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Introduction 

In the spectral grid method [1, 2, 3, 4, 5, 6] for a 

given number of elements N to achieve the required 

accuracy of calculations, it is necessary to correctly 

position the grid nodes and choose the number of 

polynomials pj, the number of Chebyshev 

polynomials for approximating the solution by pj j-th 

element. These questions are closely related, since by 

bringing the joining nodes closer together, one can 

reduce the number of polynomials on the elements and 

vice versa. In practice, it is apparently more 

convenient to choose a uniform mesh by setting 

different pj on each element. Then the number of 

required polynomials depends on the relative 

magnitude of the gradients of the solution on a 

particular element. Solution gradients can often be 

estimated from asymptotic analysis. 

In the problem of the stability of the boundary 

layer, it is well known [7] that near the wall - in the 

so-called critical layer - the behavior of the solution is 

determined by a rapid change in viscous solutions: 

( ) .1Re,3

1

Re  − ke yk  

Far from the wall, perturbations slowly decay 

according to the law: 

.1,  − ke ky   

It can be seen that the relative value of the 

gradients of the solution at the wall in 3 Re  times 

more than far from her. The refore, the number of 

nodes, and hence the number of polynomials, should 

be greater near the wall ~ in 3 Re  once. More 

accurate values pj are selected in the process of 

calculations. 

We now turn to the presentation of the algorithm 

of the spectral-grid method for the numerical solution 

of the equations of stability of two-phase flows 
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where −+== ir i
k

w
 ,  unknown constant to be 

determined, −r  phase velocity, −i  slew rate, 

−= 10Sf   mass concentration of particles. If 

,0i  then the flow is unstable if − 0i  stable. If 

,0=i  then the oscillations are neutral stable, the 

curve in which 0=i  called the curve of neutral 

stability. Here −−



= kk

y
D ,2

2

2

 wave number. 

Consider equations (1), (2) under the following 

boundary conditions: 
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




d

d
 at ;0 =              (3) 
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For a specific type of flow ( ),U  boundary 

conditions (3), (4) have a definite physical meaning. 

Integration interval  10 ,  split into a grid. 

lN  = ...10  and thus we get п various 

elements: 
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Boundary conditions (3), (4) written in dots 

,,0 N  and the requirements for the continuity of the 

solution of the equations (1), (2) and their derivatives 

up to (М - 1) - th order are of the form: 
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where t and p indicate the order of the derivative. 

Solutions jj  ,  eqs. (1), (2) can be represented 

as a series in the Chebyshev polynomials of the first 

kind. To do this, each element  1, +jj   map to 

interval [-1, +1] by using: 
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across jl  indicated length j - th element. 

Equations (1), (2) after applying 

transformation (7) take the form: 

;0=+ jj
i
jj MF                               (8) 

,,...,2,1,0 NjkS jjjj ==+                (9)                                                               

where 

( )

( )

.Re
2

Re;
2

;

;

;;

;

Re

1

2

2

2

2

2

1

1
2

2

2

j
j

j
j

j

j

j

j
jjj

jjjjj

j

j

j

jjj
jj

j

l
k

l
kk

dy

d
D

dy

Ud
D

k

i
yUk

D
S

D
ik

f
SD

ik

f
M

D
S

f

dy

Ud

D
k

if
yUD

ik
F

==−=

+







−−−=

−==

++

+







−−−=













 

In this case, the boundary conditions and 

continuity conditions for (8) are 

( )
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where the conditions of continuity for pure gas (these 

conditions are set only at the inner nodes of the grid). 
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similar conditions for (9) have the form 
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where the continuity conditions for particles. 

( ) .01 =+N  

We seek an approximate solution to problem (8), 

(9) at each of the elements in the form of the following 

series: 
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where Тп(у) – Chebyshev polynomials of the first 

kind;  
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Chebyshev polynomial nodes; pj – number of 

polynomials per  j- th element. 

For Chebyshev polynomials of the first kind, the 

following recursive formula is valid 
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The derivatives of these polynomials are 

determined by the following recurrent formulas: 
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Substituting series (12) into (8), (9) according to 

the Galerkin method, we require that the left side of 

equation (8) on each of the elements be orthogonal to 

the first ( )−− 4jp  м and, similarly, the left-hand side 

of equation (9) to the first ( )−− 2jp  m to Chebyshev 

polynomials, i.e. 
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where (f, g) - dot product on a segment [-1.+1], i.е. 
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Conditions (10), (11) with the use of (12) are 

written in the form: 
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Thus, to determine ( )
=

+

N

j
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12  unknown 

( ) ( ) ( )Njpnda j
j

n
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n ,...,2,1,,...,1,0, ==  we have 
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These equations will be: ( ) ( )
==
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N
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orthogonality equations (13), (14), 4N - conditions 

(15) and 2N - conditions like (16). 

A system of linear algebraic equations (13), (15), 

(14), (16) write in matrix form 

( ) 0=− xBA                                           (17)                                                             

here A and B are complex matrices. 
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