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Abstract: Epilepsy patients might need continuous electroencephalography (EEG) monitoring to help them 

understand their own condition’s improvements or their doctors to determine the frequency of the seizures. In this 

study, we demonstrated how a low-cost, portable EEG headband could be used to detect absence seizures in epilepsy 

patients. The method used is Support Vector Machine (SVM) to separate the initial limit and Machine Learning with 

Tensorflow to predict its confidence level. Then, we tried to test our method on 2 other patients to see its measurement 

divergence. Furthermore, the Tensorflow library has been applied and developed to train and classify the data, which 

is also one of the novelty approaches in this study. From the result, closed eyes can be detected from open-eye 

conditions with more than 96 % accuracy and a loss of only 2.35%. The findings demonstrate the feasibility of 

detecting absence seizures using only two electrodes which were TP9 and TP10 of Muse headband which is also 

positioned in the ear like an ear-EEG. Overall, the study successfully developed a novel method utilizing a low-cost 

headband to provide affordable health system access. 
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1. Introduction 

Epilepsy occurs due to irregular brain activity 

(seizure). The seizure itself activates neurons in the 

brain that occurs synchronously. This irregularity 

problem can occur because of a chemical reaction in 

the brain that results in activation that does not work 

or it could be due to inhibition that does not occur. 

The network chemistry processes that work 

irregularly can result in multiscale periodicities [1]. 

Disruption of this process can occur due to tumors [2], 

infection [3], or injuries related to the brain. In fact, 

it can also cause other psychological effects such as 

depression, suicide, injuries, and mortality. Thus, the 

rapid detection of the seizure would help the 

individual as a well-being. 

Easy diagnosis is very helpful for patients with 

epilepsy. The commonly used diagnosis for this 

disease is by using an electroencephalography (EEG) 

signal which is suggested in [4]. With EEG, 

biopotential signals from the brain can be obtained 

from the surface of the patient’s head. In general, this 

EEG signal analysis is conducted in the hospital using 

many signal lines (channels) and will interfere with 

patient activities. The total number of commonly 

used channels is 20 from the international standard of 

10–20 system electrodes [5]. Long observations to 

obtain sufficient and comprehensive data from each 

part of the brain are often one of the obstacles [6]. 
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This is necessary because brain surgery itself is not 

simple and needs to be done with great precision [7]. 

Therefore, doctors or medical experts who treat 

patients need to be assisted with an EEG tool to make 

an accurate diagnosis. It can also be combined with 

IoT (Internet of Things) [8]. 

Epilepsy seizures themselves can be seen from 

the outside in the form of patient movements such as 

muscle stiffness, jerking, and loss of response. In 

addition, it can also be easily detected from eye 

movement-related activities [9]. However, because 

they are unconscious, patients often do not know 

what happens when the seizure occurs. In order to be 

able to make an early and frequent diagnosis, patients 

also need to know more about their epilepsy. To 

detect epilepsy rapidly, we need to know its common 

signs. The simplest symptom of loss of consciousness 

can be seen from a blank stare [10]. 

Although advances in research on quantitative 

EEG prediction metrics have been made, in general, 

rapid detection research uses only available EEG 

datasets and does not apply directly to patients, such 

as by using the university of Bonn epilepsy EEG 

dataset [11]. Challenges still preclude the routine 

clinical use of the EEG as a monitoring or diagnostic 

tool. Typically, setting up and recording conventional 

EEG devices can be time-consuming, with many of 

the setups in previous investigations using nineteen 

or more electrodes [12]. Many of these issues can be 

solved by using a portable EEG that can be owned by 

every patient as each patient has their own 

characteristic [13]. This rapid detection would detect 

possible epilepsy from the signal recorded using a 

portable EEG device. EEG recording systems costing 

less than 500 USD that we can classify as low-cost 

EEG devices, have been widely circulated in recent 

years [14]. One of the affordable EEG headbands is 

MuseTM product which could also be used for states 

of calmness and alertness [15].  

EEG can be seen as a superior modality for 

detecting brain signal given recent developments and 

the commercial availability of this low priced EEG 

headsets [16]. This affordable and portable 

technology can be easily integrated into everyday 

monitoring and better triage to help when seizures 

occur if the data obtained using the Muse has 

sufficient sensitivity to differentiate epilepsy patients 

from controls (e.g., blank stare). The most typical 

sign of an epilepsy patient is absence seizures. It is 

classified as generalized seizures [17]. However, 

only a small number of studies have been conducted 

to confirm its usefulness in the study of epilepsy-

related brain potential. Despite the fact that MUSETM 

also has a software development community that 

allows scientists to access raw data for research 

purposes. 

Several studies point to wearable EEG recording 

devices called ear-EEGs. These devices depend on 

recording electrodes as earpieces specially designed 

to fit the external ear canal. The idea has been tried 

for seizure detection in epileptic patients and for sleep 

recordings in healthy individuals [18]. An ear-EEG 

placed behind the ear during a seizure was also found 

to have a temporal waveform and frequency content 

similar to that of a scalp EEG [19]. What’s interesting 

here is that the Muse headband also has a conductive 

electrode which we can classify as ear-EEG because 

it is also in the position on the ear. 

Here, we hypothesized that the trade-off between 

electrode location and ease of use would be beneficial 

for detecting basic eye activity and would also be 

detectable with the Muse  headband where its use is 

much more efficient at a fraction of the cost. In this 

experiment, we would utilize the developer 

community with its open-source development library 

muse-js to access the headband. From the software, 

the headband’s parameters, such as the remaining 

battery charge, three axis accelerometers, and its 5 

EEG electrodes could be accessed by using the most 

used chrome web browser through its extension.  

The main aim of this study was to investigate 

how to identify closed eyes from open eyes condition 

so as to demonstrate suspected absence seizures (i.e., 

“blank stare”) using inexpensive portable EEG 

equipment. This typical seizure is easily indicated 

from a few seconds from the open eyes condition 

(without closed eyes) by patients. In other words, 

without the detection of closed eyes within a few 

seconds, these can be referred to as absence seizures 

[20] or petit mal seizures [17]. By understanding that, 

we can start diagnosing with these signs.  

We also explore the confidence level to detect the 

difference between closed and open eyes using 

machine learning. From this process the accuracy and 

loss values of the learning model will be obtained. 

Lastly, measurement divergence is also tested by 

applying the method to two other subjects.  

The organization of this paper is as follows: in 

section 2, we outline the methodology we used in this 

investigation; in section 3, we present the findings 

with the use of a Muse headband; and in section 4, we 

make comparisons with results from other studies 

which using same headband. Finally, the conclusion 

is in section 5. 

2. Methods 

In this section, we will describe the experiments 

carried out to detect the condition of closed eyes in  
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Figure. 1 SVM machine learning architecture 

 

which two methods will be used. The first is the 

support vector machine (SVM) to get the level of 

separation automatically. Then, multi layer 

perceptron (MLP) will be used in training to study 

eye activity detection. Finally, before we could 

further analyze the wearable headbands use, we will 

also discuss the possibility of detecting epilepsy 

using eye activity. 

2.1 Support vector machine 

In this research we try to distinguish the closed 

eye signal from the open eye signal with the Support 

Vector Machine (SVM) as in ear-EEG application at 

[19]. The entire experimental setup can be seen Fig. 

1. 

 

 𝑥 ∈ ℝ𝐷            (1) 

 

𝜙:ℝ𝐷 → ℝ𝑀 , 𝜙(𝑥) ∈ ℝ𝐷   (2) 
 

Once the EEG data has been successfully 

collected symbolizes by x, the clustering method is 

carried out by mapping the x data to the RD coordinate 

system. The classification of training conditions is 

carried out by ϕ(x) and in the data it can be indicated 

from the condition of the eyes being closed or open. 

The simplest separation will be written in a dividing 

line known as the Support Vector Machine (SVM).  

 

  ℋ:𝑤𝑇𝜙(𝑥) + 𝑏 = 0  (3) 

 

The above equation will be the decision boundary 

of the data to be processed. The wT matrix is the load 

to decide whether the eye is in an open or closed 

condition. Also, b is the bias value of the above linear 

equation. Where the value of dH is the value of the 

distance in general as in Eq. (4).  

 

𝑑𝐻(𝜙(𝑥)) =
𝑤𝑇𝜙(𝑥)+𝑏

‖𝑤‖2
  (4) 

 

It is likely that the value will correspond to Eq. 

(3). Whether the value will be less than zero (dH < 0) 

or greater than zero (dH > 0) or equal to zero (dH = 0) 

when the equation is on the line, each will determine 

which cluster will be followed by the point. The 

perfect separation condition, with decidedly level L, 

can be obtained by finding its value by determining 

the loading w* which follows this condition: 

 

𝑤∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑤

[𝑚𝑖𝑛
𝑛
(𝑑𝐻(𝜙(𝑥𝑛)))]  (5) 

 

To find the solution, Eq. (4) can be substituted for 

Eq. (5). However, this solution can only be used for 

ideal conditions where there is no intersection 

between the two clusters. 

 

 𝑤∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑤

[𝑚𝑖𝑛
𝑛

𝑦𝑛[𝑤
𝑇𝜙(𝑥𝑛)+𝑏]

‖𝑤‖2
]  (6) 

 

The value of yn is the output of Eq. (3). 

Optimization can be done by processing the above 

data by simplifying it into Eq. (7). 

 

𝑤∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑤

1

‖𝑤‖2
   (7) 

 

𝑠. 𝑡. :𝑚𝑖𝑛
𝑛
(𝑦𝑛[𝑤

𝑇𝜙(𝑥𝑛) + 𝑏]) = 1  (8) 

 

In real conditions, there is often a wedge between 

the two clusters, so it is necessary to add an error 

value of ξ. 

 

 𝑤∗ → 𝑚𝑖𝑛
𝑤,𝑏,(𝜉𝑛)

1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑛

𝑛         (9) 

 

𝑠. 𝑡. : 𝑚𝑖𝑛
𝑛
(𝑦𝑛[𝑤

𝑇𝜙(𝑥𝑛) + 𝑏]) ≥ 

1 − 𝜉𝑛∀𝑛, 𝜉𝑛 ≥ 0∀𝑛         (10) 

 

This optimization is described into Algorithm 1. 

This algorithm shows the order of our experiment. It 

started with acquiring data for two conditions, open 

and closed eyes. 

The data obtained is then divided so that it can be 

used for training and testing. Furthermore, the model 

that has been made will be trained to recognize the 

pattern of the two conditions. Finally, testing is  
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Algorithm: 1 EEG support vector machine of this study 

Input:  EEG vector Xˆ = [x1,x2,...,xn].  

Label data set Y =[y1,y2,...,yn]
T. 

Output: The optimized value Wˆ , and Separation 

Level L. 

Require: node-js, muse-js, jquery, and popper.js 

1: Install Muse headband to Subject Head and 

run Mindjam 

2: Collecting Data from Subject with Open Eyes 

3: Collecting Data from Subject with Closed 

Eyes 

4: Split Data for Training and Testing 

5: Initialize ϕ(x) and b 

6: while not convergence do 

7: Calculate  

8: if success then 

9:  Calculate Separation Level L 

10:  Exit 

11: else 

12:  n = n + 1 

13: end if 

14: end while 

15: Run Machine Learning Training 

 

carried out. From the test results, it will be 

determined whether the introduction of the two 

conditions is good enough or not. If the result is not 

good, then it will be remodeled and retested. When it 

is finished, the model remains to be used by patients. 

If possible, there will be subdivisions among wide-

awake values and closed eyes for the same values. It 

could also make an ideal range transfer. Uncertainty 

at the boundary will be seen in the transition chart. 

This might happen when the conscious mind is dicey 

in the real application. 

2.2 Multi layer perceptron 

Multi layer perceptron (MLP) would be possible 

with the intake of EEG signal as an input variable. 

The machine learning method could be used to learn 

which later will be useful for us to justify its output 

classification. In this case, eye movements would be 

classified. The closed eye would be classified by 0, 

while a wide-awake condition is represented by 1. 

The seizure prediction from EEG signal had been 

evaluated from the mean difference as shown in Eq. 

(11) as described in [21]. 

 

𝑀𝐴𝐷(𝑥) =
1

𝑁
∑ |𝑥(𝑖) − 𝑥

¯
|

𝑁−1

𝑖=0
            (11) 

 

N is the number of data points in the signal 

sequence x. x(i) is the signal value x in the i-th order. 

Meanwhile, x¯ is the average value. Moreover, it is 

important to choose the best Artificial Neural 

Network (ANN) model in order to find the 

differences between those two conditions. Methods 

from ANN have to be tested and verified with its 

accuracy and loss rate. Because our application is a 

kind of recognition pattern, the best function would 

have high accuracy and a low loss rate. 

To realize, the function of the activation of the 

machine, we could use any functions, either the 

sigmoid or tanh function. Both could permit in a 

similar way but has different transitions. 

 

𝑓(𝑥) =
1

1+𝑒−𝑥
                    (12) 

 

The Sigmoid at Eq. (12) is working at a positive 

input range. Meanwhile tanh function could have 

values from negative values. It might be with x as 

input of EEG signal, and f(x) as the classification of 

eye conditions. The data set would be using Muse 

EEG data. This might be achieved by recording the 

eye movement for about one minute. A convergence 

value can be achieved if the data could be classified. 

It would then be used to get patterns for each 

classification. Conversely, if the data is difficult to be 

classified, it will make the machine learning have an 

over-fitting situation to study the difference. 

Preparation of the validation dataset would be 

directly partitioned from training data. This builds the 

weighing factors in a straight forward process. A 

model of ANN and the chosen method would have 

the prediction of the data as in [22]. In making 

independent and dependent factors from the dataset, 

we should spare the data for testing. Using ANN, we 

could use three types of layers. The layers are input, 

hidden, and output. Using these layers, we could 

include the machine learning methods to have 

different activation functions. 

 

  𝑓(𝑥) = 𝐾(∑ 𝜔𝑖𝑖 𝑔𝑖(𝑥))             (13) 

 

The first layer is the layer that has our input. Not 

many calculations occur at this part. This is used to 

condition the data before going into the hidden layer. 

The hidden layer is the layer separating input from 

the output. It could have many layers. These layers 

would have extensive calculations before sending the 

data to the output side. Finally, the output is the last 

layer of the network that will decide the classification. 

With proper training, machine learning could give the 

best classification for our EEG Signals. 

TensorFlow could be useful as an interface to try 

machine learning methods. Tensors themselves are 

actually relevant to vectors and their following spaces. 
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It might have different factors, such as scalar, vector, 

vectors at one point, or a map between vectors [23]. 

This might be suitable for our application in this 

experiment as long as it can be a kind of tensor [24]. 

 

𝑇 = [𝑇(𝑒1) 𝑇(𝑒2) 𝑇(𝑒3)] = [

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

]         

(14) 

 

T represents a vector of stresses as an act from the 

center of a cube which correspondence with the 

orthogonal planes of e1, e2, and e3. Tensor T is built 

from other vectors. A working system would be able 

to identify the eye movement at the testing stage. In 

this study, testing of the eye movement dataset would 

be done using the accuracy and loss rate of the 

predictions. Along with the training and validation, 

the accuracy and loss rate of our machine learning 

model will be summarized. It would show the 

probability of eye’s movement into open or close 

state. For the application, we could just use Keras 

Library. It provides many activation functions to 

model our machine learning. Once it is built and fitted, 

the model could be validated. The validation can be 

used to identify whether the system can classify our 

dataset. In comparison with [11], which was 

combined using local binary pattern with binary 

values of 0 and 1 value only, this method has a 

prediction value with a decimal score from 0 to 1 

represented as confidence level and one with 100% 

confidence. 

2.3 MuseTM Headband 

Absences can be classified as generalized non-

motor seizures in the new ILAE classification [25]. 

Table 1 shows most epilepsy types related to eye 

activity [17]. The consciousness of the eye’s 

movement might also be related to static 

representations of the brain’s physical cognitive state 

or representation of its statistical connectivity as 

described in persistent networks in its long-term 

intracranial [26]. However, the long period of brain 

connectivity which exists from transient activity 

emerges less likely to happen [17]. By having its 

signals recorded, we would be able to see if the Muse 

headband has the capability to detect it. 

The standard for EEG electrode notation is the 

international 10-20 system. It has divided into brain 

parts. First is the brain hemisphere of the left and 

right brain. It differentiates each other with the 

number following the letter. The right brain is 

followed by even numbers while the left one is by odd  

 

Table 1. The classification of typical absence seizures 

No. Name Description Ref. 

1 Centrecephalic 

Epilepsy 

Petit Mal or Typical 

Absence Seizure 
[27], 

[28] 

2 Idiopathic 

Epilepsy 

Absence Epilepsy which 

happenned during 

childhood, and juvenile 

absence 

[29] 

3 Other 

generalized 

onset nonmotor 

seizures 

Typical nonmotor absence 

seizures, and 

differentiated 

[25] 

4 Dialeptic 

Seizures 

A typical ictal EEG, and 

complex partial seizures 

as dialeptic seizures 

together with a focal ictal 

EEG 

[30] 

 

 

numbers. There is also a letter to code each area of 

the brain. They are AF, F, T, TP, C, P, and O for 

anterior frontal, frontal, temporal, temporal-posterior, 

central, parietal, and occipital consecutively. 

MuseTM headband is incorporated with five 

electrodes. They are Aux, AF7, AF8, TP9, and TP10 

following the electrode position nomenclature [31]. 

Aux, AF7, AF8 are on the forehead as shown in Fig. 

1 with black, green, and purple colors respectively, 

and works like a scalp EEG. However, TP9 and TP10 

are in the left and right ears respectively as shown in 

Fig. 1 with orange and pink respectively. These last 

two sensors work in a different way unlike the 

previous three electrodes with the scalp EEG type. 

Both were kind of smart sensor which was introduced 

commercially as “smart sense conductive rubber ear 

sensors.” It should already have an intelligence 

sensing mechanism. Meaning that as long as the 

sensor touched the ear surface, data would still be 

obtained as the similar mechanism worked in ear-

EEG Sensors [32]. This can be compared to the ear-

EEG sensor in [19] which is behind the patient’s ear. 

In [19], there are four electrodes divided into two on 

each left and right ear. Both groups of sensors work 

with a potential difference between the electrodes.  

Since it has only five compared to the standard 10-

20 System, which has more than 15 channels, it has a 

limitation on detecting our EEG, for example, it 

might be used to predict stroke severity but only for 

rapid diagnosis [33]. It also has an accelerometer and 

gyroscope to ensure that the detection is based on the 

EEG signal and not from the headband movement. 

The structure of this band gains an advantage of its 

portability. It can be easily released and used as a 

normal head band. 
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Table 2. Code description 

No. Data Description 

1 Current code version v1.0 

2 Permanent link to 

code/repository used for 

this code version 

https://github.com/ja

ycode/mindjam 

3 Legal Code License   MIT 

4 Software code 

languages, tools, and 

services used 

javascript 

5 Compilation 

requirements, operating 

environments & 

dependencies 

node-js, muse-js, 

jquery, and popper.js 

 

One application using Muse headband could 

detect head movement [34]. However, it does not 

have eye movement detection. There is a suggestion 

of using an alpha frequency signal to detect the 

movement [35]. However, this rapid detection uses 

simple detection for comparison with another simple 

method [11]. It would be first verified with its 

statistical value such as its average value and standard 

deviation to see the possibility. Then, the machine 

learning approach would qualify it using neural cells 

to learn from its mean absolute deviation (MAD) 

values. 

3. Result and discussion 

The software was running in Google Chrome 

browser using its extension app development features. 

It was also using Android operating system for the 

test. By using this software, we could see raw data of 

EEG signals from our Muse headband.  

3.1 Software architecture 

MindJam was written in node JS and used the 

following libraries to access Muse headband via 

Bluetooth: 

Mindjam used the main library of muse-js [36] 

which is built on node JS to access Muse using Web 

Bluetooth. From the muse-js, we brought it to the 

chrome architecture by using its extension interface. 

We had also changed the display for the EEG channel 

and the accelerometer axis from that main library. 

The generated data from mindjam was electrode’s 

voltage raw value in uV (10−6 Volt). Using this 

software, we could look into the EEG signals 

gathered by the Muse headband. Another library was 

jquery [37] for javascript query access. Finally, 

popper.js [38] was used for the tool-tip and popup 

positioning feature. 

 

 

 

 

(a) 

 

(b) 

Figure. 2 Accessing Data with Chrome Extension: (a) 

Connect to MuseTM Headband and (b) Reading EEG 

Electrodes. 

3.2 Software functionalities 

There were two major functionalities of this 

software. The first one was to connect with the Muse 

headband in Fig. 2 (a). The second usage was to 

display the data read by the Muse headband in Fig. 2 

(b). These two screens showed how we accessed the 

headband at our App. 

Once the Headband is switched on, we would see 

the Muse device in the list as shown in Fig. 2 (a). 

Then, the pairing process would be started through 

this App. Since we used Muse 2 headband, we did not 

need to pair our device through Bluetooth manually. 

After that, we just waited for the device to be 

connected to our chrome book through Bluetooth. 
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 (a)                                              (b)                                          (c)                                           (d) 

Figure. 3 Recording dataset from wearable headband. The blue color was for open eyes and the red color for close 

eyes: (a) AF7, (b) AF8, (b) TP9 and (d) TP10 

 
Table 3. The EEG data statistics 

  TP9 (uV) TP10 (uV) AF7 (uV) AF8 (uV) AUX (uV) 

Condition Open Closed Open Closed Open Closed Open Closed Open Closed 

count 5712 5412 5712 5412 5712 5412 5712 5412 5712 5412 

mean -22.73 -25.54 -19.7 -23.03 -27.05 -26.73 -29.16 -27.81 19.84 13.12 

std 24.25 36.09 16.99 32.54 8.38 9.06 271.9 269.87 131.01 129.49 

min -124.02 -257.32 -105.96 -232.91 -77.15 -76.66 -1000 -940.43 -295.9 -295.9 

25% -41.99 -43.95 -32.23 -35.16 -32.23 -32.23 -218.75 -215.45 -72.75 -79.1 

50% -22.46 -23.93 -19.53 -21.73 -27.34 -26.86 -25.88 -19.53 -2.44 -11.47 

75% -2.93 -4.39 -7.32 -7.81 -21.97 -21.97 184.57 177.86 83.5 76.66 

max 54.69 184.08 41.5 170.41 21.97 22.95 577.64 620.12 571.78 563.96 

 

Next, we would see the interfaces filled with data 

from our headband, as shown in Fig. 2 (b). 

The obtained data from the headband were the 

battery remaining charge, the accelerometer’s data 

with its three axis; X, Y, and Z, then, and the 

electrode’s data which were TP9, AF7, AF8, TP10, 

and AUX as shown respectively. All those presented 

data were the available data for being utilized. For 

example, the axis could be used for head movements. 

Then, the battery’s remaining capacity could help us 

prepare for any emergency or power shortage. 

Meanwhile, electrode’s data was the one that could 

help us investigate our brain signals. 

The signal itself was biopotentials. This was not 

strong enough and prone to noise. This made most of 

the applications use filters to reduce the noise. In 

terms of noise, some indications showed that the 

headband movement would affect the signals. This 

was a disadvantage most of all surface-based 

electrodes where the shift of electrodes on the scalp 

would cause noise or interference with the signal 

from the EEG. The other characteristic of the signals 

was their small values. They were only in micro Volts 

ranges. Thus, it is also required to be amplified before 

being used. Under all of these conditions, we had 

been helped with this commercial Muse headband. It 

had been packaged with this kind of required signal 

processing and its communication interface. It also 

had its developers community to utilize the headband 

for any research especially using node js [36]. 

 The Muse headband gave us the possibility to 

take care of only the signal analysis to achieve our 

goal. In this case, it was about catching epilepsy signs. 

As suggested before a typical seizure, could be 

staring activities or unblinking eyes for a long period, 

as listed before in Table 1. Itemizing those activities 

would bring us into the basic two activities which 

were open and close. As we could see from the 

interface in Fig. 2 (b), the data would be changed 

based on the EEG headband sensor’s data; we could 

just test the recording data with the basic two 

movements. From the EEG recoding data, we would 

be able to classify how far the headband could be 

utilized for detecting those movements.  

Table 3 shows us the statistics from both 

conditions open and close. The values were showed 

us more details about the differences. The gap values 

between each channel could be more quantified than 

just visible from the figure before. By calculating the 

gap for each TP9 and TP10 from Table 3, there would 

be 178.71, 441.41, and 147.46, 403.32uV for each 

open and close at channel TP9 and TP10 respectively. 

There was more than 250 uV for each channel. This 

number was promising enough for the detection of 

our basic movements. For comparison, channel AF7 

and AF8 have much lower values. The gaps for each  
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channel AF7 and AF8 were only 0.49 and -17.09uV. 

Thus, we could just decide to use TP9 and TP10 for 

the detection. Other methods would try to get value 

by using the ref value of AUX. It would also be 

possible as the mean value of AUX is only at 

19.84uV and 13.12 uV for each open and close of 

eyes condition in order. Similarly as described before 

with MAD value [21], we could just try to use the 

individual value with the compensation of machine 

learning. Using machine learning, there was a 

possibility to use more than one signal [39]. It will 

simplify our model into just one model for overall 

signals. It was better than two individual model for 

each channel TP9 and TP10. The model would then 

be trained and tested using the recording data to see 

its possibility of predicting the action. 

The signals were showed in Fig. 3. Data shown in 

Fig. 3 was the recording of EEG signals in around 

twenty seconds for each individual eye open and 

close. The recording was started first with open eyes 

with a total data count of 5712 for 22.3 seconds and 

then followed by closed eyes with 5412 of data count 

for about 21.1 seconds.  

Channels were indicated as discussed before in 

Fig. 1. They were TP9, TP10, and some other frontal 

points AF7, AF8, and Aux for Auxiliary. It could be 

seen directly from the figures that AF7 and AF8 had 

an almost similar range of values for both eyes open 

and close. The only possible way to get the 

differences between those eye movements came from 

TP9 and TP10. From both channels, they had 

different ranges. There were parts which have high 

values during the close condition. This possibility of 

different values could be utilized as the detection of 

features of eye movement.  

3.3 Prediction of closing eyes 

The number of machine learning applications had 

been increased faster nowadays than before as in 

epilepsy [40]. It was due to support from many hi-

tech companies, such as Google with its Tensorflow 

[23]. This work had been using that Tensorflow with 

its Keras application. It utilized the historical data on 

eye activities. Although statistics had shown the gap 

difference, it still did not have a clear model to detect 

an individual activity. To have a definite transfer 

function from the EEG signals, we desired to use 

Tensorflow as the machine learning framework. 

Using the TP9 and TP10 as input, the model would 

use them as an array of inputs and a prediction of an 

eye movement as the output. The tread of the learning 

process is shown in Fig. 4. 

 
(a) 

 
(b) 

Figure. 4 Detection accuracy and loss: (a) Accuracy and 

(b) Loss 

 

From Fig. 4, there was an indication that the eye 

movement was detected using just two basic eye 

movements: opened and closed conditions. This 

made an opportunity for epilepsy detection as it was 

also discussed for children [9]. Further analysis has 

been made to show the differences which might come 

from this improvement in this machine learning 

application. The result of our machine learning 

process is shown in Fig. 4. We could get more than 

96% accuracy and loss only 2.35% from training and 

test. Fig. 4 (a) shows the accuracy history of the 

training. The score rose from 0.825 to 1.0 which was 

similarly from 82.5% to 100%. Next Fig. 4 (b) shows 

us the loss values in the same process. It was in 

reverse trend with its accuracy values. It was 

declining from 16% to a value lower than 2%. Those 

numbers proved our confidence in using the Muse 

headband to help epilepsy patients in absence 

seizures. 

To comprehend our machine learning model, it 

was possible to check its transfer function by using 

the prediction score as output and two chosen 

channels, TP9 and TP10 as inputs. The Transfer  
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(a) 

 
(b) 

Figure. 5 Prediction: (a) Transfer Function. This is 3D 

representation of the prediction model. One position which 

was at TP9=3.42 and TP10=34.67, gives result at 49.93% 

 and (b) Sample data. This is 2D data results. The 

prediction values are mapped in different colors. 

 

function plot was shown in the 3D form in Fig. 5 (a). 

The figure has the input plane of TP9 and TP10 as its 

X and Y coordinates. Then, the prediction of closing 

eyes was defined at Z-axis as height output. It gave 

us the one value at values with ranges less than -80uV 

in TP9 and TP10. However, it is in the slope curve 

with declining values as the percentage of confidence. 

It means that the lower value was still having the 

possibility of closing eyes but less likely to happen. 

Again, increasing the input values of TP9 and TP10 

could lower the value down to 0.2 before going into 

an uphill curve. Finally, it went back to the value of 

1 for values ranging more than 30uV. A 2D map of 

these values was also provided in Fig. 5 (b). 

3.4 Measurement divergence 

In this part, we would try to see the uniformity of 

the data obtained between Subject 1, which had been 

discussed previously, compared to other people.  

 

Table 4. Subject’s profile for measurement’s divergence 

Code Label Sex Age Hair Condition 

S1 Subject 1 Male 41 Short 

S2 Subject 2 Female 39 Long 

S3 Subject 3 Female 38 Short 

 

 
Figure. 6 Distribution plot for eyes activity from TP9 

channel 
 

Assuming that if the range of data obtained would be 

the same, then there was a possibility that the training 

model could be created only once and just applied to 

other users without any changes. However, if it was 

not same, then the training model might need to be 

trained for each individual subject. Then, it might 

also support the idea that everyone had their own 

unique characteristic. 

Table 4 showed the subject’s profile that 

voluntarily helped this research. Following the results 

of Subject 1, the channels being used were TP9 and 

TP10. For that reason, next presented data was 

distribution of data from those two channels to show 

the possible similarities and differences of each 

subject. 

It could be seen from Fig. 6 obtained from TP9 

channel that the open eyes condition had a smaller 

range of value compared with the closed eyes value. 

Then, it was also showed that the data obtained 

followed normal distribution with the median value, 

which was indicated by the red line, was located in 

the middle of the box. However, there were 

differences in the range of values obtained between 

subjects. Subject 1 had 50% of the data in a smaller 

range in comparison with subject 2 and 3. It could 

also be seen in Subject 2 and 3 that the differences in 

the range of open and closed eyes were greater. 

Meanwhile, Subject 1 had almost the same gap 

between those two conditions. The outlier values 

somehow were still located in a bigger gap in the 

closed eye compared with open eye activity. 

Data from TP9 at Fig. 6 also showed a pattern that  
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Table 5. Subject’s data homogenity 

  Open Close 

Cd. Ch. Mean std %cv mean Std %cv 

S1 TP9 -22.73 24.25 -107 -25.54 36.09 -141 

 TP10 -19.70 16.99 -86 -23.03 32.54 -141 

S2 TP9 -26.74 74.22 -278 -9.91 237.44 -2,397 

 TP10 -20.75 66.46 -320 -37.41 237.03 -634 

S3 TP9 -36.43 50.71 -139 -58.48 79.59 -136 

 TP10 -27.51 33.64 -122 3.35 90.40 2,696 

 

 
Figure. 7 Distribution plot for eyes activity from TP10 

channel 
 

was more or less the same as TP10 at Fig. 7. The 

difference between the two channels could still be 

seen although not much. Overall from these two 

channels, the range of possible values for the closed 

eye condition was greater than the open eye condition. 

The data then could be justified with one more 

parameter to see its homogeneity. This would 

quantify the visual approach from the chart described 

earlier. The parameter was the coefficient of variation 

(CV). This could be calculated using the known 

formula in Eq. (15). 

 

  𝐶𝑉 =
𝜎

𝜇
× 100              (15) 

 

Parameter values and CV of each data could be 

seen in Table 5. It could be seen that the homogeneity 

of the data obtained for each individual is not the 

same.  

The value of each eye condition was also not same 

for each individual and channel. This indicates that 

there is a divergence in the measurements. Most 

likely the source of the divergence of these 

measurements was due to the condition from the 

headband placement itself. It first could understand 

that the portable headband was using two kinds of 

electrodes. For surface electrodes, it could be caused 

by several things from the user’s skin. Some of us 

might have more sweat on our foreheads while some 

didn’t. This could affect the surface electrode 

measurements which used in AF7, AF8, and AUX 

sensors at the forehead. 

Next, the thickness of subject’s hair around the ear 

could also affect the conductive sensor electrode 

which used in TP9 and TP10. It was shown by Table 

5 with its increasing CV value especially at closed 

eyes condition with order of S1, S3, and S2 

respectively. As an illustration of the conditions of 

this headband’s electrode placements, Fig. 8 showed 

the application of the headband from each subject for 

comparison with ear-EEG electrodes [19]. 

3.5 Discussion 

Recording equipment should be portable and 

could be used continuously to monitor patients with 

epilepsy in their daily life. This study is the first to 

identify the possible use of the Muse headband in 

detecting absence seizures using channel TP9 and 

TP10 recordings. In this current work, we assessed 

the potential for recording EEG and detecting 

absence seizures from only those two electrodes 

located around the ear, which is a new method for 

detection of seizures accidentally like ear-EEG. 

Future wearable seizure detection systems will use 

sensors that capture EEG around the ear [19]. If 

integrated into clinical research with neurologists for 

treating epilepsy patients, we believe that this study 

will help them to identify absence seizure using eye 

activity detection. 

Overall, it is shown in Fig. 5 that the detection of 

closing eyes is possible. By exercising the closed 

eyes to get confidence level, there was the possibility 

to detect the absence seizures. That was by having the 

lowest level of close eyes prediction for a period of 

time. In this case, its MAD values could be in unique 

ranges of values as indicated by Fig. 6 and 7. That 

might be trained for their individual closing and 

opening eyes. Since the detection rate would vary 

across individual patients, the ANN would be the best 

approach for this case [41]. The values would be 

adjusted through the size and geometry of the 

patient’s head with an EEG headband.  

The contribution of this paper is evidence that the 

ear sensors on the Muse headband could be used to 

detect absence seizure in comparison with the general 
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(a)               (b)                  (c) 

Figure. 8 Ear sensor application of Muse EEG headband Cf. ear-EEG: (a) Subject 1 (S1), (b) Subject 2 (S2) and (c) 

Subject 3 (S3) 
 

Table 6. Muse headband measurement comparison 

Research Target 

Field Method AF TP 
Aux Max. Acc. 

7 8 9 10 

Emotional wellbeing in urban wilderness [15] Psychology Statistical Y Y Y Y Y - 

Perceived Mental Stress Classification [42] Diagnosis MLP Y Y Y Y Y 93% 

Predicting stroke severity [33] Diagnosis Random Forest N N Y Y N 76% 

Closing Eyes Detection Diagnosis SVM + MLP N N Y Y N 96% 

 

seizures in ear-EEG which have been studied in [19]. 

Behind-the-ear EEG settings such as ear-EEG may 

offer more features in treating epilepsy patients. In 

implementation, the existance of many commercial 

items already at the market which can be categorized 

into low-cost, portable EEG systems was a key 

advantage for overall progress in terms of time [14]. 

However, a comparison between ear-EEG and 

commercial EEGs which have been mass-produced 

cannot be done because of customization, which 

might not be possible. In fact, comparing items for 

certain brands can be easily done in terms of use, for 

example from the EEG channel used, its research 

method, and how the result’s accuracy is. 

Comparison of our method with other measurements 

which also used Muse headband can be seen in Table 

6. 

From Table 6, it can be seen that the channel used 

in this method is the same as that used in predicting 

stroke severity [33], namely, by using the ear Sensor 

on the TP9 and TP10. However, the maximum 

accuracy (Max. Acc.) obtained can be 20% better. 

Then, the results which are almost the same with a 

difference of 3% can be compared with the perceived 

mental stress classification [42]. However, the 

channel used is deeper than our research. All of this 

research is a development of a common application 

of the official use of the Muse headband itself which 

is used generally for meditation tools [43]. This can 

be seen from the research on the relationship between 

emotional and scenery [15]. 

However, the difference through episodes of 

seizures should have been taken care of through the 

ANN training. This could be our next research with 

known epilepsy patients for a real application which 

may give a different value for every single person. A 

number of electrodes that exists did make limitation 

for epilepsy source detection. A limited number of 

electrodes constrained the scanning area of the head. 

To have few motoric movements and other activities 

could be seen as possible using the available 

electrodes but to pick up the cause of epilepsy signals 

might demand a wider area of the head with more 

electrodes. Overall, it could provide affordable 

Health System Access, and it might help the patients 

to know better about their conditions. As to have 

good health and well-being has been part of 

understanding ourselves and keeping forward to 

improve it in long run. 

4. Conclusion 

In this article, an experimental study is presented 

with the aim of identifying the appropriate method for 

using Muse EEG headband to classify closed eyes so 

that prolonged open eyes can be categorized into the 

blank stare category. The Muse headband had the 

possibility to be used for rapid detection using only 
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TP9 and TP10 electrodes. The values from those two 

channels showed the difference between the 

condition of the eyes open and closed. In the 

performed test, the possibility of closing eye could be 

detected with 96% accuracy and only 2.35% loss. 

Looking at this probability, this machine learning 

model showed the confidence of real application 

from acquired transfer function as scientific novelty 

where there was two range of slope to characterize 

the EEG signals for eyes close and open conditions. 

In further testing, using two additional subjects, it 

was found that there was a comparison of the 

distribution range between open and closed eye 

conditions. From the CV value which shows 

homogeneity, it is found that the closed eye condition 

consistently has a greater value than the open eye 

condition. It demonstrates the feasibility of detecting 

absence seizures for epilepsy patients as in ear-EEG 

system. In the future, the model could be used to 

develop the cognitive health warning system for 

communities around the epilepsy patients. 
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