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ABSTRACT 

Crop diseases have an important impact on the safe production of food. Therefore, the automated identification 

of pre-crop diseases is very important for farmers to increase production and income. In this paper, a tomato 

leaf disease identification method based on the optimized MobileNetV2 model is proposed. A dataset of 20,400 

tomato disease images was created based on tomato disease images taken from the greenhouse and obtained 

from the PlantVillage database. The optimized MobileNetV2 model was trained with the dataset to obtain a 

classification model for tomato leaf diseases. The average recognition accuracy of the model is 98.3% and the 

recall rate is 94.9%, which is 1.2% and 3.9% higher than the original model, respectively, after experimental 

validation. The average prediction speed of the model for a single image is about 76 ms, which is 2.94% better 

than the original model. To verify the performance of the optimized MobileNetV2 model, it was compared with 

the Xception, Inception, and VGG16 feature extraction network models using migration learning, respectively. 

The experimental results show that the average recognition accuracy of the model is 0.4 to 2.4 percentage 

points higher than that of the Xception, Inception, and VGG16 models. It can provide technical support for the 

identification of tomato diseases, and is also important for plant growth monitoring under precision agriculture. 

 

摘要 

农作物病害威胁粮食的安全生产。因此，农作物前期病害的自动化识别对农民增产增收十分重要。本文提出了

一种基于优化 MobileNetV2模型的番茄叶部病害识别方法。基于从温室拍摄及 PlantVillage数据库获取的番茄

病害图像，创建了一个包含 20400 张番茄病害图像数据集。用数据集对优化的 MobileNetV2 模型进行训练，

获得了番茄叶部病害的分类模型。经试验验证，该模型的平均识别准确率为 98.3%，召回率为 94.9%，比原模

型分别提高了 1.2%和 3.9%。该模型对单张图片的平均预测速度约为 76ms，比原模型提高了 2.94%。为验证

优化的 MobileNetV2模型的性能，分别与使用迁移学习的 Xception、Inception、VGG16特征提取网络模型进

行了比较。试验结果表明，该模型的平均识别准确率比 Xception、Inception、VGG16模型高出了 0.4～2.4个

百分点。可为番茄病害的识别提供技术支持，同时对精准农业下的植物生长监控具有重要意义。 

 

 

INTRODUCTION 

The healthy and stable development of the tomato industry is of great significance to the development 

of the national economy and the increase in income of farmers. However, in recent years, due to changes in 

cultivation systems and inadequate plant protection measures, the variety and extent of tomato diseases have 

been increasing (Xiong Y. et al., 2020). There are five common diseases of tomatoes, including late blight, 

grey mould, powdery mildew, spotted blight and yellowing varroa virus. Efficient identification and control of 

tomato leaf diseases can significantly reduce the damage caused by the disease and contribute to increased 

tomato yields (Liu J. et al., 2020). How to accurately and effectively identify crop diseases is an important area 

of research. A great deal of work has been done in the field of disease identification (Xiao M.H. et al., 2020), 

which can effectively identify the type and severity of crop diseases. 

With the rapid development of computer vision and artificial intelligence, deep learning technology is 

becoming more and more important in the field of image recognition (Too E. et al., 2019). Convolutional Neural 

Networks (CNN) have a strong self-learning capability and are typical of deep learning techniques.  
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CNN can learn a large amount of knowledge through abstract analysis of data to achieve fast and 

accurate classification (Jiang P. et al., 2019). Compared with traditional neural networks, CNN has a strong 

ability to adapt and generalize. CNN reduces the number of parameters by sharing weights, thus significantly 

reducing the computational effort. The research method used in this study is the CNN. 

In recent years, deep learning technology has been gradually applied in agriculture, which has led to 

further improvements in the accuracy and efficiency of crop disease identification (Hu W. et al., 2020). Zhao 

et al. used a deep learning approach to extract cotton foliar disease characteristics such as wilt, brown spot, 

and horn spot. The average test accuracy of the trained model on the test set was 93.5% (Zhao L. et al., 2021). 

Venkatesh et al. proposed a fine-tuned MobileNet convolutional neural network model based on deep learning 

and used for the classification of strawberries and cherries. The average recognition accuracy of the model is 

98.60% and the loss rate is about 0.38% after experimental testing (Venkatesh N. et al., 2021). Zeng et al. 

proposed a method for citrus disease detection based on GANs data enhancement and Inception_v3 model. 

Zeng trains InceptionV3 model with 14056 images. The test accuracy of the model reached 92.6%, which is 

20% higher than the model trained on the original image dataset (Zeng, Q. et al., 2020). Lv et al. designed a 

novel feature extraction model called DMS-Robust AlexNet based on AlexNet model. New model combines 

the advantages of multi-scale convolution and dilated convolution to improve feature extraction. The training 

accuracy of the model is 98.8% (Lv M. et al., 2020). An Xception-based method for medicinal plant identification 

was proposed by Roopashree et al. The average recognition accuracy of the method on the DeepHerb dataset 

was 97.5% (Roopashree, S. et al., 2021). Zhang et al. proposed an improved maize leaf disease diagnosis 

model based on GoogLeNet. The improved GoogLeNet model has significantly less number of parameters 

than the VGG and AlexNet models. After experimental testing, the improved GoogLeNet model achieved an 

average recognition accuracy of 98.9% (Zhang H. et al., 2018). Wang et al. proposed a Dense-MobileNet 

network-based image classification method for image classification of animals. The average recognition 

accuracy of the model was 96% after experimental testing (Wang W. et al., 2020). 

Research on crop foliar disease identification has focused on machine learning and deep learning. 

However, the methods that have been applied to crop disease identification rarely balance accuracy and 

efficiency (Liu B. et al., 2020). In view of the above, a lightweight convolutional neural network-based method 

for tomato leaf disease identification is proposed in this paper.  

 
MATERIALS AND METHODS 

IMAGE ACQUISITION 

The images used in the experiment were partially collected from a tomato greenhouse in Huai Gang, Shan 

County, Shandong Province (34°48'22''N, 116°59'13''E). The collection time is February 3 and February 4, 

2021 from 8:00-11:00 am and 14:00-17:00 pm. The tomato variety is West Pink 3. The image acquisition 

device is Redmi note7. A total of 3000 images of tomato leaves were collected, including late blight, leaf mold, 

powdery mildew, blotch, yellowing varroa virus and healthy images. The image resolution is 3000 x 4000 pixels 

and the format is jpg. To enrich the experimental data, some tomato leaf images were selected from the 

PlantVillage database (Hassan S. et al., 2021). Some of the images are shown in Fig. 1.  

 

       

(a) Healthy            (b) Late blight           (c) Leaf mold      (d) Powdery mildew         (e) Blotch         (f) Yellow varroa virus 

 
Fig. 1 - Example of tomato leaf image 

 
AUGMENT DATA 

To reduce the experiment running time, the original image was resized to 500 × 500 pixels by Python 

programming. A random selection of 2400 images from tomato leaf images was used as the test set. To better 

extract tomato leaf features and avoid overfitting in training, image expansion is performed on the dataset 

(Chen X. et al., 2020). In this case, the original image is flipped 180 degrees. The image brightness is 

transformed to between 0.8 and 1.2 of the original image brightness.  
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Gaussian noise with a variance of 0.02 is added to the image. Transform the chromaticity of the image 

to 120% of the original image chromaticity of the tomato leaves. A total of 18,000 images were augmented. 

The dataset contains a total of six categories of tomato leaf late blight, leaf mold, powdery mildew, blotch 

disease, yellow varroa virus and healthy images. The number of images included in the dataset is shown in 

Table 1. 

Table 1 

The number of images included in the dataset 

Disease Original  
dataset 

Augmented  
dataset 

Training  
dataset 

Validation  
dataset 

Test  
dataset 

Late blight 1200 1800 2200 400 400 

Leaf mold 1200 1800 2200 400 400 

Powdery mildew 1200 1800 2200 400 400 

Blotch 1200 1800 2200 400 400 

Yellow varroa virus 1200 1800 2200 400 400 

Healthy 1200 1800 2200 400 400 

 

OPTIMIZED MOBILENET 

MobileNetV2 network is a lightweight neural network proposed by Google for embedded devices such 

as cell phones. Its core idea is depthwise separable convolution (Bi C. et al., 2020). Using depth wise separable 

convolution can reduce the parameters of the model and realize the light weight of the model. The MobilenetV2 

model uses the bottleneck residual block structure (Chen J. et al., 2020). The structure of bottleneck residual 

block is shown in Fig 2. Boosting is performed using 1x1 convolution before the 3x3 network structure. 

Dimensionality reduction is performed using 1x1 convolution after 3x3 network structure. Dilation first, then 

compression, is better than convolving directly with a 3x3 network. 

 
Fig. 2 - The structure of bottleneck design 

 

1) BNECK BLOCK 
Although bottleneck residual block as the main structure of MobileNetV2 model is beneficial for model 

accuracy, this design may lead to information loss and gradient confusion. Short connections in the inverse 

residual block can affect the gradient back propagation (Sun J. et al., 2020). To address the limitations of the 

bottleneck residual block module, the size and number of convolutional kernels were fine-tuned and a new 

Bneck block structure was proposed. The Bneck block structure introduces deep convolution, which can 

reduce the computational effort of the model. To ensure short connections for high-dimensional features, the 

position of the 3x3 convolution was adjusted, as shown in Fig. 3. The Bneck block structure first up-dimensions 

the input feature map using a 3x3 convolution, then extracts features from the feature map using a 1x1 

convolution kernel, and finally down-dimensions the feature map using a 3x3 convolution. When stride=1, a 

shortcut branch exists to connect the input to the output, as shown in Fig. 3(a). When stride=2, there is no 

shortcut branch, as shown in Fig. 3(b). 

The Bneck block structure does not construct short connections between bottleneck layers, but between 

higher dimensional features, as shown in Fig. 3(b). Wider short connections help to pass more information 

from the input tensor to the output tensor and thus have more gradients to pass back. The linear bottleneck 

layer helps to avoid zeroing of features, which in turn leads to information loss. Therefore, an activation function 

is not added after the 3x3 convolution used for dimensionality reduction. The H-swish activation function is 

added after the 1x1 convolution and the first 3x3 convolution. 

DepthwiseConv2d 3x3
BatchNorm

ReLU6

Conv2d 1x1
BatchNorm

ReLU6

Conv2d 1x1
BatchNorm
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(a) stride=1 block                       (b) stride=2 block 

Fig. 3 - The structure of Bneck design 

 

To further improve the model recognition accuracy, the output of the optimized MobileNetV2 network is 

batch normalized. A dropout layer with a p-value of 0.5 is added after batch normalization to keep some of the 

network nodes from working in order to prevent the model from overfitting. A global average pooling layer was 

added behind the dropout layer to replace the fully connected layer, significantly reducing the model 

parameters. Finally, a Softmax classifier is added for the classification of images. The newly generated network 

consists of two main parts. The first part is the pre-training module, which is used to extract image features. 

The second part is an extension layer that extracts high-dimensional features for image classification. 

2) ACTIVATION FUNCTION 
The main role of the activation function in neural networks is to enhance the nonlinear modelling 

capability of the network (Zhang S. et al., 2019). It is only after adding the nonlinear activation function that the 

deep neural network has the ability to learn nonlinear mapping in layers. The original MobileNetV2 model uses 

the ReLU activation function. The ReLU activation function can be expressed by Equation (1). 

 ( ) max(0, )ReLu x x=  (1) 

From Equation (1), it can be seen that ReLU saturates when x is less than zero, while when x is greater 

than zero, there is no saturation problem. Therefore, ReLU is able to keep the gradient from decaying when x 

is greater than zero, thus alleviating the gradient disappearance problem. However, as the training progresses, 

some of the inputs fall into the hard saturation zone, resulting in the corresponding weights not being updated. 

Similar to sigmoid, the mean value of the output of ReLU is greater than zero. 

To further improve the recognition accuracy of the model, the h-swish function is chosen to replace the 

ReLU activation function of the original MobileNetV2 model. The h-swish function can be represented by 

Equation (2). 

  
6( 3)

6

ReLU x
h-swish x x

+
=  (2) 

The activation function h-swish is unbounded, lower bounded, smooth, and non-monotonic. From 

Equation (2), it can be seen that the value of the h-swish function can be taken to be negative. The h-swish 

function has a wider range of values and stronger convergence performance than the ReLU function. 

3) LOSS FUNCTION 

The loss function is an important tool to measure the gap between the network output and the target 

(Liu B. et al., 2020). The cross-entropy loss function can better solve the problem of too slow update of the 

loss function weights. Therefore, this paper uses the cross-entropy loss function in the loss layer. The cross-

entropy loss function can be represented by Equation (3). 

  
1

ln (1 ) ln(1 )
x

loss y a y a
n

 
= − + − − 

 
  (3) 

Where, x is the number of samples, y is the actual number of labels, a is the predicted output, and n is 

the total number of samples. 

4) OPTIMIZER FUNCTION 

The parameter update of the Adam optimizer is not affected by the scaling transformation of the gradient 

(Yuan Y. et al., 2021). Its parameters are well interpreted and usually require only minor adjustments. Adam 



Vol. 68, No. 3 / 2022  INMATEH - Agricultural Engineering 

 

 593  

Optimizer is able to automatically adjust the learning rate. Therefore, the Adam optimizer was chosen. The 

initial learning rate of the model is set to 0.001. 

5) THE OVERALL STRUCTURE OF THE OPTIMIZED MOBILENETV2 

The optimized MobileNetV2 model contains 7 Bneck blocks, 2 convolutional layers, 2 global average 

pooling layers, 1 dropout layer, and 1 fully connected layer. The model uses a linear bottleneck and inverted 

residuals structure to optimize the network, reducing the model by about 2 million parameters. The parameters 

of the model are shown in Table 2. The technical route for tomato foliar disease identification is shown in Fig. 

4. 

 

Fig. 4 - Technical route of identification of foliar diseases of tomatoes 

Table 2 

Relevant parameters of the MobileNetV2 model 

Operator Input Output t c n s 

conv2d 3x3 224×224×3 112×112×32  32 1 2 

Bneck 112×112×32 56×56×96 2 16 1 2 

Bneck 56×56×96 56×56×144 6 24 1 1 

Bneck 56×56×144 28×28×192 6 32 3 2 

Bneck 28×28×192 14×14×288 6 64 3 2 

Bneck 14×14×288 14×14×384 6 96 4 1 

Bneck 14×14×384 7×7×576 6 160 4 2 

Bneck 7×7×576 7×7×960 6 320 2 1 

conv2d 7×7×960 7×7×1280  1280 1 1 

Avgpool 7×7×1280 1×1×1280   1  

conv2d 1×1×1280 1×1×1280  k 1  

Avgpool/dropout 1×1×1280 1×1×1280     

Dense 1×1×1280 1×1×6     

 

In the table, t represents the expansion multiplier, c represents the number of output channels, n 

represents the number of repetitions, and s represents the stride size. 

 

EXPERIMENT AND ANALYSIS 

TRAINING DETAILS 

1) EXPERIMENTTAL PLATFORM 

The experimental platform is shown in Table 3. 

Table 3 

Experimental platform 

Equipment Specifications 

System Windows10 

Language Python3.8 

Framework Cuda10.0 Tensorflow2.3.0 

CPU Inter Xeon E5-2609 v4@1.70GHz 

RAM 32G 

GPU NVIDIA GeForce GTX 1080(8G) 
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2) BATCH SIZE AND EPOCHS 

In this paper, the tomato leaf dataset contains a total of 20,400 images from six categories. 2400 images 

were randomly selected as the test set. The training set and validation set are divided in a ratio of 4:1. 

3) DIVISION OF THE DATA SET 

The values of the batch size were set to 6, 12, and 24. The experimental comparison shows that the model 

is most stable when the value of batch size is 6. When epochs exceed 40, the loss convergence is no longer 

significant, so the number of training rounds of the model was set to 40. 

 

EVALUATION INDICATORS 

There are various evaluation indicators for disease identification models. Different evaluation metrics are 

selected to evaluate the model performance from different perspectives (Shi C. et al., 2020). In this paper, the 

accuracy, precision, recall and specificity are chosen as evaluation metrics. The calculated expression is as 

follows. 

 =
+ +

TP TN

TP TN FP FN
accuracy

+

+
 (4) 

 
TP

precision
TP FP

=
+

 (5) 

 
TP

recall
TP FN

=
+

 (6) 

 =
P

spec t
T

i
N

i
T

if c
N

y
F+

 (7) 

Here, TP and FN represent the number of correct and incorrect predictions for positive samples, 

respectively. TN and FP represent the number of negative samples correctly predicted and incorrectly 

predicted, respectively. 

 

RESULTS AND ANALYSIS 

The master model chosen for this study is the optimized MobileNetV2. The network models of the control 

group were InceptionV3, Xception and VGG16, respectively. Different models were trained separately with the 

same data set in the same experimental setting. Each model was iterated 40 times. The training model was 

saved once every 5 iterations. The optimal model was selected by comparing the performance of each model. 

The training results of the model are shown in Fig. 5. 

  
(a) Optimized MobileNetV2, above is the accuracy                                (b) Inception, above is the accuracy and 

                         and below depicts the loss of the model                                                 below depicts the loss of the model 

 

Fig. 5 - Comparison of the highest recognition accuracy and loss value of each model 
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(c) Xception, above is the accuracy and                                             (d) VGG16, above is the accuracy and 

                         below depicts the loss of the model                                                    below depicts the loss of the model 
 

Fig. 5 - Comparison of the highest recognition accuracy and loss value of each model 

 

As can be seen from Fig. 5, the optimized MobileNetV2 model proposed in this paper achieved high 

training accuracy and low loss values in tomato disease classification. The training accuracy and loss values 

of the model on the training set are 96.31% and 0.1071, respectively. The training accuracy and loss values 

of the MobileNetV2 model on the validation set are 98.27% and 0.0562, respectively. In terms of model 

convergence, the MobileNetV2 model converges the fastest and basically converges in about 10 iterations. 

Compared with Inception, Xception and VGG16, the optimized MobileNetV2 model can train the optimal model 

in the shortest time. The VGG16 model converges the slowest and basically tends to converge after about 30 

iterations. By comparing the accuracy and loss curves of each model, it can be found that the loss of the model 

on the training set is slightly higher than that on the validation set, and the accuracy on the training set is 

slightly lower than that on the validation set. 

 

 

Fig. 6 - Recognition accuracy of the proposed algorithm for different behaviours 

 

Fig. 6 shows the test categories and the corresponding accuracies for optimizing MobileNetV2 on the 

test set. As can be seen from Fig. 6, tomato powdery mildew was identified with the highest accuracy of 98.7%. 

The lowest identification accuracy of 97.7% was obtained for tomato leaf blight. The identification accuracy of 

all six types of tomato leaf diseases was above 97%. Fig. 7 shows the recall, precision and specificity of the 

optimized MobileNetV2 for the identification of different tomato foliar diseases. As can be seen from Fig. 7, the 

optimized MobileNetV2 model has the highest recognition accuracy and recall rate for tomato downy mildew, 

mainly because tomato downy mildew is distinctly different from other diseases.  
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The lowest accuracy and recall was for tomato leaf mold, mainly because the disease characteristics of 

tomato leaf mold and late blight are similar, and tomato leaf mold is easily misdiagnosed as late blight.  

Especially in the early stages of the disease, the two diseases are extremely similar and difficult to 

distinguish. The recall and precision of the model for six tomato diseases identification were between 92% and 

97%, while the specificity was above 98%. The average recall, precision and specificity of the model for six 

tomato diseases identification were 95%, 94.9% and 98.9%, respectively. After experimental testing, the 

average prediction speed of the model for a single image is about 76 ms. The experimental results show that 

the proposed optimized MobileNetV2 model can consistently identify leaf diseases of tomato. 

 

 

Fig. 7 - The recall, precision and specificity of different disease by proposed algorithm 

 

In this paper, networks such as Inception, VGG16, and Xception are used as control groups to extract 

image features. The recognition results of different feature extraction networks are compared to verify the 

effectiveness of the performance of the optimized MobileNetV2 model. The classification models trained by 

different feature extraction networks were tested with a test set. The test results are shown in Fig. 8. 

 

 

Fig. 8 - Diseases recognition result based on different feature extraction networks 

 

As seen in Fig. 8, the average recognition accuracy of Inception, Xception, and VGG16 models on the 

test set for the six diseases was 97.6%, 97.9%, and 96%, respectively. The optimized MobileNetV2 model has 

an average recognition accuracy of 98.3%, which is 2.4%, 0.7% and 0.4% higher than the VGG16, Xception 

and Inception models, respectively. The test results showed that the VGG16 model had the lowest specificity 

of 97.4%. The optimized MobileNetV2 model has the highest specificity of 98.9%, which is 1.5% higher than 

the VGG16 model. The recall rates of the Inception, Xception, and VGG16 models were 92.9%, 93.8%, and 

88.6%, respectively. However, the optimized MobileNetV2 model had the highest average recall rate of 94.9% 

for the six diseases. The optimized MobileNetV2 model has an average recognition accuracy and recall rate 

of over 90% for six diseases on the test set, which indicates that the model better balances the two evaluation 

metrics of model accuracy and recall rate. 

Fig. 9 shows the results of our method and the MobileNetV2 model for tomato disease identification. 

According to the analysis of the experimental results, although the recognition accuracy of the MobileNetV2-

based recognition method for tomato downy mildew was close to that of our method, the optimized 
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MobileNetV2 model was significantly more accurate than the MobileNetV2 model for the remaining five 

diseases.  

The average recognition accuracy of the optimized MobileNetV2 model is 98.3%, which is 1.2% higher 

than the original model. The average recall of this model is 94.9%, which is 3.9% higher than the original model. 

The average prediction speed of the optimized MobileNetV2 model for a single image is about 76 ms, which 

is 2.94% better than the original model. Our proposed method has a better classification recognition effect 

than the original model. 

 

Fig. 9 - Diseases recognition result of our method and MobileNetV2 

 
 

 

CONCLUSIONS 

In this paper, it was proposed to apply lightweight convolutional neural networks to identify six different 

leaf diseases of tomato based on deep learning techniques. Based on the MobileNetV2 model, the model has 

been improved to further adapt to the needs of miniaturization and fast computation of the network model. A 

new Bneck block structure is proposed for the improvement of MobileNetV2 model. The output of the model 

was normalized and followed by the addition of a Dropout layer. Replacing the fully connected layer with a 

global average pooling layer substantially reduces the model parameters. The optimized MobileNetV2 model 

has an average recognition accuracy of 98.3% and a recall rate of 94.9%, which are 1.2% and 3.9% higher 

than the original model, respectively. The average prediction speed of the model for a single image is about 

76 ms, which is 2.94% better than the original model. Comparison tests with Inception, Xception, and VGG16 

models show that the improved MobileNetV2 model has higher average recognition accuracy and recall, and 

better balances recognition accuracy, recall, and memory requirements consumed for running. The model is 

minimally affected by factors such as light intensity, weather changes, indicating that the model has good 

robustness. The optimized MobileNetV2 model can provide a technical reference for the identification of tomato 

leaf diseases and is important for the remote diagnosis of plant diseases under precision agriculture. 
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