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1. Introduction 
SUP based on expanded polystyrene (EPS) are prevalent 

in food packaging due to their low density, superior thermal 
insulation, high tensile strength, and affordability. However, 
SUPs derived from petroleum are chemically inert and non-
biodegradable, posing significant challenges in recycling 
and potentially generating toxic byproducts during 
decomposition [1]. With global plastic production reaching 
390.7 million tonnes in 2021 [2], SUPs not only exacerbate 
environmental issues but also deplete petroleum resources. 
Commonly, SUP waste is either buried or incinerated, 
compromising the quality of land, air, water, oceans, and 
human health [3]. 

In response, biodegradable composites are being 
developed as alternatives to SUPs. Research on 
biodegradable products has largely focused on natural 
materials. Proteins such as soy protein  [4], whey protein [5] 
and  polysaccharides (chitosan, cellulose, starch) [6] have 
been utilised as raw materials for biodegradable products. 
Amongst these, starch-based materials are extensively 
studied due to starch’s abundance, biocompatibility, non-
toxicity, renewability, and cost-effectiveness. Moreover, the 
polyhydroxy structure of starch facilitates the modification 

of its functional and structural properties through chemical 
or enzymatic treatments [3]. To enable the use of these 
materials in container applications, reinforcement with 
cellulose is necessary to enhance tensile strength and load-
bearing capacity. Cellulose fibres can form a dense network 
structure with starch molecules, thanks to the numerous 
hydroxyl groups on their surfaces [7]. The addition of 
cellulose fibres is shown to improve thermal properties, 
tensile strength, and hydrophobicity [8]. Additionally, 
cellulose is recognised for its excellent biocompatibility, 
biodegradability, non-toxicity, abundance, and affordability 
[9]. Agricultural waste, such as banana trunk [10], bagasse 
[11], RH [12], peanut skin [13], has been repurposed to 
create green products to supplant SUPs. 

In Vietnam, according to the Ministry of Agriculture and 
Rural Development, the rice yield exceeded 43.86 million 
tonnes in 2021. Consequently, about 20% of this harvest, 
equating to 8.772 million tonnes, becomes RH agricultural 
residue [14]. Typically utilised for animal feed, biomass, 
and organic fertiliser production, RH with its high cellulose, 
silica, lignin, and moisture content, and a bulk density 
ranging from 90-150 kg/m³ presents an opportunity for 
creating environmentally friendly materials [14]. 
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To streamline the experimental process, various design 
and optimisation methods have been explored. The Taguchi 
method, a well-known approach, utilises statistical analysis 
to assess the impact of different parameters on the means and 
variance of a production or operational process [15]. The 
Taguchi method employs statistical analysis to determine 
how various parameters influence the means and variance 
of the production or operation process [16]. The system 
design procedure aims to establish optimal test levels 
for design parameters, while the factor design procedure 
identifies parameter levels that enhance the performance of 
the product in question.

This study focuses on producing biodegradable trays 
from RH and starch via a thermo-pressing process. Using 
the Taguchi method, we investigated how operational 
factors such as the RH to starch ratio, pressing time, and 
pressing temperature affect the mechanical properties of the 
container. Additionally, the influence of additives such as 
glycerol and adhesive on the colour difference, hardness, 
and density of the trays was examined.

2. Materials and methods

2.1. Preparation of RH trays

RH was sourced from rice milling operations in Dong 
Thap province, Vietnam. The husks were ground to a 0.25 
mm granularity. Cationic MS VN1605, with a moisture 
content of 14%, was supplied by Thuan Phat Hung 
Company. Varied ratios of RH to modified starch (MS) were 
employed: 20/80, 35/65, and 50/50. Polyvinyl acetate (PVA) 
from China (87%) and glycerol from Merck (99.5%) were 
added prior to the pressing process and thoroughly blended 
using a mixer. For the process, a stainless-steel mould of 
150 mm diameter and 2 mm thickness was utilised (Fig. 1) 
[10]. The thermo-pressing was performed at 130, 150, and 
170°C, for durations of 3, 4, and 5 minutes, respectively. 
Post thermo-pressing, the trays were cut into shape. The 
process followed a prescribed flowchart (Fig. 2).
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Fig. 2. Flowchart of the RH tray production process. 
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Fig. 2. Flowchart of the RH trays production process.

2.2. Design of experiments for biodegradable RH trays

A preliminary study identified factors impacting product 
quality, focusing on hardness, colour difference, thickness, 
and density. Factors examined included concentrations of 
glycerol, PVA, pressing temperature, time, and the RH to 
MS ratio. Glycerol and PVA were found to have a negligible 
effect on the RH tray quality, leading to the selection of three 
influential factors for the Taguchi method: the ratio of MS to 
RH (A), pressing temperature (B), and pressing time (C). An 
orthogonal array was designed for the experiment, requiring 
nine tests (32=9) to economise on time and resources. Each 
test was conducted thrice (Table 1).
Table 1. The Taguchi method design for RH tray experimentation.

Independent factors Level 1 Level 2 Level 3

The ratio of MS and RH (A) (w/w) 20/80 35/65 50/50

Pressing temperature (B) (oC) 130 150 170

Pressing time (C), (min) 3 4 5

2.3. Samples analysis

2.3.1. Hardness test

Hardness is defined as a product’s resistance to 
permanent deformation such as indentation, abrasion, wear, 
and scratch. In this study, a hardness tester (IC-FR5105) 
was used to determine the load of the container. 

2.3.2. Thickness and density

A manual micrometre (Mitutoyo, Japan) was used to 
measure the thickness of the RH container. The density 
was calculated using the weight-thickness relationship. The 
reported value is the mean of three calculations.
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2.3.3. Colorimetry

A colour spectrophotometer (CR-400/CR 410) was used 
and the 0% colour was calibrated with white and 100% with 
black standards. The colour parameters L*, a*, and b* were 
recorded for each product. Each product was analysed at 
six different points on the upper and lower surfaces of the 
product. The comprehensive colour difference, ∆E, was 
calculated using the formula: 
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Fig. 3. Effect of poly(vinyl alcohol) on the hardness (A) and colour 
(B) of biodegradable trays.

Poly(vinyl alcohol) (PVA) is a biodegradable, 
biocompatible, and hydrophilic synthetic polymer [19]. 
The trays were hot-pressed for 3 minutes at 170°C and 
1 MPa, with PVA concentrations varying from 0.8% to 
3.3% (w/w) (Fig. 3). PVA served as an adhesive, bonding 
the MS and RH fibres. The tray with 2.5% PVA (w/w) 
exhibited the highest hardness. Beyond this concentration, 
an increase in PVA reduced the hardness of the product and 
caused it to adhere more to the mould. The colorimetric 
differences (ΔE) were measured on both the front and back 

of the products, revealing a slight fading of colour with 
increasing PVA concentration. The thickness and density 
of the products remained consistent at 2.05±0.01 mm and 
0.93±0.03 g/cm³, respectively, indicating that the variation 
in PVA concentration did not significantly impact these 
parameters. Additionally, the high lignin content within RH 
fibres contributed to the adhesion of product components 
and reduced porosity within the trays when subjected to 
elevated temperatures and pressing force [20].

3.1.2. Effect of glycerol

Glycerol, a prevalent plasticiser in starch and fibre-
based biodegradable material production, significantly 
affects mechanical properties. Its presence can enhance the 
flexibility of biodegradable containers by reducing their 
brittleness and permeability to water vapour and oxygen 
[21]. In this study, glycerol concentrations varied from 3% 
to 6% (w/w). The hardness of the product increased with 
glycerol concentrations up to 5% (w/w) but decreased when 
the glycerol level exceeded 5% (Fig. 4). E. Basiak, et al. 
(2018) [21] observed that higher glycerol content in starch 
structures diminishes tensile strength and elastic modulus.

The colour difference values on both sides of the 
products changed with glycerol concentration. At 3% 
(w/w), the colour difference value was low and remained 
stable at higher concentrations. However, the colour did not 
change markedly with increasing glycerol levels. Glycerol 
concentration had no significant effect on product thickness 
or density, with thickness around 2.05±0.01 mm and density 
approximately 0.9±0.07 g/cm3. 
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Fig. 4. Effect of glycerol on the hardness (A) and colour (B) 
difference of biodegradable trays.

3.2. Optimum analysis by Taguchi approach

Given that the additives did not impact the product’s 
quality significantly, the main factors influencing the 
tray production process were the MS/RH ratio, pressing 
temperature, and pressing time (Table 2). The Taguchi 
method was employed to assess the effects of these variables, 
recommending a signal-to-noise (S/N) ratio to optimise the 
quality of the biodegradable container. Maximising the S/N 
ratio implies minimising the variability and effects of noise 
factors. In this context, biodegradable trays with higher 
hardness, lower density, and lighter colour were preferred. 

%PVA (w/w)
0.8 1.7 2.5 3.3

C
ol

or
m

et
ry

 

0

10

20

30

40

50

60

70

Upside color 
Backside color 



PHYSICAL SCIENCES | ENGINEERING, ENVIRONMENTAL SCIENCES | ENVIRONMENTAL SCIENCE

74 DECEMBER 2023 • VOLUME 65 NUMBER 4

Thus, a ‘larger-is-better’ approach was used for hardness 
analysis, while a ‘smaller-is-better’ approach was adopted 
for analysing tray density and colour (Tables 3-5).
Table 2. L9 orthogonal array design for three factors at three levels.

No. A B C The ratio of 
MS/RH (w/w)

Pressing 
temperature (oC)

Pressing 
time (min)

Hardness 
(kgF)

Density 
(g/cm3)

1 1 1 1 20/80 130 3 4.92 0.954
2 1 2 2 20/80 150 4 4.02 0.980
3 1 3 3 20/80 170 5 5.68 1.062
4 2 1 2 35/65 130 4 4.49 0.926
5 2 2 3 35/65 150 5 4.44 0.951
6 2 3 1 35/65 170 3 4.55 0.971
7 3 1 3 50/50 130 5 3.58 0.879
8 3 2 1 50/50 150 3 5.72 0.923
9 3 3 2 50/50 170 4 3.55 0.926

Table 3. Response table for signal-to noise ratios and means of the 
hardness of the product.
Level The ratio of starch and RH Pressing temperature (oC) Pressing time (mins)
Response table for signal to noise ratios larger-is-better
1 13.67 12.65 14.05
2 13.05 13.40 12.04
3 12.41 13.09 13.04
Delta 1.26 0.74 2.01
Rank 2 3 1
Response table for means
1 4.874 4.329 5.064
2 4.492 4.728 4.019
3 4.284 4.594 4.568
Delta 0.590 0.399 1.046
Rank 2 3 1

Density is a crucial physical property for the tray’s practical 
use. In the response table for product density, the MS/RH ratio 
is the most influential factor. As the MS/RH ratio increases, 
the tray’s density decreases. The pressing temperature and 
time have lesser effects on product density. The best results, 
combining low density with good incorporation of RH fibre 
in the polymeric matrix, were achieved with a 50/50 MS/RH 
ratio, a pressing temperature of 130°C, and a pressing time of 
4 minutes. These conditions, however, are in contrast to those 
for optimal hardness. The better the tray in terms of lower 
density, the lower its hardness. An increased MS/RH ratio 
results in softer products (Fig. 5). The addition of more RH 
fibres makes the tray harder due to the dense network structure 
created by the hydroxyl groups on the fibres’ surfaces [7]. It 
has been demonstrated that adding RH fibres can improve the 
thermal properties, tensile strength, and hydrophobicity of 
biodegradable trays [22]. Nonetheless, the density variations 
were small, ranging from 0.87 to 1.06 g/cm3, and the product’s 
hardness was prioritised when selecting the optimum starch-
to-rice-husk ratio of 20/80 (w/w). A higher proportion of RH 
implies a longer biodegradation time since cellulose degrades 
more slowly than starch [8].
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Table 4. Response table for signal-to-noise ratios and means for the density of the product. 

Response table for signal to noise ratios (smaller is better) 

Level 

The ratio of MS 

and RH 

Pressing 

temperature (oC) 

Pressing time 

(mins) 

1 0.01796 0.72831 0.45216 

2 0.44994 0.43263 0.50051 

Fig. 6. Effect plots for the density of biodegradable trays.
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The results for the biodegradable trays indicate that a pressing 
temperature of 150°C and a pressing time of 3 minutes yield 
the highest hardness (Fig. 6 and Table 4). Conversely, the most 
effective density is achieved at a pressing temperature of 130°C 
with a pressing time of 4 minutes. Nonetheless, this condition also 
results in the lowest hardness S/N values and means. While pressing 
temperature marginally affects hardness, it significantly impacts 
product density. Higher moulding temperatures, such as 170°C, 
enhance the crystallinity index of cellulose, reduce its hygroscopic 
nature, and create a stronger, less porous network resistant to 
moisture absorption. This is corroborated by N. Suderman, et al. 
(2016) [23], who noted the impact of drying temperature and time 
on the mechanical properties of biodegradable containers.
Table 4. Response table for signal-to-noise ratios and means for 
the density of the product.

Level The ratio of MS and RH Pressing temperature (oC) Pressing time (mins)

Response table for signal to noise ratios (smaller is better)

1 0.01796 0.72831 0.45216

2 0.44994 0.43263 0.50051

3 0.82599 0.13296 0.34123

Delta 0.80803 0.59535 0.15928

Rank 1 2 3

Response table for means

1 0.9990 0.9201 0.9495

2 0.9497 0.9517 0.9443

3 0.9095 0.9864 0.9644

Delta 0.0894 0.0663 0.0200

Rank 1 2 3

Table 5. Response table for signal-to-noise ratios and means for 
the colour differences.

Level The ratio of MS and RH Pressing temperature (oC) Pressing time (mins)

Response table for signal to noise ratios (smaller is better)

1 -33.76 -33.57 -33.81

2 -33.78 -33.92 -32.73

3 -33.04 -33.10 -34.05

Delta 0.74 0.82 1.32

Rank 3 2 1

Response table for means

1 48.70 47.46 48.83

2 48.62 49.68 43.06

3 44.99 45.18 50.43

Delta 3.71 4.50 7.37

Rank 3 2 1

The colour difference (ΔE) of a biodegradable tray, 
detailed in Table 5, shows that trays with the highest MS/RH 
ratio (20/80) exhibit the highest ΔE values. Conversely, a 
decrease in the MS/RH ratio leads to a significant reduction 
in ΔE as the RH content increases (Fig. 7). The addition 
of RH fibres to the starch matrix results in an increased 

ΔE value, giving the trays a brownish and yellowish hue, 
likely influenced by the natural colour of the RH fibres 
and their high lignin content [24]. Moreover, the high-
temperature and pressure conditions cause the degradation 
of lignocellulosic materials, releasing compounds such as 
furfural and glycolaldehyde, which contribute to the brown 
colouration of the product.

Fig. 7. Effect plots for the colour difference of biodegradable trays.

For optimal product quality, biodegradable trays 
were produced with an MS/RH ratio of 20/80, a pressing 
temperature of 150°C, and a pressing time of 3 minutes 
(Fig. 8). The colourimetry, hardness, and density were 
evaluated, with results showing hardness (5.26±0.22 kgF), 
frontside colour difference (50.87±0.96), backside colour 
difference (48.05±0.87), and density (0.97±0.004 g/cm³).

Fig. 8. Biodegradable trays based on RH and starch. (A) Frontside; 
(B) Backside.

(A) (B)



PHYSICAL SCIENCES | ENGINEERING, ENVIRONMENTAL SCIENCES | ENVIRONMENTAL SCIENCE

76 DECEMBER 2023 • VOLUME 65 NUMBER 4

4. Conclusions
The thermo-pressing process has been successful in 

manufacturing biodegradable trays from MS and RH fibre. 
The optimal trays are characterised by an appealing off-
white brown colour, robust hardness, and low density. The 
ideal starch to RH ratio is 20/80, with a pressing temperature 
of 150°C and a pressing time of 3 minutes. The mechanical 
properties of the trays include hardness (5.26±0.22 kgF), 
frontside colour difference (50.87±0.96), backside colour 
difference (48.05±0.87), the thickness (2.05±0.01 mm) and 
density (0.97±0.004 g/cm³). The Taguchi method identifies 
pressing time as the most significant factor affecting the 
mechanical properties (hardness and colour) of the product, 
with the starch/RH ratio being paramount for density criteria. 
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