n 1n 2
T =d /v                                                                                             (8)
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 Assuming that the loading time and unloading time spent by the picking robot when picking a single 

piece of fruit and vegetable are identical, being s, then the loading and uploading time spent by the picking 

robot in completing the picking of one batch of fruits and vegetables is: 

3
T =n s                                                                                               (9) 

 According to the above description, the model for the picking robot’s picking operation time can be 

expressed as below: 
n n n

min 1n 2n ij 3

n=1 i=1 ¹j i

T = (T +T +TK)                                                                  (10) 

 The constraint conditions are displayed as follows: 
Q

i

i=1

m M, i=1,2,L,Q                                                                         (11) 

q<Q                                                                                              (12) 

1

n
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j i
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                                                (13) 

ij

1, the selection point i is selected, and then the 

K = selection j operation is carried out, i, j=1,2,L,n

0,other







                                  (14) 

j i ijm =m K +1                                                                                  (15) 

m O

O m+1 O

m m

X = X =X                                                                            (16) 

Where: 

 Equation (10) indicates the optimization indexes for picking time; Equation (11) means that the weight 

of fruits and vegetables picked by the picking robot in a single trip cannot exceed m, or otherwise, it needs to 

return to the starting point first and upload for the next picking operation; Equation (12) represents the 

maximum number of grids of the picking robot, i.e., at most Q units can be accommodated in a single trip; 

Equation (13) reflects that all fruits and vegetables displayed in the order will be picked; Equations (14) and 

(15) represent the picking sequence of Units, and the continuity of the picking robot when picking a Unit is 

guaranteed; in Equation (16), m

OX indicates that the picking robot returns to the starting point after Units are 

full loaded in the m-th trip or the weight reaches the upper limit, and O

m+1X  means that the picking robot starts 

from the starting point to pick up fruits and vegetables with empty load in the m+1-th trip, namely, the final 

full-loading position in the m -th trip equals the starting position in the m +1-th trip. 

A* algorithm 

 The A* algorithm, a heuristic search method with high search efficiency, can solve the shortest and 

most effective path in static environments. In A*, the weight of each path is the sum of two costs, namely, the 

cost from the starting node to the current node and the heuristic distance. Searching in 8 directions from the 

starting point, the values of extension nodes are acquired using an evaluation function for comparisons, the 

minimum value is chosen as the next extension node, and this process is circulated until the end of the 

search, thus obtaining the final path. Since the node with the minimum estimated value is used as the next 

extension node in each search, the final cost is the lowest. The evaluation function is shown in Eq. (17): 

( ) ( )f(n)=g n +h n                                                                     (17) 

 In Equation (17), f(n) is the valuation function of node n; g(n) represents the actual cost from the 

starting node to node n; h(n) represents the estimated cost from node n to the ending node. The 

determination of the valuation function is closely related to the actual situation and will directly affect the 

result of the A* algorithm. Therefore, Manhattan distance is used as a heuristic function: 

( ) d n d nh n = x -x + y -y                                                              (18) 

 

 In Equation (18), xd is the x-coordinate of the target point; yd represents the y-coordinate of the target 

point; xn  is the x-coordinate of node n; yn is the y-coordinate of node n. 
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PSO algorithm 

 The idea of PSO comes from the study on birds’ foraging behaviour, and birds can find the best 

destination through collective information sharing. The advantages of PSO mainly lie in its fast convergence 

speed, few parameters, simple algorithm, and easy implementation. Especially for high-dimensional 

optimization problems, it converges to the optimal solution faster and more efficiently than GA, but PSO can 

easily fall into a local optimal solution. In order to solve the above problems, therefore, an improved PSO 

algorithm was proposed in this study to solve the problem without affecting the search speed. The local and 

global particle search capability was enhanced. This algorithm is more conducive to solving the path 

planning problem of robots. 

Steps of the hybrid algorithm 

 The basic A* algorithm uses a heuristic evaluation function to search, which is efficient and can realize 

the shortest path between two points. However, when the operation scene is large, the temporal and spatial 

complexity of the search increase exponentially. Therefore, the integrated longicorn search algorithm must 

be used for global path planning, which can not only realize local planning but also be suitable for large-scale 

environment. The concrete steps of the improved A* algorithm and PSO to realize robot path planning are as 

follows: 

 (1) A model diagram is constructed. Obstacles are randomly distributed according to the obstacle rate, 

the open list and close list are defined, to which initial values are assigned, and starting nodes are put into 

the lists. 

 (2) Real number encoding is adopted for particle swarm initialization. A particle swarm consisting of n 

particles is defined, followed by spatial search in the raster map. Particles have position attribute x and 

velocity attribute v, and a fitness function is defined as the optimization objective of path planning. The 

position of the i-th particle at time t is expressed as follows: 

i i1 i2 iD

t t t tx =(x ,x ,L,x ) i=1,2,L,n                                                                  (19) 

 The velocity of the i-th particle at time t is: 

i i1 i2 iD

t t t tv =( v ,v ,L,v ) i=1,2,L,n                                                                (20) 

where t represents the current number of iterations and D denotes the number of key points searched. 

 In this study, the path was mainly composed of searched key points connected with line segments, so 

Euclidean distance was selected as the fitness function of the algorithm, but there were obstacles in the 

map. The obstacles that the path passed through were taken as regular terms to realize obstacle-free path 

planning: 

( ) ( )
D

2 2

i i-1 i i-1

i=1

fit(x)= x -x + y -y +λ T i=1,2,L,D                                         (21) 

where x and y represent the grid positions corresponding to the real number codes of key points; λ is a 

penalty factor; T refers to the number of obstacles passed through by the current path. 

 (3) According to the environment selection strategy designed in this study, the particle swarm was 

divided into two categories: the selection, crossover, and mutation operators of GA* algorithm were 

embedded into the first category; the chemotactic operation of the BFO algorithm was embedded into the 

other category, and the parallel training comprehensively strengthened the local optimization ability of the 

particle swarm. The specific implementation of the environmental strategy is as follows: because the 

population updating mode in GA follows Darwin’s evolution theory of natural selection, each population 

evolution is guided by the environment. The updating method of the bacterial foraging algorithm is to imitate 

the swimming, tumbling, staying, and other movement modes of individual bacteria when looking for food, 

and the movement of each step is controlled by the current nutritional gradient. When the two algorithms are 

used to solve the same target problem, because the update strategy is affected by different environments, 

the environment selected by the target individual is also different. Under the same environment, some 

potential individuals will be lost and the possibility of optimal solution will be reduced. In this study, the 

environmental coefficient Y1 of GA and the environmental coefficient Y2 of the bacterial foraging algorithm 

was calculated respectively. In GA, the population will be so affected by the environment s to produce 

selection, crossover, and mutation. In the bacterial foraging algorithm, the population is affected by the 

nutritional gradient.  
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 Therefore, the Equations of Y1 and Y2 can be expressed as: 

( )
n D D

1 β α m δ α m

i=1 m=1 m=1

Y x,i = mutate x +cross (1-select ) (c xsele )t
 
 
 

                                  (22) 

( ) ( )
n D n D

2 2

2 atact atact m im repellant repellant m im

i=1 m=1 i=1 m=1

Y x,i = -d exp -w x -x + d exp(-w (x -x )[ ]
  
  

  
                          (23) 

 

 In Equation (4), mutateβ, selectα, and crossδ represent the mutation, selection, and crossover 

probabilities of particles in GA, respectively. In Equation (23), datact, drepellant, watact, and wrepellant denotes the 

stress factors between individuals in the bacterial foraging algorithm, being the m-th element of the position 

attribute of the i-th particle. After the environmental coefficients of different algorithms are determined, the 

correlation between target individuals and different environments is solved through the Pearson correlation 

Equation, and individuals are subjected to optimization training according to associated environments 

selected. The calculation Equation for the individual environmental selection is: 

x Y

x,Y

x y

E((x-μ )(Y-μ ))
ρ =

σ σ
                                                                          (24) 

 Where μx and μY represent the mean values of x and y, respectively; σx and σy denote the standard 

deviations of x and y, respectively. After the selection of the environmental strategy, the two kinds of particles 

are respectively subjected to selection, crossover, mutation of GA and chemotaxis of BFO. Among them, the 

selection, crossover, and mutation operations produce new particles as follows: 

( )i j i

t+1 t tx =ηx + 1-η x i,j=1,2,; L,n, i j                                                            (25) 

( )j i j

t+1 t tx =ηx + 1-η x i,j=1,2,; L,n, i j                                                           (26) 

 The new particles generated by the chemotactic operation are as follows: 

i i

t+1 tx =x +C(i) Φ(i) i=1,2,L,n                                                      (27) 

where C(i)＞0 represents the swimming step of forward particles; Φ(i) denotes a unit direction vector 

randomly selected after rotation. 

 

 (4) The two parallel particle swarm branches are fused to judge whether the optimal solution of the 

current particle swarm meets the set target threshold. If not, the update Equation of the improved PSO 

algorithm is executed. In this study, corresponding improvements were made according to the update 

Equation of the basic PSO algorithm. After the parallel optimization of GA and bacterial foraging algorithm, 

the mixed particle swarm reaches two global optimums. To integrate the optimization ability of the two 

algorithms, the two global optimal parameters were both introduced into the update Equation of particles, the 

updating of particles would be affected by GGA_best, GBFO_best, and Pbest, and the improved update Equation of 

the PSO algorithm is as follows: 

1 1 2(0,1) ( ) i i

GA_best t t

i i

3 BFO_best t t

random random(0,1) (G -x )+

c ×random(0,1)×(G -x )

+ =  +  − +  i i i i

t t best t tv v c P x c
                         (28) 

i i i

t+1 t t+1x =x +v                                                                                   (29) 

where ω is the inertia weight, which decides the influence of historical velocity on the current velocity; c1, c2, 

and c3 are learning factors; GGA_best represents the global historical optimal solution obtained by genetic 

optimization in the hybrid particle swarm; GBFO_best stands for the global historical optimal solution obtained by 

bacterial foraging optimization in the hybrid particle swarm; Pbest is the historical optimal value of single 

particles in the search process. After particle swarm updating is completed, whether the optimal fitness 

function value of the particle swarm meets the set target threshold is judged again. If yes, the algorithm is 

ended; if not, Steps (2)-(5) are executed once again. 
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RESULTS 

 In this study, the number of picking points of fruit and vegetable picking robots in the orchard was 

assumed to be 40, and their position was represented by the corresponding X-coordinate and Y-coordinate 

values. The traveling speed of the fruit and vegetable picking robots was known, and the coordinates and 

picking quantity of 40 inspection points are shown in Table 1. 

 
Table 1 

Coordinates and picking quantity of picking points 

Picking 

point 

Coordinate 

(X) 

Coordinate 

(Y) 

Picking 

quantity 

(units) 

Picking 

point 

(units) 

Coordinate 

(X) 

Coordinate 

(Y) 

Picking 

quantity  

(units) 

1 5 0 1 21 30 30 2 

2 15 10 3 22 30 40 3 

3 0 10 1 23 30 50 3 

4 0 15 2 24 35 25 3 

5 5 20 2 25 35 30 3 

6 5 30 1 26 40 20 2 

7 5 40 2 27 40 5 3 

8 10 45 1 28 40 10 3 

9 10 5 3 29 40 25 1 

10 10 15 3 30 40 30 1 

11 15 5 2 31 40 35 3 

12 15 15 3 32 40 40 3 

13 20 35 2 33 40 45 3 

14 20 5 1 34 40 50 2 

15 25 25 1 35 45 30 1 

16 25 30 3 36 45 5 2 

17 25 35 3 37 45 50 1 

18 25 40 3 38 35 15 3 

19 25 45 3 39 35 45 3 

20 15 45 3 40 50 50 2 

 

 

 In this study, experiments were carried out on Intel i7 processor using Matlab2014a, and the 

optimization model of inspection path of agricultural robots was solved by the improved A* + PSO hybrid 

algorithm. The relevant parameters were set as follows: the number of particles was m=50; the inertia 

constant was w=0.5; the acceleration constant was c1=c2=c3=2; the maximum flight velocity of particles 

generally did not exceed 10%-20% of the maximum velocity.  

 The path record table was Table=zeros (m, n); the maximum number of iterations was iter_max=100; 

the optimal path of each generation was Route_best=zeros(iter_max,n); the length of the best path of each 

generation was Length_ best =zeros (iter_max,1); the average path length of each generation was 

Length_ave= zeros(iter_ max,1). Simulation tests were carried out through the improved A* + PSO hybrid 

algorithm, respectively, and the corresponding calculation results were obtained. 

 In order to eliminate the influence of various random factors and verify the advantages and 

disadvantages of the improved A* + PSO hybrid algorithm designed in this study, the path optimization 

problem of fruit and vegetable picking robots was run 100 times by using the improved A* + PSO hybrid 

algorithm.  

 The convergence curve of the improved A* + PSO hybrid algorithm is shown in Fig. 2, and the optimal 

travel path of the agricultural inspection robots is shown in Fig. 3. 
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Fig. 2 - Convergence curve of improved algorithm and PSO algorithm 

 

 
 

Fig. 3 - Optimal driving path of fruit and vegetable picking robots 

 

 In order to verify the effectiveness of the model and algorithm, the traditional PSO algorithm was used 

on the same platform, and the optimization model proposed in this study was solved with the same 

parameters. To achieve more scientific and effective experimental results, the maximum number of iterations 

of the traditional ant colony algorithm was also set to 100. The convergence curve of the traditional PSO 

algorithm is shown in Fig. 4, and the optimal path of fruit and vegetable picking robots is exhibited in Fig. 5. 

 
Fig. 4 - Convergence curve of the traditional PSO algorithm 
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Fig. 5 - Optimal driving path of fruit and vegetable picking robots 

 

 The improved A* + PSO hybrid algorithm was compared with the traditional PSO algorithm in 

inspection path, total distance travelled by fruit and vegetable picking robots, and convergence time of the 

algorithm, and the comparison results are listed in Table 2. 

Table 2 
Comparison of improved A*+ PSO algorithm and traditional PSO algorithm 

Algorithm Inspection path Robot 
Distance 

(m) 

Convergence 

time (s) 

Total 

cost 
(yuan) 

Improved 

A*+ PSO 

algorithm 

0→14→11→2→12→10→9→1→3→4→5

→6→7→8→20→19→18→17→13→16→2

1→25→24→0 
2 366.34 100.17 2366 

0→26→30→29→35→31→32→39→33→3

4→40→37→23→22→15→27→36→28→3

8→0 

Traditional 

PSO 

algorithm 

0→14→11→2→12→10→4→3→1→9→5

→6→7→8→20→19→18→17→13→15→0 

3 393.41 118.26 3402 0→16→21→25→30→29→35→31→32→3

3→34→37→40→39→22→23→24→26→0 

0→38→28→27→36→0 

 

 It could be seen from Table 2 that the optimization ability and convergence of both A* algorithm and 

PSO algorithm were stronger than those of the traditional PSO algorithm. From the convergence curve of the 

algorithm, it could be intuitively seen that in terms of the driving distance of picking agricultural robots, the 

optimal path length obtained by the improved A* algorithm and particle swarm optimization algorithm was 

better than that obtained by the traditional ant colony algorithm. Compared with the traditional GA, the total 

inspection distance acquired through the improved ant colony algorithm was shortened by 27.07 m with a 

reduction rate of 6.88%. From the number of picking robots, the improved A* + PSO hybrid algorithm used 2 

picking robots, while the PSO algorithm needed three; as for the convergence time, the traditional PSO 

algorithm spent longer convergence time than the improved A* + PSO hybrid algorithm. The convergence 

time of the improved A* + PSO hybrid algorithm was 18.09 seconds shorter (by 15.30%) than that of the 

traditional PSO algorithm. 

 

CONCLUSIONS 

 In order to improve the efficiency of path planning and the accuracy of global coverage planning in the 

process of automatic navigation of picking robots, the improved A* + PSO hybrid path planning method was 

introduced into the path planning model of picking robots, and the efficiency of path planning was improved 

by optimizing the distance of path planning. The path planning algorithm of picking robots was simulated 

under the planting environment of large-scale plots.  
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 Aiming at the multi-objective and batch picking path planning problem of picking robots in fruit and 

vegetable gardens, a three-dimensional path planning model that could pick Units in the order in turn was 

established by constructing three-dimensional spatial coordinates in this study and then solved by designing 

the improved A* + PSO hybrid algorithm. The experimental results show that, compared with other heuristic 

algorithms, the improved A* + PSO hybrid algorithm has a faster convergence speed under the same 

parameters, which can effectively prevent the algorithm from falling into the local optimum and get a solution 

with higher accuracy. In conclusion, the improved A* algorithm + PSO hybrid algorithm can effectively 

improve the path search accuracy of the PSO algorithm and then improve the efficiency of picking robots. 

 To sum up, the picking robot model and the improved A* + PSO hybrid algorithm constructed in this 

study reach a good fitting effect in fruit and vegetable picking, which can effectively improve the overall fruit 

and vegetable picking efficiency. In this study, however, only the order picking path planning under the 

single-instruction picking background of picking robots was investigated, that is, the picking robots started 

from the starting point, moved along the planned path to the row and column where the fruits and vegetables 

were to be picked, and returned to the starting point after picking the fruits and vegetables in batches. 

Therefore, the path planning of picking robots in multi-instruction operations will be deeply explored in the 

future. 
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