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Abstract: In recent decades, the groundwater quality monitoring application gained more attention among the 

researcher community to assess the groundwater quality. The water quality index (WQI) is one of the effective models 

used for assessing the groundwater quality, which is not always superior in classifying the groundwater quality, 

especially in the large scale databases. Therefore, a new ensemble model is developed in this manuscript for classifying 

the ground-water quality. After collecting the data from the real-time and Indian water quality databases, the WQI 

calculation and the data denoising (Z-score and Min-Max normalization techniques) are accomplished. From the 

denoised data samples, the optimal features/attributes are chosen by implementing enhanced whale optimization 

algorithm (EWOA). Usually, the traditional WOA is computationally complex to explore the global solutions, 

therefore, a fitness function probability 𝑝𝑟𝑜  is included with the WOA for enhancing convergence speed and 

classification accuracy. The chosen optimal features/attributes are fed to the ensemble model: AlexNet and K-nearest 

neighbor (KNN) for classifying the types of groundwater quality. The introduced ensemble based EWOA model has 

achieved 99.88% and 99.98 (very near to 100%) of classification accuracy on the real time database and Indian water 

quality database. 

Keywords: AlexNet, Groundwater quality classification, K-nearest neighbor, Min-Max normalization, Whale 

optimization algorithm, Z-score technique. 

 

 

1. Introduction 

In recent decades, the water pollution has become 

grimmer, due to increased urbanization and fast 

economic growth [1, 2]. Majority of the nations have 

started to implement effective environment water 

management systems for understanding the marine 

ecosystems quality [3, 4]. Groundwater is an 

important water supply source for people, where its 

quality is directly related to the people’s health [5-7]. 

The intake of the contaminated groundwater leads to 

the severe health problems that significantly 

increases the mortality and morbidity rate [8, 9]. The 

WQI facilitates the water quality assessment, and it is 

one of the important tools to assess the quality of 

groundwater. The WQI is assessed by computing an 

extensive range of parameters such as organic matter, 

turbidity, pH, temperature, electrical conductivity etc. 

[10-12]. Hence, the WQI computing proved to be 

effective and time-intensive, but involved unintended 

errors [13, 14]. Therefore, numerous mathematical 

models are implemented based on both machine 

learning and deep learning methods [15-17]. With the 

advanced computing utilizing artificial intelligence, a 

novel model is developed in this paper for 

groundwater quality classification. The contributions 

of this work are stated as follows: 
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• After acquiring the real-time and Indian water 

quality databases, the WQI calculation and the 

data denoising is performed by utilizing Z-

score and Min-Max normalization techniques. 

The data denoising process improves the 

acquired data quality by scaling its range.  

• From the scaled data, the optimal 

attributes/features are chosen by developing 

EWOA technique where it utilizes 

probability𝑝𝑟𝑜 fitness function for enhancing 

convergence speed and classification accuracy. 

In addition to this, the selection of optimal 

features /attributes decreases the complexity 

and computational time of the system. 

• Finally, the chosen features/attributes are fed to 

the ensemble classifier for classifying the 

groundwater quality types like excellent, good, 

poor, and very poor. The efficacy of the 

ensemble based EWOA is analysed using the 

evaluation measures such as false discovery 

rate (FDR), Matthews correlation coefficient 

(MCC), sensitivity, accuracy and specificity. 

 

The paper organization is depicted as follows: 

literature survey is done in section 2. The explanation 

about the ensemble based EWOA is specified in 

section 3. The validation results and the conclusion 

of this work is presented in sections 4 and 5.  

2. Related works 

Mallick [18] developed a new groundwater 

potentiality model (GPM) by integrating individual 

random forest classifier with an ensemble classifier 

that comprise artificial neural network (ANN), 

logistic regression (LR), and support vector machine 

(SVM). As denoted in the resulting section, the 

implemented model effectively improves the 

sustainability of the groundwater management plans, 

especially in the Bisha watersheds, Saudi Arabia. 

However, the integration of several machine learning 

classifiers increases the computational complexity of 

the system. Yang [19] used a random forest classifier 

to predict the interaction of the surface groundwater 

in the New-Zealand region by utilizing land use, 

geology, and hydrology data. Related to other 

machine learning techniques, the random forest 

classifier has achieved better simulation results with 

minimum misclassification error. However, the main 

drawback of random forest classifiers was that the 

larger number of trees makes this technique too slow, 

and in-effective in the real time predictions. Panahi 

[20] integrated both support vector regression (SVR) 

and convolutional neural network (CNN) 

methodologies for groundwater spatial prediction. 

The implemented SVR-CNN method has generated 

significant freshwater conservation and management 

strategies in the study area (South Korea). However, 

the CNN model was computationally expensive 

because it needs more data to achieve better 

prediction results.  

Mosavi [21] initially collected 339 groundwater 

resources, and then, the recursive feature elimination 

technique was applied for identifying the optimal 

features/attributes. Next the selected features were 

given to the ensemble models for groundwater 

potential prediction, where it includes random forest 

classifier, bagged classification and regression trees, 

boosted generalized assistive model and adaptive 

boosting classification tree. The experimental result 

states that the boosting model has attained better 

prediction performance and it out-performed other 

existing models in terms of recall, kappa, precision, 

and prediction accuracy. However, the computational 

time of the developed model was comparably higher 

related to the existing models. Ismael [22] used ANN 

model for classifying the groundwater quality in the 

Al-Zubayr and Safwan in Basra. In this literature, the 

developed ANN model helps in generating 

sustainable groundwater management strategies, but 

it was computationally expensive. Next, Singha [23] 

has initially collected 226 groundwater samples from 

Raipur district, India. Then, a novel deep learning 

model was developed in order to predict the 

groundwater quality. As stated in the resulting 

section, the developed model obtained high 

prediction performance compared to other machine 

learning models like ANN, random forest, and 

XGBoost. Hence, the implemented deep learning 

model was computationally expensive, where it 

requires high end processing systems. 

El Bilali [24] collected 520 groundwater samples 

from Morocco, and further, the groundwater quality 

prediction was assessed by implementing four 

machine learning models: SVR, ANN, random forest 

and Adaboost. The extensive experimental result 

revealed that the random forest and Adaboost models 

attained higher prediction results related to the ANN 

and SVR. However, the ANN and SVR models were 

less sensitive and generalizable to the input variables 

than the random forest and Adaboost. Osman [25] 

implemented a significant groundwater level 

prediction model, here, the data were recorded from 

the highly populated regions of Malaysia. The 

collected data includes the attribute details like 

evaporation, rainfall and temperature for predicting 

groundwater levels. Related to the comparative 

models: ANN and SVR, the Xgboost model has 

achieved high prediction results, but the 
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computational time was higher in this literature. 

Rizeei [26] has implemented an adaptive boosting 

logistic regression model for groundwater potential 

prediction. Hence, the presented model superiorly 

decreases the variance and bias in the database 

compared to other models. On the other hand, the 

presented model was sensitive to outliers and 

overfitting risks. Hmoud Al-Adhaileh, and 

Waselallah Alsaade, [27] has implemented adaptive 

neuro fuzzy inference system (ANFIS) for predicting 

WQI and then the KNN and ANN models were 

employed for classifying water quality. The 

developed model has achieved better classification 

results by means of accuracy, f-score and error rate, 

but computationally costly. T.H. Aldhyani [28] 

integrated long short term memory (LSTM) and Non-

linear autoregressive neural network (NARNET) for 

WQI prediction. Further, the SVM classifier was 

implemented for classifying water quality, where it 

majorly supports binary classification. In order to 

address the afore-motioned issues, a novel ensemble 

based EWOA is proposed for effective groundwater 

quality classification, where it attained better 

performance related to other optimization techniques 

such as random selected leader based optimizer 

(RSLBO) [29] and squirrel search optimizer [30]. 

3. Materials and methods 

The proposed groundwater quality classification 

model comprises four phases such as data collection: 

real time database and Indian water quality database, 

data denoising: WQI-calculation, Min-Max 

normalization and Z-score techniques, feature 

optimization: EWOA, and groundwater quality 

classification: ensemble model (KNN with AlexNet). 

Where, the work-flow of the proposed groundwater 

quality classification model is indicated in Fig. 1. 

 

Figure. 1 Work-flow of the proposed groundwater quality 

classification model 

 

3.1 Database description  

The implemented groundwater quality 

classification model’s (ensemble based EWOA) 

performance was analysed on a real time database 

and Indian water quality database. The real time 

database is recorded from a water quality monitoring 

lab, Narsapuram, Andhra Pradesh. The real time 

database comprises seven parameters such as total 

coliform, fecal coliform, pH, Conductivity, 

Temperature, Nitrate + Nitrite, and biological oxygen 

demand (BOD). In this real time database, the class 

labels of every groundwater sample is assessed by 

calculating the WQI.  

In addition to this, the Indian water quality 

database is recorded from dissimilar Indian locations 

between the time periods of 2005 to 2014. This 

database contains 1679 samples and it is acquired 

from 666 dissimilar sources of lakes and rivers. This 

database consists of seven parameters like BOD, total 

coliform, temperature, fecal coliform, Nitrate, pH, 

and dissolved-oxygen. The Indian central 

government recorded the data for ensuring drinking 

water quality.  

Link: 

https://www.kaggle.com/datasets/anbarivan/indian-

water-quality-data 

3.2 Data denoising 

The data denoising is an important section in the 

groundwater quality classification, which helps in 

improving the quality of collected data. In this section, 

the WQI is calculated from 7 parameters in the 

databases, and then, the water samples are classified 

based on WQI values. In addition to this, the Min-

Max normalization and Z-score techniques are 

employed for data normalization in order to achieve 

superior classification accuracy. Firstly, the WQI 

decreases the acquired data into a specific value, 

which helps in easy understanding of the water 

quality information. In WQI, a weight function 𝑊𝑖 is 

assigned to every parameter on the basis of its 

importance. The effectiveness of the ensemble based 

EWOA is evaluated on both databases with 7 quality 

parameters, and the WQI is computed utilizing Eq. 

(1). 
 

𝑊𝑄𝐼 =
∑ 𝑞𝑖×𝑊𝑖

𝑁
𝑖=1

∑ 𝑊𝑖
𝑁
𝑖=1

                        (1) 

 

Where, 𝑞𝑖  indicates quality estimation Scale 

(QES) of every parameter𝑖, 𝑊𝑖 represents unit weight 

of every parameter and 𝑁 states total parameters. The 
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term QES 𝑞𝑖  is mathematically stated in Eq. (2).  
 

Table 1. Permissible limits of the 7 parameters and its 

unit weights 

Parameters Permissible 

limits 

Unit weight 

𝑾𝒊 

Total coliform/100 mL 1000 0.0022 

Fecal coliform/100 mL 100 0.0221 

Nitrate, mg/L 45 0.0492 

BOD, mg/L 5 0.4426 

Conductivity, 𝜇𝑆/𝑐𝑚 1000 0.0022 

Ph 8.5 0.2604 

Dissolved-oxygen, mg/L 10 0.2213 

 

Table 2. Water quality classification 

Range of water quality index Classification 

0 to 25 Excellent 

26 to 50 Good 

51 to 75 Poor 

76 to 100 Very poor 

 

𝑞𝑖 = 100 × (
𝑉𝑖−𝑉𝐼𝑑𝑒𝑎𝑙

𝑆𝑖−𝑉𝐼𝑑𝑒𝑎𝑙
)                (2) 

 

Where,𝑉𝐼𝑑𝑒𝑎𝑙 states ideal value (pH=7, dissolved-

oxygen=14.60 mg/L, and other parameters are zero), 

𝑆𝑖 denotes standard value, and 𝑉𝑖 indicates measured 

value. The weight function 𝑊𝑖 is computed using Eq. 

(3). 
 

𝑊𝑖 =
𝐾

𝑆𝑖
              (3) 

 

Where, 𝐾 indicates proportionality constant, and 

it is computed utilizing Eq. (4). Hence, the 

permissible limits of the 7 parameters and its unit 

weights are depicted in Table 1. Further, the water 

quality classification is indicated in Table 2.  
 

𝐾 =
1

∑ 𝑆𝑖
𝑁
𝑖=1

                             (4) 

 

After performing WQI, the Min-Max 

normalization technique rescales the collected data 

into lower and upper bounds, which usually ranges 

between 0 to 1 and -1 to 1. Additionally, the Z-score 

technique is employed for normalizing the collected 

data by calculating standard-deviation and mean 

values. The Z-score technique scales the parametric 

values between 0 to 1. The mathematical expressions 

of Min-Max normalization and z-score techniques 

are stated in Eq. (5) and (6). 

 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                  (5) 

 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 =
(𝑥−𝜇)

𝜎
       (6) 

 

Where, 𝑥  indicates tested samples in the 

databases,𝜇 represents mean value, 𝜎 states standard 

deviation value, 𝑥𝑚𝑎𝑥𝑎𝑛𝑑𝑥𝑚𝑖𝑛 states maximum and 

minimum attribute values. In addition, the rescaled 

data are dimensionally decreased by implementing 

EWOA, where this procedure helps in reducing the 

computational time and complexity of the system. 

3.3 Feature optimization 

The metaheuristic optimization algorithm: WOA 

mimics hump back whales behaviour for resolving 

the feature optimization issues. Firstly, the 

populations are randomly generated, and further the 

optimal prey location is searched by employing either 

bubble-net or encircling approaches. In the encircling 

approach, the best location of the hump-back whales 

is found by utilizing Eq. (7) and (8). 

 
𝐷 = |𝐵 ⊙ 𝑃∗(𝑡) − 𝑃(𝑡)|               (7) 

 

𝑃(𝑡 + 1) = |𝑃∗(𝑡) − 𝐴 ⊙ 𝐷|           (8) 

 

Whereas, 𝐴and 𝐵 represents coefficient variables, 

𝑡  denotes iteration number, 𝑃(𝑡)  indicates hump-

back whales position, and 𝐷  represents distance 

between two preys 𝑃∗(𝑡) . Though, the coefficient 

variables are computed utilizing Eq. (9) and (10). 

 

𝐴 = 2𝑙 ⊙ 𝑟𝑣 − 𝑙                     (9) 

 

𝐵 = 2𝑟𝑣                             (10) 

 

Where, 𝑙  states a linear function that ranges 

between zeros to two and 𝑟𝑣  represents a random 

vector  ∈ [0,1] . On the other hand, a bubble-net 

approach is utilized for identifying the prey’s optimal 

location by encircling a shrinkage and updating the 

spiral position. The mathematical expressions of the 

bubble-net approach are given in Eq. (11) and (12). 

 

𝑃(𝑡 + 1) = �́� ⊙ 𝑒𝐴𝐵 ⊙ 𝑐𝑜𝑠(2𝜋𝐴) + 𝑃∗(𝑡)   (11) 

 

𝑃(𝑡 + 1) = 

{
𝑃∗(𝑡) − 𝐴 ⊙ 𝐷𝑖𝑓𝑝 ≥ 0.5

�́� ⊙ 𝑒𝐴𝐵 ⊙ 𝑐𝑜𝑠(2𝜋𝐴) + 𝑃∗(𝑡)𝑖𝑓𝑝 < 0.5
  (12) 

 

Where, �́� = |𝑃∗(𝑡) − 𝑃(𝑡)|  represents the 

distance between prey and hump-back whale, and ⊙ 

states element multiplication process. Hence, the 

hump-back whale position is updated by replacing 

the random search agent with the best search agent in 
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the exploration phase and it is specified in Eq. (13) 

and (14). 

 

𝐷 = |𝐵 ⊙ 𝑃𝑟𝑎𝑛𝑑 − 𝑃(𝑡)|             (13) 

 

𝑃(𝑡 + 1) = |𝑃𝑟𝑎𝑛𝑑 − 𝐴 ⊙ 𝐷|       (14) 

 

Where, 𝑃𝑟𝑎𝑛𝑑  represents a random position, 

where it is computed from the present population size. 

The conventional WOA is computationally complex 

in exploring the global solutions, so EWOA is 

implemented for improving the classification 

accuracy, reliability of prey searching and 

convergence speed. After every iteration, a number 

between the ranges of zeros to one is extracted for 

each hump-back whale. If the obtained random 

number is <0.5, Eq. (17) is selected for updating the 

hump-back whale’s position. Otherwise, Eq. (11) is 

chosen for updating the hump-back whale’s position. 

In addition, the hump-back whale’s component is 

changed with a fitness function (probability𝑝𝑟𝑜) in a 

search space, and it is stated in Eq. (15). 

 

𝑝𝑟𝑜 = 0.3(1 −
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)              (15) 

 

Where, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  denotes maximum iteration and 

𝑖𝑡𝑒𝑟 states present iteration number. In order to select 

a design value 𝑥𝑗 , a random number is selected 

between the ranges of one to𝑝𝑟𝑜. At last, a number 𝑛 

is extracted between the intervals of zero to one based 

on𝑝𝑟𝑜 value. Hence, the selected value 𝑥𝑗 is altered 

utilizing Eq. (16) and (17). 

 

𝑥𝑗 = 𝑥𝑗𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑𝑜𝑚 × (𝑥𝑗𝑚𝑎𝑥 − 𝑥𝑗𝑚𝑖𝑛)   (16) 

 

𝑃(𝑡 + 1) = |𝑃∗(𝑡) − 𝐴 ⊙ 𝐷𝑥𝑗|          (17) 

 

The proposed EWOA significantly maintains a 

better balance between diversification inclinations 

and intensifications. From 4928 attributes, the 

optimal 3940 attributes are chosen for groundwater 

quality classification. The assumed parameters of the 

EWOA are: shrinking-encircling=0.5, random search 

ability=0.1, iteration numbers=150, population 

size=100, and spiral updating probability=0.5. Flow-

chart of the EWOA is depicted in Fig. 2. 

3.4 Groundwater quality classification 

The dimensionally decreased 3940 attributes are 

given to the ensemble model: KNN with AlexNet for 

groundwater quality classification. The KNN 

classifier utilizes k-neighbourhood values for finding 

the closest points between the data objects. 

Additionally, k-value is utilized for identifying the  

 

 
Figure. 2 Flow-chart of the EWOA 

 

closest points in the selected attributes, where it 

should be unique. Here, 3 k-values are appropriate in 

obtaining superior classification results and the 

Euclidean distance measure 𝐸𝑢𝑖  is employed in 

determining the nearest neighbors in the selected 

attributes and it is mathematically defined in Eq. (18). 

 

𝐸𝑢𝑖 = √(𝑥1 − 𝑥2) + (𝑦1 − 𝑦2)2           (18) 

 

Where, 𝑥1, 𝑥2, 𝑦1, 𝑎𝑛𝑑𝑦2  indicates input data 

variable. In addition to this, the AlexNet model 

includes 3 fully connected layers and 5 convolutional 

layers along with Rectifier Linear Unit (ReLU) 

activation function and Max-pooling operation for 

groundwater quality classification. The assumed 

hyper-parameter of the AlexNet is: training 

model=stochastic gradient descent, validation 

frequency=30, momentum=0.6, learning rate=0.15, 

maximum epoch-10 and the L2 

regularization=1.000e-04. The AlexNet 

configuration is denoted in Table 3, and the 

developed ensemble model superiorly classifies the 

groundwater quality into four classes like excellent, 

good, poor and very poor. The experimental 

outcomes of the ensemble based EWOA is stated in 

section 4. 
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Table 3. AlexNet configuration 

Layers Functions Configurations 

 

 

Convolutional 

layers 

1  

 

Max-

pooling 

850 filters with 

7 × 7 size 

2 850 filters with 

5 × 5 size 

3 680 filters with 

5 × 5 size 

4 680 filters with 

5 × 5 size 

5 450 filters with 

2 × 2 size 

 

Fully-

connected 

layers 

1  

ReLU 

2096 nodes  

2 2096 nodes  

3 400 nodes 

4. Experimental results 

In the groundwater quality classification, the 

proposed ensemble based EWOA is simulated 

utilizing a python software environment on the 

computer with windows 10 operating system, i7 Intel 

core processor and 16GB random access memory. 

The performance measures such as sensitivity, FDR, 

specificity, accuracy, and MCC are utilized to 

evaluate the efficiency of the ensemble based EWOA 

in predicting the WQI and classifying the 

groundwater quality. Then, the mathematical 

representations of the undertaken performance 

measures such as sensitivity, FDR, specificity, 

accuracy, and MCC are depicted in Eq. (19-23). 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100              (19) 

 

𝐹𝐷𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑃
× 100                  (20) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100               (21) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100        (22) 

 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
× 100    

(23) 

 

Where, FP, FN, TP and TN state false positive, 

false negative, true positive and true negative values. 

4.1 Quantitative investigation on a real time 

database 

In this scenario, the proposed ensemble based 

EWOA’s performance is validated on a real time 

database in light of sensitivity, FDR, specificity, 

accuracy and MCC. In this manuscript, the proposed 

ensemble based EWOA’s effectiveness is validated 

by performing k-fold cross-validation such as 3-fold, 

5-fold, and 7-fold. In that, the 5-fold cross validation 

(80:20% data training and testing) attained high 

classification results related to other cross fold 

validations, and the experimental results are depicted 

in Table 4. In this manuscript, the inclusion of cross-

fold validation reduces the computational time, bias, 

and variance of the developed ensemble based 

EWOA. 

As depicted in Table 4, the experimental results 

are validated with dissimilar classifiers such as SVM, 

multi-SVM (MSVM), KNN, AlexNet and ensemble 

classifier with and without performing EWOA. By 

inspecting Table 4, the combination: ensemble 

classifier with EWOA attained maximum 

classification results with accuracy of 99.88%, 

sensitivity of 99.34%, FDR of 99.74%, specificity of 

99.78% and MCC of 99.90%. The obtained 

experimental results are high compared to other 

individual classifiers like SVM, MSVM, KNN and 

AlexNet on a real time database. Graphical 

comparison of the ensemble based EWOA on a real 

time database is stated in Fig. 3.  

4.2 Quantitative investigation on an Indian water 

quality database 

In this segment, the proposed ensemble based 

EWOA’s efficacy is investigated on an Indian water 

quality database by means of sensitivity, FDR, 

specificity, accuracy, and MCC. The Indian water 

quality database has 1679 samples in which 80:20% 

of the data are used for model training and testing. As 

specified in Table 5, the ensemble based EWOA has 

obtained a maximum classification result with 

sensitivity of 100%, FDR of 99.82%, specificity of 

100%, accuracy of 99.98%, and MCC of 99.98% on 

an Indian water quality database. In addition, the 

achieved experimental result is better related to the 

individual classifiers like SVM, MSVM, KNN, and 

AlexNet. Graphical comparison of the ensemble 

based EWOA on an Indian water quality database is 

represented in Fig. 4. On the other hand, the optimal 

feature selection of EWOA significantly decreases 

the computational time and complexity of the system. 

4.3 Comparative investigation 

The proposed ensemble based EWOA’s effectiveness 

is compared with an existing model in light of 

accuracy and regression coefficient. Hmoud Al-

Adhaileh, and Waselallah Alsaade, [27] implemented 

ANFIS model for predicting the WQI, and then 
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integrated KNN and ANN for classifying the  

 
Table 4. Experimental results of the ensemble based EWOA on a real time database 

Without performing EWOA 

Classifiers Sensitivity (%) FDR (%) Specificity (%) Accuracy (%) MCC (%) 

SVM 90.60 91.65 91.60 91.58 90.43 

MSVM 94.40 94.96 92.54 94.58 92.14 

KNN 96.95 97.54 94.78 97.36 96.06 

AlexNet 98.58 98.35 95.18 98.52 98.68 

Ensemble 99.08 99.56 99.72 99.66 99.77 

With performing EWOA 

Classifiers Sensitivity (%) FDR (%) Specificity (%) Accuracy (%) MCC (%) 

SVM 92.44 95.09 95.65 94 96.22 

MSVM 93.47 96.90 96.53 95.50 96.66 

KNN 97.64 98.55 98.28 98.77 98.02 

AlexNet 99.02 99.36 99.10 99.06 99.34 

Ensemble 99.34 99.74 99.78 99.88 99.90 

 

 
Figure. 3 Graphical comparison of the ensemble based EWOA on a real time database 

 
Table 5. Experimental results of the ensemble based EWOA on an Indian water quality database 

Without performing EWOA 

Classifiers Sensitivity (%) FDR (%) Specificity (%) Accuracy (%) MCC (%) 

SVM 92.65 94.90 93.68 92.20 94.46 

MSVM 95.76 95.54 95.70 93.56 95.74 

KNN 96.06 96.58 96.64 93.30 96.66 

AlexNet 97.76 97.30 98.58 94.56 97.96 

Ensemble 99.09 98.95 99.35 98.85 98.95 

With performing EWOA 

Classifiers Sensitivity (%) FDR (%) Specificity (%) Accuracy (%) MCC (%) 

SVM 98.90 98.90 98.68 98.72 98.88 

MSVM 98.96 98.94 98.98 98.50 98.96 

KNN 99.14 99.12 99.18 99.72 99.02 

AlexNet 99.82 99.70 99.80 99.82 99.67 

Ensemble 100 99.82 100 99.98 99.98 

 



Received:  September 30, 2022.     Revised: November 4, 2022.                                                                                      221 

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023           DOI: 10.22266/ijies2023.0228.19 

 

 
Figure. 4 Graphical comparison of the ensemble based EWOA on an Indian water quality database 

 

Table 5. Comparative results of the existing and the 

proposed model 

Models Accuracy 

(%) 

Specificity 

(%) 

Sensitivity 

(%) 

KNN with 

ANN [27] 

100 99.61 99.61 

LSTM and 

NARNET 

with SVM 

[28] 

97.01 97.78 99.23 

Ensemble 

based EWOA 

99.98 100 100 

 

water quality. In this literature study, the ANFIS 

model was implemented based on 7 statistical 

parameters such as dissolved oxygen, temperature, 

fecal coliform, BOD, total coliform, Nitrate, and pH. 

The experimental investigations showed that the 

implemented model has achieved 100% of 

classification accuracy and 99.61% of sensitivity and 

specificity on the Indian water quality database. T.H. 

Aldhyani [28] has combined both LSTM and 

NARNET for WQI prediction. Next, the SVM 

classifier was developed for classifying water quality. 

The extensive experiment indicates that the 

implemented model has achieved 97.01% of 

classification accuracy, 99.23% of sensitivity and 

97.78% of specificity on the Indian water quality 

database. Related to these existing works, the 

developed ensemble based EWOA has attained high 

classification results in the groundwater quality 

classification with the accuracy very near to 100%, 

sensitivity and specificity of 100% on the Indian 

water quality database.  

As mentioned earlier, the feature optimization is 

a main integral part of this research. Hence, the 

selection of optimal features significantly decreases 

the system complexity to linear 𝑂(𝑁) where, order of 

magnitude is indicated as 𝑂  and input size is 

represented as 𝑁 . Additionally, the computational 

time of the developed model is 42.1 and 33.2 seconds 

on the real time and Indian water quality databases 

and it is superior to the conventional models. These 

are major concerns depicted in the literature section, 

and the comparative results are stated in Table 5. 

5. Conclusion 

In this research article, a new ensemble based 

EWOA model is implemented for effective 

groundwater quality classification. Initially, the WQI 

calculation and data denoising (Z-score technique 

and Min-Max normalization technique) are 

performed for enhancing acquired data quality. Next, 

the optimal features/attributes are selected that are 

relevant to the groundwater quality by proposing 

EWOA technique. Lastly, the dimensionally reduced 

features/attributes are fed to the ensemble 

classification model for classifying water quality 

types like excellent, good, poor and very poor. The 

ensemble classification model integrates KNN and 

AlexNet for groundwater quality classification. The 

evaluation measures like sensitivity, FDR, specificity, 

accuracy and MCC are utilized for analyzing the 

effectiveness of the proposed model. Hence, the 

ensemble based EWOA model has achieved 99.88% 

and 99.98% of classification accuracy on the real 

time database and Indian water quality database. The 

achieved experimental result is maximum related to 

the traditional machine learning classifiers like SVM, 

MSVM, KNN, and AlexNet. In addition, the 

selection of optimal features/attributes significantly 

reduces the computational time and complexity of the 

system. As a future extension, a new deep learning 

based ensemble classification model is implemented, 
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and validated with a multimodal data to further 

improve groundwater quality classification. 
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