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Abstract. The accuracy of the calculation of acoustic problems formulated in the frequency domain is presented in this work. The issues of the acoustic 

point sources modelling were discussed and the influence of frequency as well as the impact of the geometry of the analysed area on the accuracy 

of calculations were indicated. Speaking about the influence of geometry, we mean not only discretization but also the configuration of the considered 
area, such as for example point sources localization close to the outer edge. 
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O PRECYZYJNYM OBLICZANIU FAL AKUSTYCZNYCH W DZIEDZINIE CZĘSTOTLIWOŚCI 

Streszczenie. Dokładności obliczeń zagadnień akustycznych sformułowanych w dziedzinie częstotliwości została przedstawiona w tej pracy. Omówiono 

problemy modelowania źródeł punktowych oraz wskazano na wpływ częstotliwości a także wpływ geometrii analizowanego obszaru na  dokładność 

obliczeń. Mówiąc o wpływie geometrii mamy na myśli nie tylko dyskretyzacje, ale także konfigurację rozpatrywanego obszaru jak na przykład punktowe 

źródła energii położone blisko zewnętrznego brzegu. 

Słowa kluczowe: propagacja fal akustycznych, modelowanie obliczeniowe, symulacja źródeł, symulacja metodą elementów brzegowych (MEB) 

Introduction 

According to [7, 8] four different computational methods 

engage in acoustic analysis and solutions of the inverse problems: 

ray tracing, FEM, BEM, and DG-FEM (Discontinuous Galerkin – 

Finite Element Method). The key problem of each inverse 

problem is the forward problem, and this paper is devoted 

accuracy and effectiveness of the calculation of the forward 

problem for acoustic. 

We now briefly introduce several types of problems which 

frequently occur in practical applications. Problems of wave 

propagation phenomena are usually classified as interior or 

exterior, depending on whether one is interested in the sound field 

in bounded or unbounded regions in space. In some cases, also 

could be defined the third type of the acoustic problem when 

the domain of interest is not a simply connected one (see for 

example Fig. 1c). 

Three different types of problem could be formulated 

for acoustics [2]. Those are: 

1) interior problem, 

2) exterior problem, 

3) hybrid interior-exterior problem. 

 
a) 

 

b) 

 

c) 

 

Fig. 1. Sketch of the area for: a) interior problem, b) exterior problem, c) hybrid 

interior-exterior problem. The greyish area represents the calculation domain 

In this paper we would like to focus readers attention on the 

BEM for interior problem (Fig. 1a) formulated for the frequency 

domain.  

Dedicated iterative methods make it possible to formulate 

the inverse problems and solve the tomography tasks for acoustic. 

The advantages of acoustic or ultrasound approach for imaging 

is obvious and do not demand further explanations. 

Ultrasound tomography models are different from the 

mathematical models formulated for X-ray tomography models 

[3]. Unlike X-rays, ultrasound waves do not travel in a simple 

straight line, it undergoes multiple deflections too. The ultrasound 

wave propagation speed is low, such that delay in propagation 

times can also be measured. Various methods have been suggested 

to deal with these refractive problems. 

1. Governing equations for the forward internal 

acoustic problem 

The acoustic field is assumed to be present in the domain 

of a homogeneous isotropic fluid and it is modelled by the linear 

wave equation [3]: 

 𝛻2𝜓(𝐩, 𝑡) =
1

𝑐2
𝜕2

𝜕𝑡2
𝜓(𝐩, 𝑡)

 (1)
 

where 𝜓(𝐩, 𝑡) [m2/s] is the scalar time-dependent velocity 

potential related to the time-dependent particle velocity 

𝐯(𝐩, 𝑡) = 𝛻𝜓(𝐩, 𝑡) [m/s] and 𝑐 [m/s] is the propagation velocity 

(𝐩 and 𝑡 are the spatial and time variables in meters and seconds 

respectively). The time-dependent sound pressure is equal 

𝑝(𝐩, 𝑡) = −𝜌
𝜕

𝜕𝑡
𝜓(𝐩, 𝑡) where 𝜌 [kg/m

3

] is the density 

of the acoustic medium. 

Transferring from the time domain to the frequency domain 

the velocity potential 𝜓 can be expressed as follows: 

 𝛹(𝐩, 𝑡) = Re{𝜑(𝐩)e−iωt}, (2) 

where: 𝜔 = 2𝜋𝑓 [1/s] and 𝜑(𝐩) is the velocity potential 
amplitude. The substitution of the above expression into the wave 
equation reduces it to the Helmholtz equation of the form [3]: 

 𝛻2𝜑(𝐩) + 𝑘2𝜑(𝐩) = 𝑄, (3) 

where 𝑘2 =
𝜔2

𝑐2
 and is the wave number and the wavelength 

is equal to [m]. The right-hand side 𝑄 stands for the acoustic 

source. The complex-valued function 𝜑(𝐩) possess the magnitude 

and phase shift.  

Acoustic source term from Eq. (3) very often is treated 

as the Monopole Source which models a point source that radiates 

sound isotropically. An example of the acoustic source 

in 2D space might be a cross section of a cylinder with a small 

radius which alternately expands and contracts [4].  

Such approach could be modelled by the Dirichlet boundary 

conditions of the internal boundary circle which represent 

the cross section of the source. But if we make use 

of the monopole source term Q in Eq. (3) may be written 

as Q=Q0 δ(ps). The δ(ps) means the Delta Dirac function located 

in the point ps. Such a mathematical model is particularly 

convenient in integral formulation of the Partial Differential 

Equations (PDE). It will be shown in the next section 

of this paper. 
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2. Mathematical model of the acoustic source 

based on hybrid interior-exterior problem 

Let us consider hybrid interior-exterior acoustic problem 

as it is presented in the Fig. 1c. Using this idea, we would like to 

build the mathematical model for the acoustic source placed in the 

centre of the square region. The internal boundary should be as 

small as possible in order to simulate the point source inside the 

region as it is shown in Fig. 2. Mathematical model based on the 

Helmholtz equation in the frequency domain [5] in the integral 

form is described by the following equation.  

𝑐(𝒓)𝜑(𝒓) + ∫
𝜕𝐺(|𝒓 − 𝒓′|)

𝜕𝑛𝜞

𝜑(𝒓′)𝑑𝜞 =
 

 = ∫ 𝐺(|𝒓 − 𝒓′|)
𝜕𝜑(𝒓′)

𝜕𝑛𝜞
𝑑𝜞

 (4)
 

Internal boundary (Fig. 2b) of the circular shape with Dirichlet 

boundary conditions simulates the point source located 

as it is shown in Fig. 2a. 
a) b) 

 

  

Fig. 2. Discretization of the region under consideration (a) and enlarged internal 

boundary as a model of the point source (b) 

This problem could be treated as an acoustic benchmark 

for numerical simulation because of its geometrical simplicity. 

The point sources for the acoustic tomographic problems simulate 

the multi excitation set so they are especially important. We have 

to know BEM software behaviour particularly in case of high 

frequencies like for example ultrasound frequency range. 

For one reason the hybrid problem is significant. The unite 

normal vector have to be directed outside the analysed region. 

So, for the external boundary the normal derivative would be 

directed to infinity but for internal boundary to the empty 

subregion (see for example Fig. 2b).  

The following figures shows the solution of the problem with 

centred point source modelled by hybrid interior – exterior 

problem. The left-hand side column a) belongs to analytical 

solution based on Eq. (5), but the right-hand side figures represent 

the numerical solution. In Eq. (5) the Q0 is the point source 

strength but in the BEM model it is replaced by Dirichlet 

boundary conditions. 

Due to singularity of the solution the hybrid model 

of the problem makes only possible qualitative comparison 

between analytical and numerical calculations. The singularity 

point in numerical model is excluded and replaced by Dirichlet 

boundary conditions imposed on the internal boundary 

circumfluent the real point source position (see Fig. 3 and Fig. 4). 

In the Fig. 3 and Fig. 4 acoustic field is presented for 

two frequencies: 20 Hz the lowest audible frequency (top row) 

and 680 Hz frequency (bottom row) [1]. At the external boundary 

homogeneous Dirichlet boundary conditions were imposed 

(Sound Soft BC). 

It is clear that such approach could be applied to model 

acoustic point sources particularly useful in acoustic tomography. 

a) b) 

  

  

Fig. 3. Relief plot of absolute value of complex potential distribution for the 

analytical solution - column a) and for BEM numerical solution – column b) 

a) b) 

  

  

Fig. 4. Qualitative comparison between analytical (left, column a) and BEM (right, 

column b) solutions for the Helmholtz equation for a source located in the centre 

of the square region 

3. Acoustic source modelled by Delta Dirac 

function 

Similar task but this time with the point source modelled 

by the Delta Dirac function were considered. In order to make 

the Quantitative comparison following [1] let us consider 

the analytical solution of the acoustic problem formulated 

in previous paragraph: 

 𝜑(𝒙, 𝒚) =
4𝑄0

𝑎𝑏
∑ ∑ [

𝑠𝑖𝑛(
𝑛𝜋𝑥

𝑎
)𝑠𝑖𝑛(

𝑚𝜋𝑦

𝑏
)𝑠𝑖𝑛(

𝑛𝜋𝜂0
𝑎

)𝑠𝑖𝑛(
𝑚𝜋𝜉0
𝑏

)

𝜋2(
𝑛2

𝑎2
+
𝑚2

𝑏2
)−𝑘2

]∞
𝑚=1

∞
𝑛=1

 

  (5)
 

where Q0 is the point source strength, a = b dimensions 

of the square region. 

Equation (5) describes the outgoing wave of wavenumber k, 

produced by a point source of strength Q0, located at point (η0, ξ0), 

observed at (x, y) subject to homogeneous Dirichlet boundary 

conditions (φ = 0) on the external boundary of the unite square.  

Having the analytical solution such a problem could be treated 

as a benchmark problem. The issue of precision of the Boundary 

Element solution with respect to the excitation frequency as well 

as the spatial discretization would be considered. 

The Helmholtz equation should be modified by an integral 

over the whole region Ω (see the last term of Eq. (6)). 

𝑐(𝒓)𝜑(𝒓) + ∫
𝜕𝐺(|𝒓 − 𝒓′|)

𝜕𝑛𝜞

𝜑(𝒓′)𝑑𝜞 = 

 = ∫ 𝐺(|𝒓 − 𝒓′|)
𝜕𝜑(𝒓′)

𝜕𝑛𝜞
𝑑𝜞 − ∫ 𝐺(|𝒓𝑠 − 𝒓′|)

Ω
𝑄0𝛿𝑠𝑑Ω (6) 

where Q0 is the magnitude of the source and δs is a Dirac delta 

function which integral is equal to one at the point rs = ps 
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and zero elsewhere. Taking above into account and assuming that 

only one point source exists, after some integration Eq. (6) could 

take the following form: 

𝑐(𝒓)𝜑(𝒓) + ∫
𝜕𝐺(|𝒓 − 𝒓′|)

𝜕𝑛𝜞

𝜑(𝒓′)𝑑𝜞 = 

 = ∫ 𝐺(|𝒓 − 𝒓′|)
𝜕𝜑(𝒓′)

𝜕𝑛𝜞
𝑑𝜞 − 𝐺(|𝒓𝑠 − 𝒓′|)𝑄𝑠 (7) 

where for internal points of the region Ω coefficient c(r)=1. 

The results of calculations are presented below. The left-hand 

column of the Fig. 5a contain the analytical solution and the right-

hand side column the BEM solution. Because the solution was 

achieved in the frequency domain in the figures only the modulus 

of the complex amplitude is presented. 

 
a) b) 

  

  

Fig. 5. Relief plot of absolute value of complex potential distribution 

for the analytical solution – column a) and for BEM numerical solution – column b) 

The image of the acoustic field is presented in the Fig. 6 

for two frequencies 20 Hz and 680 Hz. Using those figures only 

qualitative comparison to the benchmark is possible. 

 
a) b) 

  

  

Fig. 6. Qualitative comparison between analytical (left, column a) and BEM (right, 

column b) solutions for the Helmholtz equation for the point source located 

in the centre of the square region 

If the line A-A in Fig. 2a would be considered than 

the quantitative comparison between the analytic solution (treated 

as a benchmark) and the numerical solution became possible. 

The boundary element discretization was modest because only 

sixty-four boundary elements were used. In case of the frequency 

20 Hz agreement was excellent but when the frequency become 

higher the discrepancy become bigger. Therefore, it is necessary 

to increase the number of boundary elements. We can observe the 

reduction of a relative error in case of frequency 680 Hz 

comparing the Fig. 7b and Fig. 9b. 

a) 

 
b) 

 

Fig. 7. Potential (acoustic pressure) comparison along the A-A line (see Fig. 2a) 

for 20 Hz (above) and 680 Hz (below) 

a) b) 

  

  

  

  

Fig. 8. Qualitative comparison between analytical (left, column a) and BEM 

(right, column b) solutions of the Helmholtz equation for the point source located 

in the centre of the square region for the frequencies: 20 Hz, 680 Hz, 1340 Hz 

and 2000 Hz 

Along the A-A line (see Fig. 2a) comparison between analytic 

and numerical solution is presented below. The highest source 

frequency the bigger relative error one may observe. The error 

reduction is possible by increasing the number of boundary 

elements. 

Inspecting those figures one conclusion is clear, that acoustic 

problem could effectively be solved for a wide range of acoustic 

parameters of the environment and excitation (frequency 

for example). The maximal relative error does not exceed 10% 

and easily could be reduced by applying dense discretization. 
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a) 

 
b) 

 
c) 

 
d) 

 

Fig. 9. Potential (acoustic pressure) comparison along the A-A line (see Fig. 2a) 

for 20 Hz (above) and subsequently 680 Hz, 1340 Hz and finally 2000 Hz 

Table 1. Basic data for acoustic benchmark calculation 

f [Hz] 20 680 1340 2000 

𝛿% 0 -2.02 3.19 9.48 

𝑘 [1/m] 0.37 12.42 24.48 36.53 

𝜆 [m] 17.20 0.51 0.26 0.17 

element length [m] 0.1250 0.0625 0.0625 0.0625 

arg. of Henkel function 0.058 1.977 3.895 5.814 

no of BE per 𝜆 138 8 4 3 

 

From tomography point of view the most important is a grid 

providing a minimum number of points per wavelength to resolve 

acoustic problem even for the highest frequencies. As our goal is 

the ultrasound tomography, we have to consider frequency above 

20000 Hz. For such frequencies, the wavelength became 

noticeably short even less than 0.017 m.  

From tomography point of view satisfactory target would 

be such a number of boundary elements which allows to achieve 

a relative error of less than 10%. Furthermore, this selection 

adheres to the eight point per wavelength rule suggested by [1] 

for the approximation of acoustic waves. Only frequencies 20 Hz 

and 680 Hz fulfil this condition. But it does not mean that 

the remains cases are nor useful for the tomography cases. 

The relative error remains low even thou the number of elements 

is about three per wavelength. 

However, to calculate acoustic problem of the ultrasound 

frequency and preserve this condition the region of interest should 

be much smaller. It means that the acoustic wavelength must 

be much greater than the length scale of the geometry. So, instead 

the unite square region the size was reduced by ten up to 0.1 m. 

 

 

 

Fig. 10. Ultrasound modelling of the Helmholtz problem with soft boundary 

conditions 

The results are quite satisfactory and the maximal error (with 

the exception of singularity point in the centre of region) is less 

than 2.45%. 

4. Near-Boundary Source 

For tomography problems it is necessary to fix the sensor 

on the boundary or inside the region but remarkably close to the 

boundary. It is interesting to investigate numerical solution 

behaviour in such cases. Let us consider a situation with one point 

source located near boundary and on the external boundary 

of unite square the homogeneous Dirichlet boundary conditions 

were imposed (sound soft boundary conditions).  
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a) frequency f = 1340 Hz b) frequency f = 20000 Hz 

  

  

  

Fig. 11. Ultrasound modelling of the Helmholtz problem with a near-boundary point 

source and sound soft boundary conditions: column a) for excitation with frequency 

1340 Hz, column b) with excitation of 20000 Hz 

It is easily to notice that the precision of calculations depends 

not only on the frequency but also depends on the formulation 

of the acoustic problem itself. Regarding frequency, the higher 

frequency the more rigoristic demands of the problem. Particularly 

it concerns the ultrasound frequencies. Precision might be kept 

on low level but the ratio of wavelength to the length of boundary 

element should be not less than eight.  

That demand fine discretization what means high time 

consumption. But tomographic problems which are solved 

by iteration process have to be as fast in each iteration step 

as possible. In some particular cases (see table 1) the number 

of boundary elements per wavelength could be reduce up to 3 or 4 

and the maximal relative error would not exceed 10%. It might 

provide satisfactory results for the tomography imagining. 

5. Conclusions 

Very often in tomography problems, we have to deal with 

many sensors emitting and receiving signals which are closely 

located to the external boundary. As an example, a Diffuse Optical 

Tomography or Radio Tomography could be mentioned [5, 6]. 

In this paper two different mathematical models of the 

acoustic point sources were investigated. For the purposes 

of the forward tomography problem formulated in the integral 

form the second mathematical model of the acoustic point source 

is more convenient.  

In all modalities of the tomography only external boundary 

is accessible so the integral form and the Boundary Element 

Method possess obvious advantages over the Finite Element 

Method [5, 6]. The second approach to the acoustic point source 

involves less boundary elements so it is more convenient 

to the tomography. Even applying constant boundary elements 

results of the Helmholtz equation in a broad range of frequency 

is able to provide results with a maximal relative error less than 

10%. In the literature [1–3] is stressed that the acoustic 

wavelength should be much greater than the length scale 

of the region under consideration. That simply means that the ratio 

of the wavelength to the length of the boundary element should 

be at least equal to eight. Then the precision of calculation would 

be secured. We can see that in the table 1. 

However, in tomography sometimes might be difficult to fulfil 

such rigorous demands. For example, for the ultrasound frequency 

band the length of the boundary elements should be extremely 

small if the level of the error should be kept on the low level. 

From the point of view of the Inverse Problem efficiency 

calculation such decision would be difficult to justify. Some 

compromise between the accuracy and the execution time has to 

be preserved. We can see that in the case of ultrasound frequency 

when only three boundary elements within the length of the wave 

provide results of the forward solution with a maximal error less 

than 10% inside the region. But on the boundary this error could 

be even less. In the authors opinion such coarse discretization 

might be sufficient. 
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